xref: /openbmc/u-boot/arch/arm/mach-imx/mx6/clock.c (revision 20b9f2ea)
1 /*
2  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
3  *
4  * SPDX-License-Identifier:	GPL-2.0+
5  */
6 
7 #include <common.h>
8 #include <div64.h>
9 #include <asm/io.h>
10 #include <linux/errno.h>
11 #include <asm/arch/imx-regs.h>
12 #include <asm/arch/crm_regs.h>
13 #include <asm/arch/clock.h>
14 #include <asm/arch/sys_proto.h>
15 
16 enum pll_clocks {
17 	PLL_SYS,	/* System PLL */
18 	PLL_BUS,	/* System Bus PLL*/
19 	PLL_USBOTG,	/* OTG USB PLL */
20 	PLL_ENET,	/* ENET PLL */
21 	PLL_AUDIO,	/* AUDIO PLL */
22 	PLL_VIDEO,	/* VIDEO PLL */
23 };
24 
25 struct mxc_ccm_reg *imx_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
26 
27 #ifdef CONFIG_MXC_OCOTP
28 void enable_ocotp_clk(unsigned char enable)
29 {
30 	u32 reg;
31 
32 	reg = __raw_readl(&imx_ccm->CCGR2);
33 	if (enable)
34 		reg |= MXC_CCM_CCGR2_OCOTP_CTRL_MASK;
35 	else
36 		reg &= ~MXC_CCM_CCGR2_OCOTP_CTRL_MASK;
37 	__raw_writel(reg, &imx_ccm->CCGR2);
38 }
39 #endif
40 
41 #ifdef CONFIG_NAND_MXS
42 void setup_gpmi_io_clk(u32 cfg)
43 {
44 	/* Disable clocks per ERR007177 from MX6 errata */
45 	clrbits_le32(&imx_ccm->CCGR4,
46 		     MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK |
47 		     MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK |
48 		     MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK |
49 		     MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK |
50 		     MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK);
51 
52 #if defined(CONFIG_MX6SX)
53 	clrbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK);
54 
55 	clrsetbits_le32(&imx_ccm->cs2cdr,
56 			MXC_CCM_CS2CDR_QSPI2_CLK_PODF_MASK |
57 			MXC_CCM_CS2CDR_QSPI2_CLK_PRED_MASK |
58 			MXC_CCM_CS2CDR_QSPI2_CLK_SEL_MASK,
59 			cfg);
60 
61 	setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK);
62 #else
63 	clrbits_le32(&imx_ccm->CCGR2, MXC_CCM_CCGR2_IOMUX_IPT_CLK_IO_MASK);
64 
65 	clrsetbits_le32(&imx_ccm->cs2cdr,
66 			MXC_CCM_CS2CDR_ENFC_CLK_PODF_MASK |
67 			MXC_CCM_CS2CDR_ENFC_CLK_PRED_MASK |
68 			MXC_CCM_CS2CDR_ENFC_CLK_SEL_MASK,
69 			cfg);
70 
71 	setbits_le32(&imx_ccm->CCGR2, MXC_CCM_CCGR2_IOMUX_IPT_CLK_IO_MASK);
72 #endif
73 	setbits_le32(&imx_ccm->CCGR4,
74 		     MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK |
75 		     MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK |
76 		     MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK |
77 		     MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK |
78 		     MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK);
79 }
80 #endif
81 
82 void enable_usboh3_clk(unsigned char enable)
83 {
84 	u32 reg;
85 
86 	reg = __raw_readl(&imx_ccm->CCGR6);
87 	if (enable)
88 		reg |= MXC_CCM_CCGR6_USBOH3_MASK;
89 	else
90 		reg &= ~(MXC_CCM_CCGR6_USBOH3_MASK);
91 	__raw_writel(reg, &imx_ccm->CCGR6);
92 
93 }
94 
95 #if defined(CONFIG_FEC_MXC) && !defined(CONFIG_MX6SX)
96 void enable_enet_clk(unsigned char enable)
97 {
98 	u32 mask, *addr;
99 
100 	if (is_mx6ull()) {
101 		mask = MXC_CCM_CCGR0_ENET_CLK_ENABLE_MASK;
102 		addr = &imx_ccm->CCGR0;
103 	} else if (is_mx6ul()) {
104 		mask = MXC_CCM_CCGR3_ENET_MASK;
105 		addr = &imx_ccm->CCGR3;
106 	} else {
107 		mask = MXC_CCM_CCGR1_ENET_MASK;
108 		addr = &imx_ccm->CCGR1;
109 	}
110 
111 	if (enable)
112 		setbits_le32(addr, mask);
113 	else
114 		clrbits_le32(addr, mask);
115 }
116 #endif
117 
118 #ifdef CONFIG_MXC_UART
119 void enable_uart_clk(unsigned char enable)
120 {
121 	u32 mask;
122 
123 	if (is_mx6ul() || is_mx6ull())
124 		mask = MXC_CCM_CCGR5_UART_MASK;
125 	else
126 		mask = MXC_CCM_CCGR5_UART_MASK | MXC_CCM_CCGR5_UART_SERIAL_MASK;
127 
128 	if (enable)
129 		setbits_le32(&imx_ccm->CCGR5, mask);
130 	else
131 		clrbits_le32(&imx_ccm->CCGR5, mask);
132 }
133 #endif
134 
135 #ifdef CONFIG_MMC
136 int enable_usdhc_clk(unsigned char enable, unsigned bus_num)
137 {
138 	u32 mask;
139 
140 	if (bus_num > 3)
141 		return -EINVAL;
142 
143 	mask = MXC_CCM_CCGR_CG_MASK << (bus_num * 2 + 2);
144 	if (enable)
145 		setbits_le32(&imx_ccm->CCGR6, mask);
146 	else
147 		clrbits_le32(&imx_ccm->CCGR6, mask);
148 
149 	return 0;
150 }
151 #endif
152 
153 #ifdef CONFIG_SYS_I2C_MXC
154 /* i2c_num can be from 0 - 3 */
155 int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
156 {
157 	u32 reg;
158 	u32 mask;
159 	u32 *addr;
160 
161 	if (i2c_num > 3)
162 		return -EINVAL;
163 	if (i2c_num < 3) {
164 		mask = MXC_CCM_CCGR_CG_MASK
165 			<< (MXC_CCM_CCGR2_I2C1_SERIAL_OFFSET
166 			+ (i2c_num << 1));
167 		reg = __raw_readl(&imx_ccm->CCGR2);
168 		if (enable)
169 			reg |= mask;
170 		else
171 			reg &= ~mask;
172 		__raw_writel(reg, &imx_ccm->CCGR2);
173 	} else {
174 		if (is_mx6sll())
175 			return -EINVAL;
176 		if (is_mx6sx() || is_mx6ul() || is_mx6ull()) {
177 			mask = MXC_CCM_CCGR6_I2C4_MASK;
178 			addr = &imx_ccm->CCGR6;
179 		} else {
180 			mask = MXC_CCM_CCGR1_I2C4_SERIAL_MASK;
181 			addr = &imx_ccm->CCGR1;
182 		}
183 		reg = __raw_readl(addr);
184 		if (enable)
185 			reg |= mask;
186 		else
187 			reg &= ~mask;
188 		__raw_writel(reg, addr);
189 	}
190 	return 0;
191 }
192 #endif
193 
194 /* spi_num can be from 0 - SPI_MAX_NUM */
195 int enable_spi_clk(unsigned char enable, unsigned spi_num)
196 {
197 	u32 reg;
198 	u32 mask;
199 
200 	if (spi_num > SPI_MAX_NUM)
201 		return -EINVAL;
202 
203 	mask = MXC_CCM_CCGR_CG_MASK << (spi_num << 1);
204 	reg = __raw_readl(&imx_ccm->CCGR1);
205 	if (enable)
206 		reg |= mask;
207 	else
208 		reg &= ~mask;
209 	__raw_writel(reg, &imx_ccm->CCGR1);
210 	return 0;
211 }
212 static u32 decode_pll(enum pll_clocks pll, u32 infreq)
213 {
214 	u32 div, test_div, pll_num, pll_denom;
215 
216 	switch (pll) {
217 	case PLL_SYS:
218 		div = __raw_readl(&imx_ccm->analog_pll_sys);
219 		div &= BM_ANADIG_PLL_SYS_DIV_SELECT;
220 
221 		return (infreq * div) >> 1;
222 	case PLL_BUS:
223 		div = __raw_readl(&imx_ccm->analog_pll_528);
224 		div &= BM_ANADIG_PLL_528_DIV_SELECT;
225 
226 		return infreq * (20 + (div << 1));
227 	case PLL_USBOTG:
228 		div = __raw_readl(&imx_ccm->analog_usb1_pll_480_ctrl);
229 		div &= BM_ANADIG_USB1_PLL_480_CTRL_DIV_SELECT;
230 
231 		return infreq * (20 + (div << 1));
232 	case PLL_ENET:
233 		div = __raw_readl(&imx_ccm->analog_pll_enet);
234 		div &= BM_ANADIG_PLL_ENET_DIV_SELECT;
235 
236 		return 25000000 * (div + (div >> 1) + 1);
237 	case PLL_AUDIO:
238 		div = __raw_readl(&imx_ccm->analog_pll_audio);
239 		if (!(div & BM_ANADIG_PLL_AUDIO_ENABLE))
240 			return 0;
241 		/* BM_ANADIG_PLL_AUDIO_BYPASS_CLK_SRC is ignored */
242 		if (div & BM_ANADIG_PLL_AUDIO_BYPASS)
243 			return MXC_HCLK;
244 		pll_num = __raw_readl(&imx_ccm->analog_pll_audio_num);
245 		pll_denom = __raw_readl(&imx_ccm->analog_pll_audio_denom);
246 		test_div = (div & BM_ANADIG_PLL_AUDIO_TEST_DIV_SELECT) >>
247 			BP_ANADIG_PLL_AUDIO_TEST_DIV_SELECT;
248 		div &= BM_ANADIG_PLL_AUDIO_DIV_SELECT;
249 		if (test_div == 3) {
250 			debug("Error test_div\n");
251 			return 0;
252 		}
253 		test_div = 1 << (2 - test_div);
254 
255 		return infreq * (div + pll_num / pll_denom) / test_div;
256 	case PLL_VIDEO:
257 		div = __raw_readl(&imx_ccm->analog_pll_video);
258 		if (!(div & BM_ANADIG_PLL_VIDEO_ENABLE))
259 			return 0;
260 		/* BM_ANADIG_PLL_AUDIO_BYPASS_CLK_SRC is ignored */
261 		if (div & BM_ANADIG_PLL_VIDEO_BYPASS)
262 			return MXC_HCLK;
263 		pll_num = __raw_readl(&imx_ccm->analog_pll_video_num);
264 		pll_denom = __raw_readl(&imx_ccm->analog_pll_video_denom);
265 		test_div = (div & BM_ANADIG_PLL_VIDEO_POST_DIV_SELECT) >>
266 			BP_ANADIG_PLL_VIDEO_POST_DIV_SELECT;
267 		div &= BM_ANADIG_PLL_VIDEO_DIV_SELECT;
268 		if (test_div == 3) {
269 			debug("Error test_div\n");
270 			return 0;
271 		}
272 		test_div = 1 << (2 - test_div);
273 
274 		return infreq * (div + pll_num / pll_denom) / test_div;
275 	default:
276 		return 0;
277 	}
278 	/* NOTREACHED */
279 }
280 static u32 mxc_get_pll_pfd(enum pll_clocks pll, int pfd_num)
281 {
282 	u32 div;
283 	u64 freq;
284 
285 	switch (pll) {
286 	case PLL_BUS:
287 		if (!is_mx6ul() && !is_mx6ull()) {
288 			if (pfd_num == 3) {
289 				/* No PFD3 on PLL2 */
290 				return 0;
291 			}
292 		}
293 		div = __raw_readl(&imx_ccm->analog_pfd_528);
294 		freq = (u64)decode_pll(PLL_BUS, MXC_HCLK);
295 		break;
296 	case PLL_USBOTG:
297 		div = __raw_readl(&imx_ccm->analog_pfd_480);
298 		freq = (u64)decode_pll(PLL_USBOTG, MXC_HCLK);
299 		break;
300 	default:
301 		/* No PFD on other PLL					     */
302 		return 0;
303 	}
304 
305 	return lldiv(freq * 18, (div & ANATOP_PFD_FRAC_MASK(pfd_num)) >>
306 			      ANATOP_PFD_FRAC_SHIFT(pfd_num));
307 }
308 
309 static u32 get_mcu_main_clk(void)
310 {
311 	u32 reg, freq;
312 
313 	reg = __raw_readl(&imx_ccm->cacrr);
314 	reg &= MXC_CCM_CACRR_ARM_PODF_MASK;
315 	reg >>= MXC_CCM_CACRR_ARM_PODF_OFFSET;
316 	freq = decode_pll(PLL_SYS, MXC_HCLK);
317 
318 	return freq / (reg + 1);
319 }
320 
321 u32 get_periph_clk(void)
322 {
323 	u32 reg, div = 0, freq = 0;
324 
325 	reg = __raw_readl(&imx_ccm->cbcdr);
326 	if (reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL) {
327 		div = (reg & MXC_CCM_CBCDR_PERIPH_CLK2_PODF_MASK) >>
328 		       MXC_CCM_CBCDR_PERIPH_CLK2_PODF_OFFSET;
329 		reg = __raw_readl(&imx_ccm->cbcmr);
330 		reg &= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_MASK;
331 		reg >>= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_OFFSET;
332 
333 		switch (reg) {
334 		case 0:
335 			freq = decode_pll(PLL_USBOTG, MXC_HCLK);
336 			break;
337 		case 1:
338 		case 2:
339 			freq = MXC_HCLK;
340 			break;
341 		default:
342 			break;
343 		}
344 	} else {
345 		reg = __raw_readl(&imx_ccm->cbcmr);
346 		reg &= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK;
347 		reg >>= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_OFFSET;
348 
349 		switch (reg) {
350 		case 0:
351 			freq = decode_pll(PLL_BUS, MXC_HCLK);
352 			break;
353 		case 1:
354 			freq = mxc_get_pll_pfd(PLL_BUS, 2);
355 			break;
356 		case 2:
357 			freq = mxc_get_pll_pfd(PLL_BUS, 0);
358 			break;
359 		case 3:
360 			/* static / 2 divider */
361 			freq = mxc_get_pll_pfd(PLL_BUS, 2) / 2;
362 			break;
363 		default:
364 			break;
365 		}
366 	}
367 
368 	return freq / (div + 1);
369 }
370 
371 static u32 get_ipg_clk(void)
372 {
373 	u32 reg, ipg_podf;
374 
375 	reg = __raw_readl(&imx_ccm->cbcdr);
376 	reg &= MXC_CCM_CBCDR_IPG_PODF_MASK;
377 	ipg_podf = reg >> MXC_CCM_CBCDR_IPG_PODF_OFFSET;
378 
379 	return get_ahb_clk() / (ipg_podf + 1);
380 }
381 
382 static u32 get_ipg_per_clk(void)
383 {
384 	u32 reg, perclk_podf;
385 
386 	reg = __raw_readl(&imx_ccm->cscmr1);
387 	if (is_mx6sll() || is_mx6sl() || is_mx6sx() ||
388 	    is_mx6dqp() || is_mx6ul() || is_mx6ull()) {
389 		if (reg & MXC_CCM_CSCMR1_PER_CLK_SEL_MASK)
390 			return MXC_HCLK; /* OSC 24Mhz */
391 	}
392 
393 	perclk_podf = reg & MXC_CCM_CSCMR1_PERCLK_PODF_MASK;
394 
395 	return get_ipg_clk() / (perclk_podf + 1);
396 }
397 
398 static u32 get_uart_clk(void)
399 {
400 	u32 reg, uart_podf;
401 	u32 freq = decode_pll(PLL_USBOTG, MXC_HCLK) / 6; /* static divider */
402 	reg = __raw_readl(&imx_ccm->cscdr1);
403 
404 	if (is_mx6sl() || is_mx6sx() || is_mx6dqp() || is_mx6ul() ||
405 	    is_mx6sll() || is_mx6ull()) {
406 		if (reg & MXC_CCM_CSCDR1_UART_CLK_SEL)
407 			freq = MXC_HCLK;
408 	}
409 
410 	reg &= MXC_CCM_CSCDR1_UART_CLK_PODF_MASK;
411 	uart_podf = reg >> MXC_CCM_CSCDR1_UART_CLK_PODF_OFFSET;
412 
413 	return freq / (uart_podf + 1);
414 }
415 
416 static u32 get_cspi_clk(void)
417 {
418 	u32 reg, cspi_podf;
419 
420 	reg = __raw_readl(&imx_ccm->cscdr2);
421 	cspi_podf = (reg & MXC_CCM_CSCDR2_ECSPI_CLK_PODF_MASK) >>
422 		     MXC_CCM_CSCDR2_ECSPI_CLK_PODF_OFFSET;
423 
424 	if (is_mx6dqp() || is_mx6sl() || is_mx6sx() || is_mx6ul() ||
425 	    is_mx6sll() || is_mx6ull()) {
426 		if (reg & MXC_CCM_CSCDR2_ECSPI_CLK_SEL_MASK)
427 			return MXC_HCLK / (cspi_podf + 1);
428 	}
429 
430 	return	decode_pll(PLL_USBOTG, MXC_HCLK) / (8 * (cspi_podf + 1));
431 }
432 
433 static u32 get_axi_clk(void)
434 {
435 	u32 root_freq, axi_podf;
436 	u32 cbcdr =  __raw_readl(&imx_ccm->cbcdr);
437 
438 	axi_podf = cbcdr & MXC_CCM_CBCDR_AXI_PODF_MASK;
439 	axi_podf >>= MXC_CCM_CBCDR_AXI_PODF_OFFSET;
440 
441 	if (cbcdr & MXC_CCM_CBCDR_AXI_SEL) {
442 		if (cbcdr & MXC_CCM_CBCDR_AXI_ALT_SEL)
443 			root_freq = mxc_get_pll_pfd(PLL_USBOTG, 1);
444 		else
445 			root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
446 	} else
447 		root_freq = get_periph_clk();
448 
449 	return  root_freq / (axi_podf + 1);
450 }
451 
452 static u32 get_emi_slow_clk(void)
453 {
454 	u32 emi_clk_sel, emi_slow_podf, cscmr1, root_freq = 0;
455 
456 	cscmr1 =  __raw_readl(&imx_ccm->cscmr1);
457 	emi_clk_sel = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_MASK;
458 	emi_clk_sel >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_OFFSET;
459 	emi_slow_podf = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_MASK;
460 	emi_slow_podf >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_OFFSET;
461 
462 	switch (emi_clk_sel) {
463 	case 0:
464 		root_freq = get_axi_clk();
465 		break;
466 	case 1:
467 		root_freq = decode_pll(PLL_USBOTG, MXC_HCLK);
468 		break;
469 	case 2:
470 		root_freq =  mxc_get_pll_pfd(PLL_BUS, 2);
471 		break;
472 	case 3:
473 		root_freq =  mxc_get_pll_pfd(PLL_BUS, 0);
474 		break;
475 	}
476 
477 	return root_freq / (emi_slow_podf + 1);
478 }
479 
480 static u32 get_mmdc_ch0_clk(void)
481 {
482 	u32 cbcmr = __raw_readl(&imx_ccm->cbcmr);
483 	u32 cbcdr = __raw_readl(&imx_ccm->cbcdr);
484 
485 	u32 freq, podf, per2_clk2_podf, pmu_misc2_audio_div;
486 
487 	if (is_mx6sx() || is_mx6ul() || is_mx6ull() || is_mx6sl() ||
488 	    is_mx6sll()) {
489 		podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH1_PODF_MASK) >>
490 			MXC_CCM_CBCDR_MMDC_CH1_PODF_OFFSET;
491 		if (cbcdr & MXC_CCM_CBCDR_PERIPH2_CLK_SEL) {
492 			per2_clk2_podf = (cbcdr & MXC_CCM_CBCDR_PERIPH2_CLK2_PODF_MASK) >>
493 				MXC_CCM_CBCDR_PERIPH2_CLK2_PODF_OFFSET;
494 			if (is_mx6sl()) {
495 				if (cbcmr & MXC_CCM_CBCMR_PERIPH2_CLK2_SEL)
496 					freq = MXC_HCLK;
497 				else
498 					freq = decode_pll(PLL_USBOTG, MXC_HCLK);
499 			} else {
500 				if (cbcmr & MXC_CCM_CBCMR_PERIPH2_CLK2_SEL)
501 					freq = decode_pll(PLL_BUS, MXC_HCLK);
502 				else
503 					freq = decode_pll(PLL_USBOTG, MXC_HCLK);
504 			}
505 		} else {
506 			per2_clk2_podf = 0;
507 			switch ((cbcmr &
508 				MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_MASK) >>
509 				MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_OFFSET) {
510 			case 0:
511 				freq = decode_pll(PLL_BUS, MXC_HCLK);
512 				break;
513 			case 1:
514 				freq = mxc_get_pll_pfd(PLL_BUS, 2);
515 				break;
516 			case 2:
517 				freq = mxc_get_pll_pfd(PLL_BUS, 0);
518 				break;
519 			case 3:
520 				if (is_mx6sl()) {
521 					freq = mxc_get_pll_pfd(PLL_BUS, 2) >> 1;
522 					break;
523 				}
524 
525 				pmu_misc2_audio_div = PMU_MISC2_AUDIO_DIV(__raw_readl(&imx_ccm->pmu_misc2));
526 				switch (pmu_misc2_audio_div) {
527 				case 0:
528 				case 2:
529 					pmu_misc2_audio_div = 1;
530 					break;
531 				case 1:
532 					pmu_misc2_audio_div = 2;
533 					break;
534 				case 3:
535 					pmu_misc2_audio_div = 4;
536 					break;
537 				}
538 				freq = decode_pll(PLL_AUDIO, MXC_HCLK) /
539 					pmu_misc2_audio_div;
540 				break;
541 			}
542 		}
543 		return freq / (podf + 1) / (per2_clk2_podf + 1);
544 	} else {
545 		podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH0_PODF_MASK) >>
546 			MXC_CCM_CBCDR_MMDC_CH0_PODF_OFFSET;
547 		return get_periph_clk() / (podf + 1);
548 	}
549 }
550 
551 #if defined(CONFIG_VIDEO_MXS)
552 static int enable_pll_video(u32 pll_div, u32 pll_num, u32 pll_denom,
553 			    u32 post_div)
554 {
555 	u32 reg = 0;
556 	ulong start;
557 
558 	debug("pll5 div = %d, num = %d, denom = %d\n",
559 	      pll_div, pll_num, pll_denom);
560 
561 	/* Power up PLL5 video */
562 	writel(BM_ANADIG_PLL_VIDEO_POWERDOWN |
563 	       BM_ANADIG_PLL_VIDEO_BYPASS |
564 	       BM_ANADIG_PLL_VIDEO_DIV_SELECT |
565 	       BM_ANADIG_PLL_VIDEO_POST_DIV_SELECT,
566 	       &imx_ccm->analog_pll_video_clr);
567 
568 	/* Set div, num and denom */
569 	switch (post_div) {
570 	case 1:
571 		writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) |
572 		       BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x2),
573 		       &imx_ccm->analog_pll_video_set);
574 		break;
575 	case 2:
576 		writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) |
577 		       BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x1),
578 		       &imx_ccm->analog_pll_video_set);
579 		break;
580 	case 4:
581 		writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) |
582 		       BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x0),
583 		       &imx_ccm->analog_pll_video_set);
584 		break;
585 	default:
586 		puts("Wrong test_div!\n");
587 		return -EINVAL;
588 	}
589 
590 	writel(BF_ANADIG_PLL_VIDEO_NUM_A(pll_num),
591 	       &imx_ccm->analog_pll_video_num);
592 	writel(BF_ANADIG_PLL_VIDEO_DENOM_B(pll_denom),
593 	       &imx_ccm->analog_pll_video_denom);
594 
595 	/* Wait PLL5 lock */
596 	start = get_timer(0);	/* Get current timestamp */
597 
598 	do {
599 		reg = readl(&imx_ccm->analog_pll_video);
600 		if (reg & BM_ANADIG_PLL_VIDEO_LOCK) {
601 			/* Enable PLL out */
602 			writel(BM_ANADIG_PLL_VIDEO_ENABLE,
603 			       &imx_ccm->analog_pll_video_set);
604 			return 0;
605 		}
606 	} while (get_timer(0) < (start + 10)); /* Wait 10ms */
607 
608 	puts("Lock PLL5 timeout\n");
609 
610 	return -ETIME;
611 }
612 
613 /*
614  * 24M--> PLL_VIDEO -> LCDIFx_PRED -> LCDIFx_PODF -> LCD
615  *
616  * 'freq' using KHz as unit, see driver/video/mxsfb.c.
617  */
618 void mxs_set_lcdclk(u32 base_addr, u32 freq)
619 {
620 	u32 reg = 0;
621 	u32 hck = MXC_HCLK / 1000;
622 	/* DIV_SELECT ranges from 27 to 54 */
623 	u32 min = hck * 27;
624 	u32 max = hck * 54;
625 	u32 temp, best = 0;
626 	u32 i, j, max_pred = 8, max_postd = 8, pred = 1, postd = 1;
627 	u32 pll_div, pll_num, pll_denom, post_div = 1;
628 
629 	debug("mxs_set_lcdclk, freq = %dKHz\n", freq);
630 
631 	if (!is_mx6sx() && !is_mx6ul() && !is_mx6ull() && !is_mx6sl() &&
632 	    !is_mx6sll()) {
633 		debug("This chip not support lcd!\n");
634 		return;
635 	}
636 
637 	if (!is_mx6sl()) {
638 		if (base_addr == LCDIF1_BASE_ADDR) {
639 			reg = readl(&imx_ccm->cscdr2);
640 			/* Can't change clocks when clock not from pre-mux */
641 			if ((reg & MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK) != 0)
642 				return;
643 		}
644 	}
645 
646 	if (is_mx6sx()) {
647 		reg = readl(&imx_ccm->cscdr2);
648 		/* Can't change clocks when clock not from pre-mux */
649 		if ((reg & MXC_CCM_CSCDR2_LCDIF2_CLK_SEL_MASK) != 0)
650 			return;
651 	}
652 
653 	temp = freq * max_pred * max_postd;
654 	if (temp < min) {
655 		/*
656 		 * Register: PLL_VIDEO
657 		 * Bit Field: POST_DIV_SELECT
658 		 * 00 — Divide by 4.
659 		 * 01 — Divide by 2.
660 		 * 10 — Divide by 1.
661 		 * 11 — Reserved
662 		 * No need to check post_div(1)
663 		 */
664 		for (post_div = 2; post_div <= 4; post_div <<= 1) {
665 			if ((temp * post_div) > min) {
666 				freq *= post_div;
667 				break;
668 			}
669 		}
670 
671 		if (post_div > 4) {
672 			printf("Fail to set rate to %dkhz", freq);
673 			return;
674 		}
675 	}
676 
677 	/* Choose the best pred and postd to match freq for lcd */
678 	for (i = 1; i <= max_pred; i++) {
679 		for (j = 1; j <= max_postd; j++) {
680 			temp = freq * i * j;
681 			if (temp > max || temp < min)
682 				continue;
683 			if (best == 0 || temp < best) {
684 				best = temp;
685 				pred = i;
686 				postd = j;
687 			}
688 		}
689 	}
690 
691 	if (best == 0) {
692 		printf("Fail to set rate to %dKHz", freq);
693 		return;
694 	}
695 
696 	debug("best %d, pred = %d, postd = %d\n", best, pred, postd);
697 
698 	pll_div = best / hck;
699 	pll_denom = 1000000;
700 	pll_num = (best - hck * pll_div) * pll_denom / hck;
701 
702 	/*
703 	 *                                  pll_num
704 	 *             (24MHz * (pll_div + --------- ))
705 	 *                                 pll_denom
706 	 *freq KHz =  --------------------------------
707 	 *             post_div * pred * postd * 1000
708 	 */
709 
710 	if (base_addr == LCDIF1_BASE_ADDR) {
711 		if (enable_pll_video(pll_div, pll_num, pll_denom, post_div))
712 			return;
713 
714 		enable_lcdif_clock(base_addr, 0);
715 		if (!is_mx6sl()) {
716 			/* Select pre-lcd clock to PLL5 and set pre divider */
717 			clrsetbits_le32(&imx_ccm->cscdr2,
718 					MXC_CCM_CSCDR2_LCDIF1_PRED_SEL_MASK |
719 					MXC_CCM_CSCDR2_LCDIF1_PRE_DIV_MASK,
720 					(0x2 << MXC_CCM_CSCDR2_LCDIF1_PRED_SEL_OFFSET) |
721 					((pred - 1) <<
722 					 MXC_CCM_CSCDR2_LCDIF1_PRE_DIV_OFFSET));
723 
724 			/* Set the post divider */
725 			clrsetbits_le32(&imx_ccm->cbcmr,
726 					MXC_CCM_CBCMR_LCDIF1_PODF_MASK,
727 					((postd - 1) <<
728 					MXC_CCM_CBCMR_LCDIF1_PODF_OFFSET));
729 		} else {
730 			/* Select pre-lcd clock to PLL5 and set pre divider */
731 			clrsetbits_le32(&imx_ccm->cscdr2,
732 					MXC_CCM_CSCDR2_LCDIF_PIX_CLK_SEL_MASK |
733 					MXC_CCM_CSCDR2_LCDIF_PIX_PRE_DIV_MASK,
734 					(0x2 << MXC_CCM_CSCDR2_LCDIF_PIX_CLK_SEL_OFFSET) |
735 					((pred - 1) <<
736 					 MXC_CCM_CSCDR2_LCDIF_PIX_PRE_DIV_OFFSET));
737 
738 			/* Set the post divider */
739 			clrsetbits_le32(&imx_ccm->cscmr1,
740 					MXC_CCM_CSCMR1_LCDIF_PIX_PODF_MASK,
741 					(((postd - 1)^0x6) <<
742 					 MXC_CCM_CSCMR1_LCDIF_PIX_PODF_OFFSET));
743 		}
744 
745 		enable_lcdif_clock(base_addr, 1);
746 	} else if (is_mx6sx()) {
747 		/* Setting LCDIF2 for i.MX6SX */
748 		if (enable_pll_video(pll_div, pll_num, pll_denom, post_div))
749 			return;
750 
751 		enable_lcdif_clock(base_addr, 0);
752 		/* Select pre-lcd clock to PLL5 and set pre divider */
753 		clrsetbits_le32(&imx_ccm->cscdr2,
754 				MXC_CCM_CSCDR2_LCDIF2_PRED_SEL_MASK |
755 				MXC_CCM_CSCDR2_LCDIF2_PRE_DIV_MASK,
756 				(0x2 << MXC_CCM_CSCDR2_LCDIF2_PRED_SEL_OFFSET) |
757 				((pred - 1) <<
758 				 MXC_CCM_CSCDR2_LCDIF2_PRE_DIV_OFFSET));
759 
760 		/* Set the post divider */
761 		clrsetbits_le32(&imx_ccm->cscmr1,
762 				MXC_CCM_CSCMR1_LCDIF2_PODF_MASK,
763 				((postd - 1) <<
764 				 MXC_CCM_CSCMR1_LCDIF2_PODF_OFFSET));
765 
766 		enable_lcdif_clock(base_addr, 1);
767 	}
768 }
769 
770 int enable_lcdif_clock(u32 base_addr, bool enable)
771 {
772 	u32 reg = 0;
773 	u32 lcdif_clk_sel_mask, lcdif_ccgr3_mask;
774 
775 	if (is_mx6sx()) {
776 		if ((base_addr != LCDIF1_BASE_ADDR) &&
777 		    (base_addr != LCDIF2_BASE_ADDR)) {
778 			puts("Wrong LCD interface!\n");
779 			return -EINVAL;
780 		}
781 		/* Set to pre-mux clock at default */
782 		lcdif_clk_sel_mask = (base_addr == LCDIF2_BASE_ADDR) ?
783 			MXC_CCM_CSCDR2_LCDIF2_CLK_SEL_MASK :
784 			MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK;
785 		lcdif_ccgr3_mask = (base_addr == LCDIF2_BASE_ADDR) ?
786 			(MXC_CCM_CCGR3_LCDIF2_PIX_MASK |
787 			 MXC_CCM_CCGR3_DISP_AXI_MASK) :
788 			(MXC_CCM_CCGR3_LCDIF1_PIX_MASK |
789 			 MXC_CCM_CCGR3_DISP_AXI_MASK);
790 	} else if (is_mx6ul() || is_mx6ull() || is_mx6sll()) {
791 		if (base_addr != LCDIF1_BASE_ADDR) {
792 			puts("Wrong LCD interface!\n");
793 			return -EINVAL;
794 		}
795 		/* Set to pre-mux clock at default */
796 		lcdif_clk_sel_mask = MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK;
797 		lcdif_ccgr3_mask =  MXC_CCM_CCGR3_LCDIF1_PIX_MASK;
798 	} else if (is_mx6sl()) {
799 		if (base_addr != LCDIF1_BASE_ADDR) {
800 			puts("Wrong LCD interface!\n");
801 			return -EINVAL;
802 		}
803 
804 		reg = readl(&imx_ccm->CCGR3);
805 		reg &= ~(MXC_CCM_CCGR3_LCDIF_AXI_MASK |
806 			 MXC_CCM_CCGR3_LCDIF_PIX_MASK);
807 		writel(reg, &imx_ccm->CCGR3);
808 
809 		if (enable) {
810 			reg = readl(&imx_ccm->cscdr3);
811 			reg &= ~MXC_CCM_CSCDR3_LCDIF_AXI_CLK_SEL_MASK;
812 			reg |= 1 << MXC_CCM_CSCDR3_LCDIF_AXI_CLK_SEL_OFFSET;
813 			writel(reg, &imx_ccm->cscdr3);
814 
815 			reg = readl(&imx_ccm->CCGR3);
816 			reg |= MXC_CCM_CCGR3_LCDIF_AXI_MASK |
817 				MXC_CCM_CCGR3_LCDIF_PIX_MASK;
818 			writel(reg, &imx_ccm->CCGR3);
819 		}
820 
821 		return 0;
822 	} else {
823 		return 0;
824 	}
825 
826 	/* Gate LCDIF clock first */
827 	reg = readl(&imx_ccm->CCGR3);
828 	reg &= ~lcdif_ccgr3_mask;
829 	writel(reg, &imx_ccm->CCGR3);
830 
831 	reg = readl(&imx_ccm->CCGR2);
832 	reg &= ~MXC_CCM_CCGR2_LCD_MASK;
833 	writel(reg, &imx_ccm->CCGR2);
834 
835 	if (enable) {
836 		/* Select pre-mux */
837 		reg = readl(&imx_ccm->cscdr2);
838 		reg &= ~lcdif_clk_sel_mask;
839 		writel(reg, &imx_ccm->cscdr2);
840 
841 		/* Enable the LCDIF pix clock */
842 		reg = readl(&imx_ccm->CCGR3);
843 		reg |= lcdif_ccgr3_mask;
844 		writel(reg, &imx_ccm->CCGR3);
845 
846 		reg = readl(&imx_ccm->CCGR2);
847 		reg |= MXC_CCM_CCGR2_LCD_MASK;
848 		writel(reg, &imx_ccm->CCGR2);
849 	}
850 
851 	return 0;
852 }
853 #endif
854 
855 #ifdef CONFIG_FSL_QSPI
856 /* qspi_num can be from 0 - 1 */
857 void enable_qspi_clk(int qspi_num)
858 {
859 	u32 reg = 0;
860 	/* Enable QuadSPI clock */
861 	switch (qspi_num) {
862 	case 0:
863 		/* disable the clock gate */
864 		clrbits_le32(&imx_ccm->CCGR3, MXC_CCM_CCGR3_QSPI1_MASK);
865 
866 		/* set 50M  : (50 = 396 / 2 / 4) */
867 		reg = readl(&imx_ccm->cscmr1);
868 		reg &= ~(MXC_CCM_CSCMR1_QSPI1_PODF_MASK |
869 			 MXC_CCM_CSCMR1_QSPI1_CLK_SEL_MASK);
870 		reg |= ((1 << MXC_CCM_CSCMR1_QSPI1_PODF_OFFSET) |
871 			(2 << MXC_CCM_CSCMR1_QSPI1_CLK_SEL_OFFSET));
872 		writel(reg, &imx_ccm->cscmr1);
873 
874 		/* enable the clock gate */
875 		setbits_le32(&imx_ccm->CCGR3, MXC_CCM_CCGR3_QSPI1_MASK);
876 		break;
877 	case 1:
878 		/*
879 		 * disable the clock gate
880 		 * QSPI2 and GPMI_BCH_INPUT_GPMI_IO share the same clock gate,
881 		 * disable both of them.
882 		 */
883 		clrbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK |
884 			     MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK);
885 
886 		/* set 50M  : (50 = 396 / 2 / 4) */
887 		reg = readl(&imx_ccm->cs2cdr);
888 		reg &= ~(MXC_CCM_CS2CDR_QSPI2_CLK_PODF_MASK |
889 			 MXC_CCM_CS2CDR_QSPI2_CLK_PRED_MASK |
890 			 MXC_CCM_CS2CDR_QSPI2_CLK_SEL_MASK);
891 		reg |= (MXC_CCM_CS2CDR_QSPI2_CLK_PRED(0x1) |
892 			MXC_CCM_CS2CDR_QSPI2_CLK_SEL(0x3));
893 		writel(reg, &imx_ccm->cs2cdr);
894 
895 		/*enable the clock gate*/
896 		setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK |
897 			     MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK);
898 		break;
899 	default:
900 		break;
901 	}
902 }
903 #endif
904 
905 #ifdef CONFIG_FEC_MXC
906 int enable_fec_anatop_clock(int fec_id, enum enet_freq freq)
907 {
908 	u32 reg = 0;
909 	s32 timeout = 100000;
910 
911 	struct anatop_regs __iomem *anatop =
912 		(struct anatop_regs __iomem *)ANATOP_BASE_ADDR;
913 
914 	if (freq < ENET_25MHZ || freq > ENET_125MHZ)
915 		return -EINVAL;
916 
917 	reg = readl(&anatop->pll_enet);
918 
919 	if (fec_id == 0) {
920 		reg &= ~BM_ANADIG_PLL_ENET_DIV_SELECT;
921 		reg |= BF_ANADIG_PLL_ENET_DIV_SELECT(freq);
922 	} else if (fec_id == 1) {
923 		/* Only i.MX6SX/UL support ENET2 */
924 		if (!(is_mx6sx() || is_mx6ul() || is_mx6ull()))
925 			return -EINVAL;
926 		reg &= ~BM_ANADIG_PLL_ENET2_DIV_SELECT;
927 		reg |= BF_ANADIG_PLL_ENET2_DIV_SELECT(freq);
928 	} else {
929 		return -EINVAL;
930 	}
931 
932 	if ((reg & BM_ANADIG_PLL_ENET_POWERDOWN) ||
933 	    (!(reg & BM_ANADIG_PLL_ENET_LOCK))) {
934 		reg &= ~BM_ANADIG_PLL_ENET_POWERDOWN;
935 		writel(reg, &anatop->pll_enet);
936 		while (timeout--) {
937 			if (readl(&anatop->pll_enet) & BM_ANADIG_PLL_ENET_LOCK)
938 				break;
939 		}
940 		if (timeout < 0)
941 			return -ETIMEDOUT;
942 	}
943 
944 	/* Enable FEC clock */
945 	if (fec_id == 0)
946 		reg |= BM_ANADIG_PLL_ENET_ENABLE;
947 	else
948 		reg |= BM_ANADIG_PLL_ENET2_ENABLE;
949 	reg &= ~BM_ANADIG_PLL_ENET_BYPASS;
950 	writel(reg, &anatop->pll_enet);
951 
952 #ifdef CONFIG_MX6SX
953 	/* Disable enet system clcok before switching clock parent */
954 	reg = readl(&imx_ccm->CCGR3);
955 	reg &= ~MXC_CCM_CCGR3_ENET_MASK;
956 	writel(reg, &imx_ccm->CCGR3);
957 
958 	/*
959 	 * Set enet ahb clock to 200MHz
960 	 * pll2_pfd2_396m-> ENET_PODF-> ENET_AHB
961 	 */
962 	reg = readl(&imx_ccm->chsccdr);
963 	reg &= ~(MXC_CCM_CHSCCDR_ENET_PRE_CLK_SEL_MASK
964 		 | MXC_CCM_CHSCCDR_ENET_PODF_MASK
965 		 | MXC_CCM_CHSCCDR_ENET_CLK_SEL_MASK);
966 	/* PLL2 PFD2 */
967 	reg |= (4 << MXC_CCM_CHSCCDR_ENET_PRE_CLK_SEL_OFFSET);
968 	/* Div = 2*/
969 	reg |= (1 << MXC_CCM_CHSCCDR_ENET_PODF_OFFSET);
970 	reg |= (0 << MXC_CCM_CHSCCDR_ENET_CLK_SEL_OFFSET);
971 	writel(reg, &imx_ccm->chsccdr);
972 
973 	/* Enable enet system clock */
974 	reg = readl(&imx_ccm->CCGR3);
975 	reg |= MXC_CCM_CCGR3_ENET_MASK;
976 	writel(reg, &imx_ccm->CCGR3);
977 #endif
978 	return 0;
979 }
980 #endif
981 
982 static u32 get_usdhc_clk(u32 port)
983 {
984 	u32 root_freq = 0, usdhc_podf = 0, clk_sel = 0;
985 	u32 cscmr1 = __raw_readl(&imx_ccm->cscmr1);
986 	u32 cscdr1 = __raw_readl(&imx_ccm->cscdr1);
987 
988 	if (is_mx6ul() || is_mx6ull()) {
989 		if (port > 1)
990 			return 0;
991 	}
992 
993 	if (is_mx6sll()) {
994 		if (port > 2)
995 			return 0;
996 	}
997 
998 	switch (port) {
999 	case 0:
1000 		usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC1_PODF_MASK) >>
1001 					MXC_CCM_CSCDR1_USDHC1_PODF_OFFSET;
1002 		clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC1_CLK_SEL;
1003 
1004 		break;
1005 	case 1:
1006 		usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC2_PODF_MASK) >>
1007 					MXC_CCM_CSCDR1_USDHC2_PODF_OFFSET;
1008 		clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC2_CLK_SEL;
1009 
1010 		break;
1011 	case 2:
1012 		usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC3_PODF_MASK) >>
1013 					MXC_CCM_CSCDR1_USDHC3_PODF_OFFSET;
1014 		clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC3_CLK_SEL;
1015 
1016 		break;
1017 	case 3:
1018 		usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC4_PODF_MASK) >>
1019 					MXC_CCM_CSCDR1_USDHC4_PODF_OFFSET;
1020 		clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC4_CLK_SEL;
1021 
1022 		break;
1023 	default:
1024 		break;
1025 	}
1026 
1027 	if (clk_sel)
1028 		root_freq = mxc_get_pll_pfd(PLL_BUS, 0);
1029 	else
1030 		root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
1031 
1032 	return root_freq / (usdhc_podf + 1);
1033 }
1034 
1035 u32 imx_get_uartclk(void)
1036 {
1037 	return get_uart_clk();
1038 }
1039 
1040 u32 imx_get_fecclk(void)
1041 {
1042 	return mxc_get_clock(MXC_IPG_CLK);
1043 }
1044 
1045 #if defined(CONFIG_SATA) || defined(CONFIG_PCIE_IMX)
1046 static int enable_enet_pll(uint32_t en)
1047 {
1048 	struct mxc_ccm_reg *const imx_ccm
1049 		= (struct mxc_ccm_reg *) CCM_BASE_ADDR;
1050 	s32 timeout = 100000;
1051 	u32 reg = 0;
1052 
1053 	/* Enable PLLs */
1054 	reg = readl(&imx_ccm->analog_pll_enet);
1055 	reg &= ~BM_ANADIG_PLL_SYS_POWERDOWN;
1056 	writel(reg, &imx_ccm->analog_pll_enet);
1057 	reg |= BM_ANADIG_PLL_SYS_ENABLE;
1058 	while (timeout--) {
1059 		if (readl(&imx_ccm->analog_pll_enet) & BM_ANADIG_PLL_SYS_LOCK)
1060 			break;
1061 	}
1062 	if (timeout <= 0)
1063 		return -EIO;
1064 	reg &= ~BM_ANADIG_PLL_SYS_BYPASS;
1065 	writel(reg, &imx_ccm->analog_pll_enet);
1066 	reg |= en;
1067 	writel(reg, &imx_ccm->analog_pll_enet);
1068 	return 0;
1069 }
1070 #endif
1071 
1072 #ifdef CONFIG_SATA
1073 static void ungate_sata_clock(void)
1074 {
1075 	struct mxc_ccm_reg *const imx_ccm =
1076 		(struct mxc_ccm_reg *)CCM_BASE_ADDR;
1077 
1078 	/* Enable SATA clock. */
1079 	setbits_le32(&imx_ccm->CCGR5, MXC_CCM_CCGR5_SATA_MASK);
1080 }
1081 
1082 int enable_sata_clock(void)
1083 {
1084 	ungate_sata_clock();
1085 	return enable_enet_pll(BM_ANADIG_PLL_ENET_ENABLE_SATA);
1086 }
1087 
1088 void disable_sata_clock(void)
1089 {
1090 	struct mxc_ccm_reg *const imx_ccm =
1091 		(struct mxc_ccm_reg *)CCM_BASE_ADDR;
1092 
1093 	clrbits_le32(&imx_ccm->CCGR5, MXC_CCM_CCGR5_SATA_MASK);
1094 }
1095 #endif
1096 
1097 #ifdef CONFIG_PCIE_IMX
1098 static void ungate_pcie_clock(void)
1099 {
1100 	struct mxc_ccm_reg *const imx_ccm =
1101 		(struct mxc_ccm_reg *)CCM_BASE_ADDR;
1102 
1103 	/* Enable PCIe clock. */
1104 	setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_PCIE_MASK);
1105 }
1106 
1107 int enable_pcie_clock(void)
1108 {
1109 	struct anatop_regs *anatop_regs =
1110 		(struct anatop_regs *)ANATOP_BASE_ADDR;
1111 	struct mxc_ccm_reg *ccm_regs = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
1112 	u32 lvds1_clk_sel;
1113 
1114 	/*
1115 	 * Here be dragons!
1116 	 *
1117 	 * The register ANATOP_MISC1 is not documented in the Freescale
1118 	 * MX6RM. The register that is mapped in the ANATOP space and
1119 	 * marked as ANATOP_MISC1 is actually documented in the PMU section
1120 	 * of the datasheet as PMU_MISC1.
1121 	 *
1122 	 * Switch LVDS clock source to SATA (0xb) on mx6q/dl or PCI (0xa) on
1123 	 * mx6sx, disable clock INPUT and enable clock OUTPUT. This is important
1124 	 * for PCI express link that is clocked from the i.MX6.
1125 	 */
1126 #define ANADIG_ANA_MISC1_LVDSCLK1_IBEN		(1 << 12)
1127 #define ANADIG_ANA_MISC1_LVDSCLK1_OBEN		(1 << 10)
1128 #define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_MASK	0x0000001F
1129 #define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_PCIE_REF	0xa
1130 #define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_SATA_REF	0xb
1131 
1132 	if (is_mx6sx())
1133 		lvds1_clk_sel = ANADIG_ANA_MISC1_LVDS1_CLK_SEL_PCIE_REF;
1134 	else
1135 		lvds1_clk_sel = ANADIG_ANA_MISC1_LVDS1_CLK_SEL_SATA_REF;
1136 
1137 	clrsetbits_le32(&anatop_regs->ana_misc1,
1138 			ANADIG_ANA_MISC1_LVDSCLK1_IBEN |
1139 			ANADIG_ANA_MISC1_LVDS1_CLK_SEL_MASK,
1140 			ANADIG_ANA_MISC1_LVDSCLK1_OBEN | lvds1_clk_sel);
1141 
1142 	/* PCIe reference clock sourced from AXI. */
1143 	clrbits_le32(&ccm_regs->cbcmr, MXC_CCM_CBCMR_PCIE_AXI_CLK_SEL);
1144 
1145 	/* Party time! Ungate the clock to the PCIe. */
1146 #ifdef CONFIG_SATA
1147 	ungate_sata_clock();
1148 #endif
1149 	ungate_pcie_clock();
1150 
1151 	return enable_enet_pll(BM_ANADIG_PLL_ENET_ENABLE_SATA |
1152 			       BM_ANADIG_PLL_ENET_ENABLE_PCIE);
1153 }
1154 #endif
1155 
1156 #ifdef CONFIG_SECURE_BOOT
1157 void hab_caam_clock_enable(unsigned char enable)
1158 {
1159 	u32 reg;
1160 
1161 	if (is_mx6ull() || is_mx6sll()) {
1162 		/* CG5, DCP clock */
1163 		reg = __raw_readl(&imx_ccm->CCGR0);
1164 		if (enable)
1165 			reg |= MXC_CCM_CCGR0_DCP_CLK_MASK;
1166 		else
1167 			reg &= ~MXC_CCM_CCGR0_DCP_CLK_MASK;
1168 		__raw_writel(reg, &imx_ccm->CCGR0);
1169 	} else {
1170 		/* CG4 ~ CG6, CAAM clocks */
1171 		reg = __raw_readl(&imx_ccm->CCGR0);
1172 		if (enable)
1173 			reg |= (MXC_CCM_CCGR0_CAAM_WRAPPER_IPG_MASK |
1174 				MXC_CCM_CCGR0_CAAM_WRAPPER_ACLK_MASK |
1175 				MXC_CCM_CCGR0_CAAM_SECURE_MEM_MASK);
1176 		else
1177 			reg &= ~(MXC_CCM_CCGR0_CAAM_WRAPPER_IPG_MASK |
1178 				MXC_CCM_CCGR0_CAAM_WRAPPER_ACLK_MASK |
1179 				MXC_CCM_CCGR0_CAAM_SECURE_MEM_MASK);
1180 		__raw_writel(reg, &imx_ccm->CCGR0);
1181 	}
1182 
1183 	/* EMI slow clk */
1184 	reg = __raw_readl(&imx_ccm->CCGR6);
1185 	if (enable)
1186 		reg |= MXC_CCM_CCGR6_EMI_SLOW_MASK;
1187 	else
1188 		reg &= ~MXC_CCM_CCGR6_EMI_SLOW_MASK;
1189 	__raw_writel(reg, &imx_ccm->CCGR6);
1190 }
1191 #endif
1192 
1193 static void enable_pll3(void)
1194 {
1195 	struct anatop_regs __iomem *anatop =
1196 		(struct anatop_regs __iomem *)ANATOP_BASE_ADDR;
1197 
1198 	/* make sure pll3 is enabled */
1199 	if ((readl(&anatop->usb1_pll_480_ctrl) &
1200 			BM_ANADIG_USB1_PLL_480_CTRL_LOCK) == 0) {
1201 		/* enable pll's power */
1202 		writel(BM_ANADIG_USB1_PLL_480_CTRL_POWER,
1203 		       &anatop->usb1_pll_480_ctrl_set);
1204 		writel(0x80, &anatop->ana_misc2_clr);
1205 		/* wait for pll lock */
1206 		while ((readl(&anatop->usb1_pll_480_ctrl) &
1207 			BM_ANADIG_USB1_PLL_480_CTRL_LOCK) == 0)
1208 			;
1209 		/* disable bypass */
1210 		writel(BM_ANADIG_USB1_PLL_480_CTRL_BYPASS,
1211 		       &anatop->usb1_pll_480_ctrl_clr);
1212 		/* enable pll output */
1213 		writel(BM_ANADIG_USB1_PLL_480_CTRL_ENABLE,
1214 		       &anatop->usb1_pll_480_ctrl_set);
1215 	}
1216 }
1217 
1218 void enable_thermal_clk(void)
1219 {
1220 	enable_pll3();
1221 }
1222 
1223 #ifdef CONFIG_MTD_NOR_FLASH
1224 void enable_eim_clk(unsigned char enable)
1225 {
1226 	u32 reg;
1227 
1228 	reg = __raw_readl(&imx_ccm->CCGR6);
1229 	if (enable)
1230 		reg |= MXC_CCM_CCGR6_EMI_SLOW_MASK;
1231 	else
1232 		reg &= ~MXC_CCM_CCGR6_EMI_SLOW_MASK;
1233 	__raw_writel(reg, &imx_ccm->CCGR6);
1234 }
1235 #endif
1236 
1237 unsigned int mxc_get_clock(enum mxc_clock clk)
1238 {
1239 	switch (clk) {
1240 	case MXC_ARM_CLK:
1241 		return get_mcu_main_clk();
1242 	case MXC_PER_CLK:
1243 		return get_periph_clk();
1244 	case MXC_AHB_CLK:
1245 		return get_ahb_clk();
1246 	case MXC_IPG_CLK:
1247 		return get_ipg_clk();
1248 	case MXC_IPG_PERCLK:
1249 	case MXC_I2C_CLK:
1250 		return get_ipg_per_clk();
1251 	case MXC_UART_CLK:
1252 		return get_uart_clk();
1253 	case MXC_CSPI_CLK:
1254 		return get_cspi_clk();
1255 	case MXC_AXI_CLK:
1256 		return get_axi_clk();
1257 	case MXC_EMI_SLOW_CLK:
1258 		return get_emi_slow_clk();
1259 	case MXC_DDR_CLK:
1260 		return get_mmdc_ch0_clk();
1261 	case MXC_ESDHC_CLK:
1262 		return get_usdhc_clk(0);
1263 	case MXC_ESDHC2_CLK:
1264 		return get_usdhc_clk(1);
1265 	case MXC_ESDHC3_CLK:
1266 		return get_usdhc_clk(2);
1267 	case MXC_ESDHC4_CLK:
1268 		return get_usdhc_clk(3);
1269 	case MXC_SATA_CLK:
1270 		return get_ahb_clk();
1271 	default:
1272 		printf("Unsupported MXC CLK: %d\n", clk);
1273 		break;
1274 	}
1275 
1276 	return 0;
1277 }
1278 
1279 #ifndef CONFIG_SPL_BUILD
1280 /*
1281  * Dump some core clockes.
1282  */
1283 int do_mx6_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
1284 {
1285 	u32 freq;
1286 	freq = decode_pll(PLL_SYS, MXC_HCLK);
1287 	printf("PLL_SYS    %8d MHz\n", freq / 1000000);
1288 	freq = decode_pll(PLL_BUS, MXC_HCLK);
1289 	printf("PLL_BUS    %8d MHz\n", freq / 1000000);
1290 	freq = decode_pll(PLL_USBOTG, MXC_HCLK);
1291 	printf("PLL_OTG    %8d MHz\n", freq / 1000000);
1292 	freq = decode_pll(PLL_ENET, MXC_HCLK);
1293 	printf("PLL_NET    %8d MHz\n", freq / 1000000);
1294 
1295 	printf("\n");
1296 	printf("ARM        %8d kHz\n", mxc_get_clock(MXC_ARM_CLK) / 1000);
1297 	printf("IPG        %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000);
1298 	printf("UART       %8d kHz\n", mxc_get_clock(MXC_UART_CLK) / 1000);
1299 #ifdef CONFIG_MXC_SPI
1300 	printf("CSPI       %8d kHz\n", mxc_get_clock(MXC_CSPI_CLK) / 1000);
1301 #endif
1302 	printf("AHB        %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000);
1303 	printf("AXI        %8d kHz\n", mxc_get_clock(MXC_AXI_CLK) / 1000);
1304 	printf("DDR        %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000);
1305 	printf("USDHC1     %8d kHz\n", mxc_get_clock(MXC_ESDHC_CLK) / 1000);
1306 	printf("USDHC2     %8d kHz\n", mxc_get_clock(MXC_ESDHC2_CLK) / 1000);
1307 	printf("USDHC3     %8d kHz\n", mxc_get_clock(MXC_ESDHC3_CLK) / 1000);
1308 	printf("USDHC4     %8d kHz\n", mxc_get_clock(MXC_ESDHC4_CLK) / 1000);
1309 	printf("EMI SLOW   %8d kHz\n", mxc_get_clock(MXC_EMI_SLOW_CLK) / 1000);
1310 	printf("IPG PERCLK %8d kHz\n", mxc_get_clock(MXC_IPG_PERCLK) / 1000);
1311 
1312 	return 0;
1313 }
1314 
1315 #ifndef CONFIG_MX6SX
1316 void enable_ipu_clock(void)
1317 {
1318 	struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
1319 	int reg;
1320 	reg = readl(&mxc_ccm->CCGR3);
1321 	reg |= MXC_CCM_CCGR3_IPU1_IPU_MASK;
1322 	writel(reg, &mxc_ccm->CCGR3);
1323 
1324 	if (is_mx6dqp()) {
1325 		setbits_le32(&mxc_ccm->CCGR6, MXC_CCM_CCGR6_PRG_CLK0_MASK);
1326 		setbits_le32(&mxc_ccm->CCGR3, MXC_CCM_CCGR3_IPU2_IPU_MASK);
1327 	}
1328 }
1329 #endif
1330 
1331 #if defined(CONFIG_MX6Q) || defined(CONFIG_MX6D) || defined(CONFIG_MX6DL) || \
1332 	defined(CONFIG_MX6S)
1333 static void disable_ldb_di_clock_sources(void)
1334 {
1335 	struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
1336 	int reg;
1337 
1338 	/* Make sure PFDs are disabled at boot. */
1339 	reg = readl(&mxc_ccm->analog_pfd_528);
1340 	/* Cannot disable pll2_pfd2_396M, as it is the MMDC clock in iMX6DL */
1341 	if (is_mx6sdl())
1342 		reg |= 0x80008080;
1343 	else
1344 		reg |= 0x80808080;
1345 	writel(reg, &mxc_ccm->analog_pfd_528);
1346 
1347 	/* Disable PLL3 PFDs */
1348 	reg = readl(&mxc_ccm->analog_pfd_480);
1349 	reg |= 0x80808080;
1350 	writel(reg, &mxc_ccm->analog_pfd_480);
1351 
1352 	/* Disable PLL5 */
1353 	reg = readl(&mxc_ccm->analog_pll_video);
1354 	reg &= ~(1 << 13);
1355 	writel(reg, &mxc_ccm->analog_pll_video);
1356 }
1357 
1358 static void enable_ldb_di_clock_sources(void)
1359 {
1360 	struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
1361 	int reg;
1362 
1363 	reg = readl(&mxc_ccm->analog_pfd_528);
1364 	if (is_mx6sdl())
1365 		reg &= ~(0x80008080);
1366 	else
1367 		reg &= ~(0x80808080);
1368 	writel(reg, &mxc_ccm->analog_pfd_528);
1369 
1370 	reg = readl(&mxc_ccm->analog_pfd_480);
1371 	reg &= ~(0x80808080);
1372 	writel(reg, &mxc_ccm->analog_pfd_480);
1373 }
1374 
1375 /*
1376  * Try call this function as early in the boot process as possible since the
1377  * function temporarily disables PLL2 PFD's, PLL3 PFD's and PLL5.
1378  */
1379 void select_ldb_di_clock_source(enum ldb_di_clock clk)
1380 {
1381 	struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
1382 	int reg;
1383 
1384 	/*
1385 	 * Need to follow a strict procedure when changing the LDB
1386 	 * clock, else we can introduce a glitch. Things to keep in
1387 	 * mind:
1388 	 * 1. The current and new parent clocks must be disabled.
1389 	 * 2. The default clock for ldb_dio_clk is mmdc_ch1 which has
1390 	 * no CG bit.
1391 	 * 3. In the RTL implementation of the LDB_DI_CLK_SEL mux
1392 	 * the top four options are in one mux and the PLL3 option along
1393 	 * with another option is in the second mux. There is third mux
1394 	 * used to decide between the first and second mux.
1395 	 * The code below switches the parent to the bottom mux first
1396 	 * and then manipulates the top mux. This ensures that no glitch
1397 	 * will enter the divider.
1398 	 *
1399 	 * Need to disable MMDC_CH1 clock manually as there is no CG bit
1400 	 * for this clock. The only way to disable this clock is to move
1401 	 * it to pll3_sw_clk and then to disable pll3_sw_clk
1402 	 * Make sure periph2_clk2_sel is set to pll3_sw_clk
1403 	 */
1404 
1405 	/* Disable all ldb_di clock parents */
1406 	disable_ldb_di_clock_sources();
1407 
1408 	/* Set MMDC_CH1 mask bit */
1409 	reg = readl(&mxc_ccm->ccdr);
1410 	reg |= MXC_CCM_CCDR_MMDC_CH1_HS_MASK;
1411 	writel(reg, &mxc_ccm->ccdr);
1412 
1413 	/* Set periph2_clk2_sel to be sourced from PLL3_sw_clk */
1414 	reg = readl(&mxc_ccm->cbcmr);
1415 	reg &= ~MXC_CCM_CBCMR_PERIPH2_CLK2_SEL;
1416 	writel(reg, &mxc_ccm->cbcmr);
1417 
1418 	/*
1419 	 * Set the periph2_clk_sel to the top mux so that
1420 	 * mmdc_ch1 is from pll3_sw_clk.
1421 	 */
1422 	reg = readl(&mxc_ccm->cbcdr);
1423 	reg |= MXC_CCM_CBCDR_PERIPH2_CLK_SEL;
1424 	writel(reg, &mxc_ccm->cbcdr);
1425 
1426 	/* Wait for the clock switch */
1427 	while (readl(&mxc_ccm->cdhipr))
1428 		;
1429 	/* Disable pll3_sw_clk by selecting bypass clock source */
1430 	reg = readl(&mxc_ccm->ccsr);
1431 	reg |= MXC_CCM_CCSR_PLL3_SW_CLK_SEL;
1432 	writel(reg, &mxc_ccm->ccsr);
1433 
1434 	/* Set the ldb_di0_clk and ldb_di1_clk to 111b */
1435 	reg = readl(&mxc_ccm->cs2cdr);
1436 	reg |= ((7 << MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_OFFSET)
1437 	      | (7 << MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_OFFSET));
1438 	writel(reg, &mxc_ccm->cs2cdr);
1439 
1440 	/* Set the ldb_di0_clk and ldb_di1_clk to 100b */
1441 	reg = readl(&mxc_ccm->cs2cdr);
1442 	reg &= ~(MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_MASK
1443 	      | MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_MASK);
1444 	reg |= ((4 << MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_OFFSET)
1445 	      | (4 << MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_OFFSET));
1446 	writel(reg, &mxc_ccm->cs2cdr);
1447 
1448 	/* Set the ldb_di0_clk and ldb_di1_clk to desired source */
1449 	reg = readl(&mxc_ccm->cs2cdr);
1450 	reg &= ~(MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_MASK
1451 	      | MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_MASK);
1452 	reg |= ((clk << MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_OFFSET)
1453 	      | (clk << MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_OFFSET));
1454 	writel(reg, &mxc_ccm->cs2cdr);
1455 
1456 	/* Unbypass pll3_sw_clk */
1457 	reg = readl(&mxc_ccm->ccsr);
1458 	reg &= ~MXC_CCM_CCSR_PLL3_SW_CLK_SEL;
1459 	writel(reg, &mxc_ccm->ccsr);
1460 
1461 	/*
1462 	 * Set the periph2_clk_sel back to the bottom mux so that
1463 	 * mmdc_ch1 is from its original parent.
1464 	 */
1465 	reg = readl(&mxc_ccm->cbcdr);
1466 	reg &= ~MXC_CCM_CBCDR_PERIPH2_CLK_SEL;
1467 	writel(reg, &mxc_ccm->cbcdr);
1468 
1469 	/* Wait for the clock switch */
1470 	while (readl(&mxc_ccm->cdhipr))
1471 		;
1472 	/* Clear MMDC_CH1 mask bit */
1473 	reg = readl(&mxc_ccm->ccdr);
1474 	reg &= ~MXC_CCM_CCDR_MMDC_CH1_HS_MASK;
1475 	writel(reg, &mxc_ccm->ccdr);
1476 
1477 	enable_ldb_di_clock_sources();
1478 }
1479 #endif
1480 
1481 /***************************************************/
1482 
1483 U_BOOT_CMD(
1484 	clocks,	CONFIG_SYS_MAXARGS, 1, do_mx6_showclocks,
1485 	"display clocks",
1486 	""
1487 );
1488 #endif
1489