1 /* 2 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. 3 * 4 * SPDX-License-Identifier: GPL-2.0+ 5 */ 6 7 #include <common.h> 8 #include <div64.h> 9 #include <asm/io.h> 10 #include <linux/errno.h> 11 #include <asm/arch/imx-regs.h> 12 #include <asm/arch/crm_regs.h> 13 #include <asm/arch/clock.h> 14 #include <asm/arch/sys_proto.h> 15 16 enum pll_clocks { 17 PLL_SYS, /* System PLL */ 18 PLL_BUS, /* System Bus PLL*/ 19 PLL_USBOTG, /* OTG USB PLL */ 20 PLL_ENET, /* ENET PLL */ 21 PLL_AUDIO, /* AUDIO PLL */ 22 PLL_VIDEO, /* AUDIO PLL */ 23 }; 24 25 struct mxc_ccm_reg *imx_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR; 26 27 #ifdef CONFIG_MXC_OCOTP 28 void enable_ocotp_clk(unsigned char enable) 29 { 30 u32 reg; 31 32 reg = __raw_readl(&imx_ccm->CCGR2); 33 if (enable) 34 reg |= MXC_CCM_CCGR2_OCOTP_CTRL_MASK; 35 else 36 reg &= ~MXC_CCM_CCGR2_OCOTP_CTRL_MASK; 37 __raw_writel(reg, &imx_ccm->CCGR2); 38 } 39 #endif 40 41 #ifdef CONFIG_NAND_MXS 42 void setup_gpmi_io_clk(u32 cfg) 43 { 44 /* Disable clocks per ERR007177 from MX6 errata */ 45 clrbits_le32(&imx_ccm->CCGR4, 46 MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK | 47 MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK | 48 MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK | 49 MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK | 50 MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK); 51 52 #if defined(CONFIG_MX6SX) 53 clrbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK); 54 55 clrsetbits_le32(&imx_ccm->cs2cdr, 56 MXC_CCM_CS2CDR_QSPI2_CLK_PODF_MASK | 57 MXC_CCM_CS2CDR_QSPI2_CLK_PRED_MASK | 58 MXC_CCM_CS2CDR_QSPI2_CLK_SEL_MASK, 59 cfg); 60 61 setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK); 62 #else 63 clrbits_le32(&imx_ccm->CCGR2, MXC_CCM_CCGR2_IOMUX_IPT_CLK_IO_MASK); 64 65 clrsetbits_le32(&imx_ccm->cs2cdr, 66 MXC_CCM_CS2CDR_ENFC_CLK_PODF_MASK | 67 MXC_CCM_CS2CDR_ENFC_CLK_PRED_MASK | 68 MXC_CCM_CS2CDR_ENFC_CLK_SEL_MASK, 69 cfg); 70 71 setbits_le32(&imx_ccm->CCGR2, MXC_CCM_CCGR2_IOMUX_IPT_CLK_IO_MASK); 72 #endif 73 setbits_le32(&imx_ccm->CCGR4, 74 MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK | 75 MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK | 76 MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK | 77 MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK | 78 MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK); 79 } 80 #endif 81 82 void enable_usboh3_clk(unsigned char enable) 83 { 84 u32 reg; 85 86 reg = __raw_readl(&imx_ccm->CCGR6); 87 if (enable) 88 reg |= MXC_CCM_CCGR6_USBOH3_MASK; 89 else 90 reg &= ~(MXC_CCM_CCGR6_USBOH3_MASK); 91 __raw_writel(reg, &imx_ccm->CCGR6); 92 93 } 94 95 #if defined(CONFIG_FEC_MXC) && !defined(CONFIG_MX6SX) 96 void enable_enet_clk(unsigned char enable) 97 { 98 u32 mask, *addr; 99 100 if (is_mx6ull()) { 101 mask = MXC_CCM_CCGR0_ENET_CLK_ENABLE_MASK; 102 addr = &imx_ccm->CCGR0; 103 } else if (is_mx6ul()) { 104 mask = MXC_CCM_CCGR3_ENET_MASK; 105 addr = &imx_ccm->CCGR3; 106 } else { 107 mask = MXC_CCM_CCGR1_ENET_MASK; 108 addr = &imx_ccm->CCGR1; 109 } 110 111 if (enable) 112 setbits_le32(addr, mask); 113 else 114 clrbits_le32(addr, mask); 115 } 116 #endif 117 118 #ifdef CONFIG_MXC_UART 119 void enable_uart_clk(unsigned char enable) 120 { 121 u32 mask; 122 123 if (is_mx6ul() || is_mx6ull()) 124 mask = MXC_CCM_CCGR5_UART_MASK; 125 else 126 mask = MXC_CCM_CCGR5_UART_MASK | MXC_CCM_CCGR5_UART_SERIAL_MASK; 127 128 if (enable) 129 setbits_le32(&imx_ccm->CCGR5, mask); 130 else 131 clrbits_le32(&imx_ccm->CCGR5, mask); 132 } 133 #endif 134 135 #ifdef CONFIG_MMC 136 int enable_usdhc_clk(unsigned char enable, unsigned bus_num) 137 { 138 u32 mask; 139 140 if (bus_num > 3) 141 return -EINVAL; 142 143 mask = MXC_CCM_CCGR_CG_MASK << (bus_num * 2 + 2); 144 if (enable) 145 setbits_le32(&imx_ccm->CCGR6, mask); 146 else 147 clrbits_le32(&imx_ccm->CCGR6, mask); 148 149 return 0; 150 } 151 #endif 152 153 #ifdef CONFIG_SYS_I2C_MXC 154 /* i2c_num can be from 0 - 3 */ 155 int enable_i2c_clk(unsigned char enable, unsigned i2c_num) 156 { 157 u32 reg; 158 u32 mask; 159 u32 *addr; 160 161 if (i2c_num > 3) 162 return -EINVAL; 163 if (i2c_num < 3) { 164 mask = MXC_CCM_CCGR_CG_MASK 165 << (MXC_CCM_CCGR2_I2C1_SERIAL_OFFSET 166 + (i2c_num << 1)); 167 reg = __raw_readl(&imx_ccm->CCGR2); 168 if (enable) 169 reg |= mask; 170 else 171 reg &= ~mask; 172 __raw_writel(reg, &imx_ccm->CCGR2); 173 } else { 174 if (is_mx6sll()) 175 return -EINVAL; 176 if (is_mx6sx() || is_mx6ul() || is_mx6ull()) { 177 mask = MXC_CCM_CCGR6_I2C4_MASK; 178 addr = &imx_ccm->CCGR6; 179 } else { 180 mask = MXC_CCM_CCGR1_I2C4_SERIAL_MASK; 181 addr = &imx_ccm->CCGR1; 182 } 183 reg = __raw_readl(addr); 184 if (enable) 185 reg |= mask; 186 else 187 reg &= ~mask; 188 __raw_writel(reg, addr); 189 } 190 return 0; 191 } 192 #endif 193 194 /* spi_num can be from 0 - SPI_MAX_NUM */ 195 int enable_spi_clk(unsigned char enable, unsigned spi_num) 196 { 197 u32 reg; 198 u32 mask; 199 200 if (spi_num > SPI_MAX_NUM) 201 return -EINVAL; 202 203 mask = MXC_CCM_CCGR_CG_MASK << (spi_num << 1); 204 reg = __raw_readl(&imx_ccm->CCGR1); 205 if (enable) 206 reg |= mask; 207 else 208 reg &= ~mask; 209 __raw_writel(reg, &imx_ccm->CCGR1); 210 return 0; 211 } 212 static u32 decode_pll(enum pll_clocks pll, u32 infreq) 213 { 214 u32 div, test_div, pll_num, pll_denom; 215 216 switch (pll) { 217 case PLL_SYS: 218 div = __raw_readl(&imx_ccm->analog_pll_sys); 219 div &= BM_ANADIG_PLL_SYS_DIV_SELECT; 220 221 return (infreq * div) >> 1; 222 case PLL_BUS: 223 div = __raw_readl(&imx_ccm->analog_pll_528); 224 div &= BM_ANADIG_PLL_528_DIV_SELECT; 225 226 return infreq * (20 + (div << 1)); 227 case PLL_USBOTG: 228 div = __raw_readl(&imx_ccm->analog_usb1_pll_480_ctrl); 229 div &= BM_ANADIG_USB1_PLL_480_CTRL_DIV_SELECT; 230 231 return infreq * (20 + (div << 1)); 232 case PLL_ENET: 233 div = __raw_readl(&imx_ccm->analog_pll_enet); 234 div &= BM_ANADIG_PLL_ENET_DIV_SELECT; 235 236 return 25000000 * (div + (div >> 1) + 1); 237 case PLL_AUDIO: 238 div = __raw_readl(&imx_ccm->analog_pll_audio); 239 if (!(div & BM_ANADIG_PLL_AUDIO_ENABLE)) 240 return 0; 241 /* BM_ANADIG_PLL_AUDIO_BYPASS_CLK_SRC is ignored */ 242 if (div & BM_ANADIG_PLL_AUDIO_BYPASS) 243 return MXC_HCLK; 244 pll_num = __raw_readl(&imx_ccm->analog_pll_audio_num); 245 pll_denom = __raw_readl(&imx_ccm->analog_pll_audio_denom); 246 test_div = (div & BM_ANADIG_PLL_AUDIO_TEST_DIV_SELECT) >> 247 BP_ANADIG_PLL_AUDIO_TEST_DIV_SELECT; 248 div &= BM_ANADIG_PLL_AUDIO_DIV_SELECT; 249 if (test_div == 3) { 250 debug("Error test_div\n"); 251 return 0; 252 } 253 test_div = 1 << (2 - test_div); 254 255 return infreq * (div + pll_num / pll_denom) / test_div; 256 case PLL_VIDEO: 257 div = __raw_readl(&imx_ccm->analog_pll_video); 258 if (!(div & BM_ANADIG_PLL_VIDEO_ENABLE)) 259 return 0; 260 /* BM_ANADIG_PLL_AUDIO_BYPASS_CLK_SRC is ignored */ 261 if (div & BM_ANADIG_PLL_VIDEO_BYPASS) 262 return MXC_HCLK; 263 pll_num = __raw_readl(&imx_ccm->analog_pll_video_num); 264 pll_denom = __raw_readl(&imx_ccm->analog_pll_video_denom); 265 test_div = (div & BM_ANADIG_PLL_VIDEO_POST_DIV_SELECT) >> 266 BP_ANADIG_PLL_VIDEO_POST_DIV_SELECT; 267 div &= BM_ANADIG_PLL_VIDEO_DIV_SELECT; 268 if (test_div == 3) { 269 debug("Error test_div\n"); 270 return 0; 271 } 272 test_div = 1 << (2 - test_div); 273 274 return infreq * (div + pll_num / pll_denom) / test_div; 275 default: 276 return 0; 277 } 278 /* NOTREACHED */ 279 } 280 static u32 mxc_get_pll_pfd(enum pll_clocks pll, int pfd_num) 281 { 282 u32 div; 283 u64 freq; 284 285 switch (pll) { 286 case PLL_BUS: 287 if (!is_mx6ul() && !is_mx6ull()) { 288 if (pfd_num == 3) { 289 /* No PFD3 on PLL2 */ 290 return 0; 291 } 292 } 293 div = __raw_readl(&imx_ccm->analog_pfd_528); 294 freq = (u64)decode_pll(PLL_BUS, MXC_HCLK); 295 break; 296 case PLL_USBOTG: 297 div = __raw_readl(&imx_ccm->analog_pfd_480); 298 freq = (u64)decode_pll(PLL_USBOTG, MXC_HCLK); 299 break; 300 default: 301 /* No PFD on other PLL */ 302 return 0; 303 } 304 305 return lldiv(freq * 18, (div & ANATOP_PFD_FRAC_MASK(pfd_num)) >> 306 ANATOP_PFD_FRAC_SHIFT(pfd_num)); 307 } 308 309 static u32 get_mcu_main_clk(void) 310 { 311 u32 reg, freq; 312 313 reg = __raw_readl(&imx_ccm->cacrr); 314 reg &= MXC_CCM_CACRR_ARM_PODF_MASK; 315 reg >>= MXC_CCM_CACRR_ARM_PODF_OFFSET; 316 freq = decode_pll(PLL_SYS, MXC_HCLK); 317 318 return freq / (reg + 1); 319 } 320 321 u32 get_periph_clk(void) 322 { 323 u32 reg, div = 0, freq = 0; 324 325 reg = __raw_readl(&imx_ccm->cbcdr); 326 if (reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL) { 327 div = (reg & MXC_CCM_CBCDR_PERIPH_CLK2_PODF_MASK) >> 328 MXC_CCM_CBCDR_PERIPH_CLK2_PODF_OFFSET; 329 reg = __raw_readl(&imx_ccm->cbcmr); 330 reg &= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_MASK; 331 reg >>= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_OFFSET; 332 333 switch (reg) { 334 case 0: 335 freq = decode_pll(PLL_USBOTG, MXC_HCLK); 336 break; 337 case 1: 338 case 2: 339 freq = MXC_HCLK; 340 break; 341 default: 342 break; 343 } 344 } else { 345 reg = __raw_readl(&imx_ccm->cbcmr); 346 reg &= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK; 347 reg >>= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_OFFSET; 348 349 switch (reg) { 350 case 0: 351 freq = decode_pll(PLL_BUS, MXC_HCLK); 352 break; 353 case 1: 354 freq = mxc_get_pll_pfd(PLL_BUS, 2); 355 break; 356 case 2: 357 freq = mxc_get_pll_pfd(PLL_BUS, 0); 358 break; 359 case 3: 360 /* static / 2 divider */ 361 freq = mxc_get_pll_pfd(PLL_BUS, 2) / 2; 362 break; 363 default: 364 break; 365 } 366 } 367 368 return freq / (div + 1); 369 } 370 371 static u32 get_ipg_clk(void) 372 { 373 u32 reg, ipg_podf; 374 375 reg = __raw_readl(&imx_ccm->cbcdr); 376 reg &= MXC_CCM_CBCDR_IPG_PODF_MASK; 377 ipg_podf = reg >> MXC_CCM_CBCDR_IPG_PODF_OFFSET; 378 379 return get_ahb_clk() / (ipg_podf + 1); 380 } 381 382 static u32 get_ipg_per_clk(void) 383 { 384 u32 reg, perclk_podf; 385 386 reg = __raw_readl(&imx_ccm->cscmr1); 387 if (is_mx6sll() || is_mx6sl() || is_mx6sx() || 388 is_mx6dqp() || is_mx6ul() || is_mx6ull()) { 389 if (reg & MXC_CCM_CSCMR1_PER_CLK_SEL_MASK) 390 return MXC_HCLK; /* OSC 24Mhz */ 391 } 392 393 perclk_podf = reg & MXC_CCM_CSCMR1_PERCLK_PODF_MASK; 394 395 return get_ipg_clk() / (perclk_podf + 1); 396 } 397 398 static u32 get_uart_clk(void) 399 { 400 u32 reg, uart_podf; 401 u32 freq = decode_pll(PLL_USBOTG, MXC_HCLK) / 6; /* static divider */ 402 reg = __raw_readl(&imx_ccm->cscdr1); 403 404 if (is_mx6sl() || is_mx6sx() || is_mx6dqp() || is_mx6ul() || 405 is_mx6sll() || is_mx6ull()) { 406 if (reg & MXC_CCM_CSCDR1_UART_CLK_SEL) 407 freq = MXC_HCLK; 408 } 409 410 reg &= MXC_CCM_CSCDR1_UART_CLK_PODF_MASK; 411 uart_podf = reg >> MXC_CCM_CSCDR1_UART_CLK_PODF_OFFSET; 412 413 return freq / (uart_podf + 1); 414 } 415 416 static u32 get_cspi_clk(void) 417 { 418 u32 reg, cspi_podf; 419 420 reg = __raw_readl(&imx_ccm->cscdr2); 421 cspi_podf = (reg & MXC_CCM_CSCDR2_ECSPI_CLK_PODF_MASK) >> 422 MXC_CCM_CSCDR2_ECSPI_CLK_PODF_OFFSET; 423 424 if (is_mx6dqp() || is_mx6sl() || is_mx6sx() || is_mx6ul() || 425 is_mx6sll() || is_mx6ull()) { 426 if (reg & MXC_CCM_CSCDR2_ECSPI_CLK_SEL_MASK) 427 return MXC_HCLK / (cspi_podf + 1); 428 } 429 430 return decode_pll(PLL_USBOTG, MXC_HCLK) / (8 * (cspi_podf + 1)); 431 } 432 433 static u32 get_axi_clk(void) 434 { 435 u32 root_freq, axi_podf; 436 u32 cbcdr = __raw_readl(&imx_ccm->cbcdr); 437 438 axi_podf = cbcdr & MXC_CCM_CBCDR_AXI_PODF_MASK; 439 axi_podf >>= MXC_CCM_CBCDR_AXI_PODF_OFFSET; 440 441 if (cbcdr & MXC_CCM_CBCDR_AXI_SEL) { 442 if (cbcdr & MXC_CCM_CBCDR_AXI_ALT_SEL) 443 root_freq = mxc_get_pll_pfd(PLL_USBOTG, 1); 444 else 445 root_freq = mxc_get_pll_pfd(PLL_BUS, 2); 446 } else 447 root_freq = get_periph_clk(); 448 449 return root_freq / (axi_podf + 1); 450 } 451 452 static u32 get_emi_slow_clk(void) 453 { 454 u32 emi_clk_sel, emi_slow_podf, cscmr1, root_freq = 0; 455 456 cscmr1 = __raw_readl(&imx_ccm->cscmr1); 457 emi_clk_sel = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_MASK; 458 emi_clk_sel >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_OFFSET; 459 emi_slow_podf = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_MASK; 460 emi_slow_podf >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_OFFSET; 461 462 switch (emi_clk_sel) { 463 case 0: 464 root_freq = get_axi_clk(); 465 break; 466 case 1: 467 root_freq = decode_pll(PLL_USBOTG, MXC_HCLK); 468 break; 469 case 2: 470 root_freq = mxc_get_pll_pfd(PLL_BUS, 2); 471 break; 472 case 3: 473 root_freq = mxc_get_pll_pfd(PLL_BUS, 0); 474 break; 475 } 476 477 return root_freq / (emi_slow_podf + 1); 478 } 479 480 static u32 get_mmdc_ch0_clk(void) 481 { 482 u32 cbcmr = __raw_readl(&imx_ccm->cbcmr); 483 u32 cbcdr = __raw_readl(&imx_ccm->cbcdr); 484 485 u32 freq, podf, per2_clk2_podf, pmu_misc2_audio_div; 486 487 if (is_mx6sx() || is_mx6ul() || is_mx6ull() || is_mx6sl() || 488 is_mx6sll()) { 489 podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH1_PODF_MASK) >> 490 MXC_CCM_CBCDR_MMDC_CH1_PODF_OFFSET; 491 if (cbcdr & MXC_CCM_CBCDR_PERIPH2_CLK_SEL) { 492 per2_clk2_podf = (cbcdr & MXC_CCM_CBCDR_PERIPH2_CLK2_PODF_MASK) >> 493 MXC_CCM_CBCDR_PERIPH2_CLK2_PODF_OFFSET; 494 if (is_mx6sl()) { 495 if (cbcmr & MXC_CCM_CBCMR_PERIPH2_CLK2_SEL) 496 freq = MXC_HCLK; 497 else 498 freq = decode_pll(PLL_USBOTG, MXC_HCLK); 499 } else { 500 if (cbcmr & MXC_CCM_CBCMR_PERIPH2_CLK2_SEL) 501 freq = decode_pll(PLL_BUS, MXC_HCLK); 502 else 503 freq = decode_pll(PLL_USBOTG, MXC_HCLK); 504 } 505 } else { 506 per2_clk2_podf = 0; 507 switch ((cbcmr & 508 MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_MASK) >> 509 MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_OFFSET) { 510 case 0: 511 freq = decode_pll(PLL_BUS, MXC_HCLK); 512 break; 513 case 1: 514 freq = mxc_get_pll_pfd(PLL_BUS, 2); 515 break; 516 case 2: 517 freq = mxc_get_pll_pfd(PLL_BUS, 0); 518 break; 519 case 3: 520 if (is_mx6sl()) { 521 freq = mxc_get_pll_pfd(PLL_BUS, 2) >> 1; 522 break; 523 } 524 525 pmu_misc2_audio_div = PMU_MISC2_AUDIO_DIV(__raw_readl(&imx_ccm->pmu_misc2)); 526 switch (pmu_misc2_audio_div) { 527 case 0: 528 case 2: 529 pmu_misc2_audio_div = 1; 530 break; 531 case 1: 532 pmu_misc2_audio_div = 2; 533 break; 534 case 3: 535 pmu_misc2_audio_div = 4; 536 break; 537 } 538 freq = decode_pll(PLL_AUDIO, MXC_HCLK) / 539 pmu_misc2_audio_div; 540 break; 541 } 542 } 543 return freq / (podf + 1) / (per2_clk2_podf + 1); 544 } else { 545 podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH0_PODF_MASK) >> 546 MXC_CCM_CBCDR_MMDC_CH0_PODF_OFFSET; 547 return get_periph_clk() / (podf + 1); 548 } 549 } 550 551 #if defined(CONFIG_VIDEO_MXS) 552 static int enable_pll_video(u32 pll_div, u32 pll_num, u32 pll_denom, 553 u32 post_div) 554 { 555 u32 reg = 0; 556 ulong start; 557 558 debug("pll5 div = %d, num = %d, denom = %d\n", 559 pll_div, pll_num, pll_denom); 560 561 /* Power up PLL5 video */ 562 writel(BM_ANADIG_PLL_VIDEO_POWERDOWN | 563 BM_ANADIG_PLL_VIDEO_BYPASS | 564 BM_ANADIG_PLL_VIDEO_DIV_SELECT | 565 BM_ANADIG_PLL_VIDEO_POST_DIV_SELECT, 566 &imx_ccm->analog_pll_video_clr); 567 568 /* Set div, num and denom */ 569 switch (post_div) { 570 case 1: 571 writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) | 572 BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x2), 573 &imx_ccm->analog_pll_video_set); 574 break; 575 case 2: 576 writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) | 577 BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x1), 578 &imx_ccm->analog_pll_video_set); 579 break; 580 case 4: 581 writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) | 582 BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x0), 583 &imx_ccm->analog_pll_video_set); 584 break; 585 default: 586 puts("Wrong test_div!\n"); 587 return -EINVAL; 588 } 589 590 writel(BF_ANADIG_PLL_VIDEO_NUM_A(pll_num), 591 &imx_ccm->analog_pll_video_num); 592 writel(BF_ANADIG_PLL_VIDEO_DENOM_B(pll_denom), 593 &imx_ccm->analog_pll_video_denom); 594 595 /* Wait PLL5 lock */ 596 start = get_timer(0); /* Get current timestamp */ 597 598 do { 599 reg = readl(&imx_ccm->analog_pll_video); 600 if (reg & BM_ANADIG_PLL_VIDEO_LOCK) { 601 /* Enable PLL out */ 602 writel(BM_ANADIG_PLL_VIDEO_ENABLE, 603 &imx_ccm->analog_pll_video_set); 604 return 0; 605 } 606 } while (get_timer(0) < (start + 10)); /* Wait 10ms */ 607 608 puts("Lock PLL5 timeout\n"); 609 610 return -ETIME; 611 } 612 613 /* 614 * 24M--> PLL_VIDEO -> LCDIFx_PRED -> LCDIFx_PODF -> LCD 615 * 616 * 'freq' using KHz as unit, see driver/video/mxsfb.c. 617 */ 618 void mxs_set_lcdclk(u32 base_addr, u32 freq) 619 { 620 u32 reg = 0; 621 u32 hck = MXC_HCLK / 1000; 622 /* DIV_SELECT ranges from 27 to 54 */ 623 u32 min = hck * 27; 624 u32 max = hck * 54; 625 u32 temp, best = 0; 626 u32 i, j, max_pred = 8, max_postd = 8, pred = 1, postd = 1; 627 u32 pll_div, pll_num, pll_denom, post_div = 1; 628 629 debug("mxs_set_lcdclk, freq = %dKHz\n", freq); 630 631 if (!is_mx6sx() && !is_mx6ul() && !is_mx6ull() && !is_mx6sl() && 632 !is_mx6sll()) { 633 debug("This chip not support lcd!\n"); 634 return; 635 } 636 637 if (!is_mx6sl()) { 638 if (base_addr == LCDIF1_BASE_ADDR) { 639 reg = readl(&imx_ccm->cscdr2); 640 /* Can't change clocks when clock not from pre-mux */ 641 if ((reg & MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK) != 0) 642 return; 643 } 644 } 645 646 if (is_mx6sx()) { 647 reg = readl(&imx_ccm->cscdr2); 648 /* Can't change clocks when clock not from pre-mux */ 649 if ((reg & MXC_CCM_CSCDR2_LCDIF2_CLK_SEL_MASK) != 0) 650 return; 651 } 652 653 temp = freq * max_pred * max_postd; 654 if (temp < min) { 655 /* 656 * Register: PLL_VIDEO 657 * Bit Field: POST_DIV_SELECT 658 * 00 — Divide by 4. 659 * 01 — Divide by 2. 660 * 10 — Divide by 1. 661 * 11 — Reserved 662 * No need to check post_div(1) 663 */ 664 for (post_div = 2; post_div <= 4; post_div <<= 1) { 665 if ((temp * post_div) > min) { 666 freq *= post_div; 667 break; 668 } 669 } 670 671 if (post_div > 4) { 672 printf("Fail to set rate to %dkhz", freq); 673 return; 674 } 675 } 676 677 /* Choose the best pred and postd to match freq for lcd */ 678 for (i = 1; i <= max_pred; i++) { 679 for (j = 1; j <= max_postd; j++) { 680 temp = freq * i * j; 681 if (temp > max || temp < min) 682 continue; 683 if (best == 0 || temp < best) { 684 best = temp; 685 pred = i; 686 postd = j; 687 } 688 } 689 } 690 691 if (best == 0) { 692 printf("Fail to set rate to %dKHz", freq); 693 return; 694 } 695 696 debug("best %d, pred = %d, postd = %d\n", best, pred, postd); 697 698 pll_div = best / hck; 699 pll_denom = 1000000; 700 pll_num = (best - hck * pll_div) * pll_denom / hck; 701 702 /* 703 * pll_num 704 * (24MHz * (pll_div + --------- )) 705 * pll_denom 706 *freq KHz = -------------------------------- 707 * post_div * pred * postd * 1000 708 */ 709 710 if (base_addr == LCDIF1_BASE_ADDR) { 711 if (enable_pll_video(pll_div, pll_num, pll_denom, post_div)) 712 return; 713 714 enable_lcdif_clock(base_addr, 0); 715 if (!is_mx6sl()) { 716 /* Select pre-lcd clock to PLL5 and set pre divider */ 717 clrsetbits_le32(&imx_ccm->cscdr2, 718 MXC_CCM_CSCDR2_LCDIF1_PRED_SEL_MASK | 719 MXC_CCM_CSCDR2_LCDIF1_PRE_DIV_MASK, 720 (0x2 << MXC_CCM_CSCDR2_LCDIF1_PRED_SEL_OFFSET) | 721 ((pred - 1) << 722 MXC_CCM_CSCDR2_LCDIF1_PRE_DIV_OFFSET)); 723 724 /* Set the post divider */ 725 clrsetbits_le32(&imx_ccm->cbcmr, 726 MXC_CCM_CBCMR_LCDIF1_PODF_MASK, 727 ((postd - 1) << 728 MXC_CCM_CBCMR_LCDIF1_PODF_OFFSET)); 729 } else { 730 /* Select pre-lcd clock to PLL5 and set pre divider */ 731 clrsetbits_le32(&imx_ccm->cscdr2, 732 MXC_CCM_CSCDR2_LCDIF_PIX_CLK_SEL_MASK | 733 MXC_CCM_CSCDR2_LCDIF_PIX_PRE_DIV_MASK, 734 (0x2 << MXC_CCM_CSCDR2_LCDIF_PIX_CLK_SEL_OFFSET) | 735 ((pred - 1) << 736 MXC_CCM_CSCDR2_LCDIF_PIX_PRE_DIV_OFFSET)); 737 738 /* Set the post divider */ 739 clrsetbits_le32(&imx_ccm->cscmr1, 740 MXC_CCM_CSCMR1_LCDIF_PIX_PODF_MASK, 741 (((postd - 1)^0x6) << 742 MXC_CCM_CSCMR1_LCDIF_PIX_PODF_OFFSET)); 743 } 744 745 enable_lcdif_clock(base_addr, 1); 746 } else if (is_mx6sx()) { 747 /* Setting LCDIF2 for i.MX6SX */ 748 if (enable_pll_video(pll_div, pll_num, pll_denom, post_div)) 749 return; 750 751 enable_lcdif_clock(base_addr, 0); 752 /* Select pre-lcd clock to PLL5 and set pre divider */ 753 clrsetbits_le32(&imx_ccm->cscdr2, 754 MXC_CCM_CSCDR2_LCDIF2_PRED_SEL_MASK | 755 MXC_CCM_CSCDR2_LCDIF2_PRE_DIV_MASK, 756 (0x2 << MXC_CCM_CSCDR2_LCDIF2_PRED_SEL_OFFSET) | 757 ((pred - 1) << 758 MXC_CCM_CSCDR2_LCDIF2_PRE_DIV_OFFSET)); 759 760 /* Set the post divider */ 761 clrsetbits_le32(&imx_ccm->cscmr1, 762 MXC_CCM_CSCMR1_LCDIF2_PODF_MASK, 763 ((postd - 1) << 764 MXC_CCM_CSCMR1_LCDIF2_PODF_OFFSET)); 765 766 enable_lcdif_clock(base_addr, 1); 767 } 768 } 769 770 int enable_lcdif_clock(u32 base_addr, bool enable) 771 { 772 u32 reg = 0; 773 u32 lcdif_clk_sel_mask, lcdif_ccgr3_mask; 774 775 if (is_mx6sx()) { 776 if ((base_addr != LCDIF1_BASE_ADDR) && 777 (base_addr != LCDIF2_BASE_ADDR)) { 778 puts("Wrong LCD interface!\n"); 779 return -EINVAL; 780 } 781 /* Set to pre-mux clock at default */ 782 lcdif_clk_sel_mask = (base_addr == LCDIF2_BASE_ADDR) ? 783 MXC_CCM_CSCDR2_LCDIF2_CLK_SEL_MASK : 784 MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK; 785 lcdif_ccgr3_mask = (base_addr == LCDIF2_BASE_ADDR) ? 786 (MXC_CCM_CCGR3_LCDIF2_PIX_MASK | 787 MXC_CCM_CCGR3_DISP_AXI_MASK) : 788 (MXC_CCM_CCGR3_LCDIF1_PIX_MASK | 789 MXC_CCM_CCGR3_DISP_AXI_MASK); 790 } else if (is_mx6ul() || is_mx6ull() || is_mx6sll()) { 791 if (base_addr != LCDIF1_BASE_ADDR) { 792 puts("Wrong LCD interface!\n"); 793 return -EINVAL; 794 } 795 /* Set to pre-mux clock at default */ 796 lcdif_clk_sel_mask = MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK; 797 lcdif_ccgr3_mask = MXC_CCM_CCGR3_LCDIF1_PIX_MASK; 798 } else if (is_mx6sl()) { 799 if (base_addr != LCDIF1_BASE_ADDR) { 800 puts("Wrong LCD interface!\n"); 801 return -EINVAL; 802 } 803 804 reg = readl(&imx_ccm->CCGR3); 805 reg &= ~(MXC_CCM_CCGR3_LCDIF_AXI_MASK | 806 MXC_CCM_CCGR3_LCDIF_PIX_MASK); 807 writel(reg, &imx_ccm->CCGR3); 808 809 if (enable) { 810 reg = readl(&imx_ccm->cscdr3); 811 reg &= ~MXC_CCM_CSCDR3_LCDIF_AXI_CLK_SEL_MASK; 812 reg |= 1 << MXC_CCM_CSCDR3_LCDIF_AXI_CLK_SEL_OFFSET; 813 writel(reg, &imx_ccm->cscdr3); 814 815 reg = readl(&imx_ccm->CCGR3); 816 reg |= MXC_CCM_CCGR3_LCDIF_AXI_MASK | 817 MXC_CCM_CCGR3_LCDIF_PIX_MASK; 818 writel(reg, &imx_ccm->CCGR3); 819 } 820 821 return 0; 822 } else { 823 return 0; 824 } 825 826 /* Gate LCDIF clock first */ 827 reg = readl(&imx_ccm->CCGR3); 828 reg &= ~lcdif_ccgr3_mask; 829 writel(reg, &imx_ccm->CCGR3); 830 831 reg = readl(&imx_ccm->CCGR2); 832 reg &= ~MXC_CCM_CCGR2_LCD_MASK; 833 writel(reg, &imx_ccm->CCGR2); 834 835 if (enable) { 836 /* Select pre-mux */ 837 reg = readl(&imx_ccm->cscdr2); 838 reg &= ~lcdif_clk_sel_mask; 839 writel(reg, &imx_ccm->cscdr2); 840 841 /* Enable the LCDIF pix clock */ 842 reg = readl(&imx_ccm->CCGR3); 843 reg |= lcdif_ccgr3_mask; 844 writel(reg, &imx_ccm->CCGR3); 845 846 reg = readl(&imx_ccm->CCGR2); 847 reg |= MXC_CCM_CCGR2_LCD_MASK; 848 writel(reg, &imx_ccm->CCGR2); 849 } 850 851 return 0; 852 } 853 #endif 854 855 #ifdef CONFIG_FSL_QSPI 856 /* qspi_num can be from 0 - 1 */ 857 void enable_qspi_clk(int qspi_num) 858 { 859 u32 reg = 0; 860 /* Enable QuadSPI clock */ 861 switch (qspi_num) { 862 case 0: 863 /* disable the clock gate */ 864 clrbits_le32(&imx_ccm->CCGR3, MXC_CCM_CCGR3_QSPI1_MASK); 865 866 /* set 50M : (50 = 396 / 2 / 4) */ 867 reg = readl(&imx_ccm->cscmr1); 868 reg &= ~(MXC_CCM_CSCMR1_QSPI1_PODF_MASK | 869 MXC_CCM_CSCMR1_QSPI1_CLK_SEL_MASK); 870 reg |= ((1 << MXC_CCM_CSCMR1_QSPI1_PODF_OFFSET) | 871 (2 << MXC_CCM_CSCMR1_QSPI1_CLK_SEL_OFFSET)); 872 writel(reg, &imx_ccm->cscmr1); 873 874 /* enable the clock gate */ 875 setbits_le32(&imx_ccm->CCGR3, MXC_CCM_CCGR3_QSPI1_MASK); 876 break; 877 case 1: 878 /* 879 * disable the clock gate 880 * QSPI2 and GPMI_BCH_INPUT_GPMI_IO share the same clock gate, 881 * disable both of them. 882 */ 883 clrbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK | 884 MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK); 885 886 /* set 50M : (50 = 396 / 2 / 4) */ 887 reg = readl(&imx_ccm->cs2cdr); 888 reg &= ~(MXC_CCM_CS2CDR_QSPI2_CLK_PODF_MASK | 889 MXC_CCM_CS2CDR_QSPI2_CLK_PRED_MASK | 890 MXC_CCM_CS2CDR_QSPI2_CLK_SEL_MASK); 891 reg |= (MXC_CCM_CS2CDR_QSPI2_CLK_PRED(0x1) | 892 MXC_CCM_CS2CDR_QSPI2_CLK_SEL(0x3)); 893 writel(reg, &imx_ccm->cs2cdr); 894 895 /*enable the clock gate*/ 896 setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK | 897 MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK); 898 break; 899 default: 900 break; 901 } 902 } 903 #endif 904 905 #ifdef CONFIG_FEC_MXC 906 int enable_fec_anatop_clock(int fec_id, enum enet_freq freq) 907 { 908 u32 reg = 0; 909 s32 timeout = 100000; 910 911 struct anatop_regs __iomem *anatop = 912 (struct anatop_regs __iomem *)ANATOP_BASE_ADDR; 913 914 if (freq < ENET_25MHZ || freq > ENET_125MHZ) 915 return -EINVAL; 916 917 reg = readl(&anatop->pll_enet); 918 919 if (fec_id == 0) { 920 reg &= ~BM_ANADIG_PLL_ENET_DIV_SELECT; 921 reg |= BF_ANADIG_PLL_ENET_DIV_SELECT(freq); 922 } else if (fec_id == 1) { 923 /* Only i.MX6SX/UL support ENET2 */ 924 if (!(is_mx6sx() || is_mx6ul() || is_mx6ull())) 925 return -EINVAL; 926 reg &= ~BM_ANADIG_PLL_ENET2_DIV_SELECT; 927 reg |= BF_ANADIG_PLL_ENET2_DIV_SELECT(freq); 928 } else { 929 return -EINVAL; 930 } 931 932 if ((reg & BM_ANADIG_PLL_ENET_POWERDOWN) || 933 (!(reg & BM_ANADIG_PLL_ENET_LOCK))) { 934 reg &= ~BM_ANADIG_PLL_ENET_POWERDOWN; 935 writel(reg, &anatop->pll_enet); 936 while (timeout--) { 937 if (readl(&anatop->pll_enet) & BM_ANADIG_PLL_ENET_LOCK) 938 break; 939 } 940 if (timeout < 0) 941 return -ETIMEDOUT; 942 } 943 944 /* Enable FEC clock */ 945 if (fec_id == 0) 946 reg |= BM_ANADIG_PLL_ENET_ENABLE; 947 else 948 reg |= BM_ANADIG_PLL_ENET2_ENABLE; 949 reg &= ~BM_ANADIG_PLL_ENET_BYPASS; 950 writel(reg, &anatop->pll_enet); 951 952 #ifdef CONFIG_MX6SX 953 /* Disable enet system clcok before switching clock parent */ 954 reg = readl(&imx_ccm->CCGR3); 955 reg &= ~MXC_CCM_CCGR3_ENET_MASK; 956 writel(reg, &imx_ccm->CCGR3); 957 958 /* 959 * Set enet ahb clock to 200MHz 960 * pll2_pfd2_396m-> ENET_PODF-> ENET_AHB 961 */ 962 reg = readl(&imx_ccm->chsccdr); 963 reg &= ~(MXC_CCM_CHSCCDR_ENET_PRE_CLK_SEL_MASK 964 | MXC_CCM_CHSCCDR_ENET_PODF_MASK 965 | MXC_CCM_CHSCCDR_ENET_CLK_SEL_MASK); 966 /* PLL2 PFD2 */ 967 reg |= (4 << MXC_CCM_CHSCCDR_ENET_PRE_CLK_SEL_OFFSET); 968 /* Div = 2*/ 969 reg |= (1 << MXC_CCM_CHSCCDR_ENET_PODF_OFFSET); 970 reg |= (0 << MXC_CCM_CHSCCDR_ENET_CLK_SEL_OFFSET); 971 writel(reg, &imx_ccm->chsccdr); 972 973 /* Enable enet system clock */ 974 reg = readl(&imx_ccm->CCGR3); 975 reg |= MXC_CCM_CCGR3_ENET_MASK; 976 writel(reg, &imx_ccm->CCGR3); 977 #endif 978 return 0; 979 } 980 #endif 981 982 static u32 get_usdhc_clk(u32 port) 983 { 984 u32 root_freq = 0, usdhc_podf = 0, clk_sel = 0; 985 u32 cscmr1 = __raw_readl(&imx_ccm->cscmr1); 986 u32 cscdr1 = __raw_readl(&imx_ccm->cscdr1); 987 988 if (is_mx6ul() || is_mx6ull()) { 989 if (port > 1) 990 return 0; 991 } 992 993 if (is_mx6sll()) { 994 if (port > 2) 995 return 0; 996 } 997 998 switch (port) { 999 case 0: 1000 usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC1_PODF_MASK) >> 1001 MXC_CCM_CSCDR1_USDHC1_PODF_OFFSET; 1002 clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC1_CLK_SEL; 1003 1004 break; 1005 case 1: 1006 usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC2_PODF_MASK) >> 1007 MXC_CCM_CSCDR1_USDHC2_PODF_OFFSET; 1008 clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC2_CLK_SEL; 1009 1010 break; 1011 case 2: 1012 usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC3_PODF_MASK) >> 1013 MXC_CCM_CSCDR1_USDHC3_PODF_OFFSET; 1014 clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC3_CLK_SEL; 1015 1016 break; 1017 case 3: 1018 usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC4_PODF_MASK) >> 1019 MXC_CCM_CSCDR1_USDHC4_PODF_OFFSET; 1020 clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC4_CLK_SEL; 1021 1022 break; 1023 default: 1024 break; 1025 } 1026 1027 if (clk_sel) 1028 root_freq = mxc_get_pll_pfd(PLL_BUS, 0); 1029 else 1030 root_freq = mxc_get_pll_pfd(PLL_BUS, 2); 1031 1032 return root_freq / (usdhc_podf + 1); 1033 } 1034 1035 u32 imx_get_uartclk(void) 1036 { 1037 return get_uart_clk(); 1038 } 1039 1040 u32 imx_get_fecclk(void) 1041 { 1042 return mxc_get_clock(MXC_IPG_CLK); 1043 } 1044 1045 #if defined(CONFIG_SATA) || defined(CONFIG_PCIE_IMX) 1046 static int enable_enet_pll(uint32_t en) 1047 { 1048 struct mxc_ccm_reg *const imx_ccm 1049 = (struct mxc_ccm_reg *) CCM_BASE_ADDR; 1050 s32 timeout = 100000; 1051 u32 reg = 0; 1052 1053 /* Enable PLLs */ 1054 reg = readl(&imx_ccm->analog_pll_enet); 1055 reg &= ~BM_ANADIG_PLL_SYS_POWERDOWN; 1056 writel(reg, &imx_ccm->analog_pll_enet); 1057 reg |= BM_ANADIG_PLL_SYS_ENABLE; 1058 while (timeout--) { 1059 if (readl(&imx_ccm->analog_pll_enet) & BM_ANADIG_PLL_SYS_LOCK) 1060 break; 1061 } 1062 if (timeout <= 0) 1063 return -EIO; 1064 reg &= ~BM_ANADIG_PLL_SYS_BYPASS; 1065 writel(reg, &imx_ccm->analog_pll_enet); 1066 reg |= en; 1067 writel(reg, &imx_ccm->analog_pll_enet); 1068 return 0; 1069 } 1070 #endif 1071 1072 #ifdef CONFIG_SATA 1073 static void ungate_sata_clock(void) 1074 { 1075 struct mxc_ccm_reg *const imx_ccm = 1076 (struct mxc_ccm_reg *)CCM_BASE_ADDR; 1077 1078 /* Enable SATA clock. */ 1079 setbits_le32(&imx_ccm->CCGR5, MXC_CCM_CCGR5_SATA_MASK); 1080 } 1081 1082 int enable_sata_clock(void) 1083 { 1084 ungate_sata_clock(); 1085 return enable_enet_pll(BM_ANADIG_PLL_ENET_ENABLE_SATA); 1086 } 1087 1088 void disable_sata_clock(void) 1089 { 1090 struct mxc_ccm_reg *const imx_ccm = 1091 (struct mxc_ccm_reg *)CCM_BASE_ADDR; 1092 1093 clrbits_le32(&imx_ccm->CCGR5, MXC_CCM_CCGR5_SATA_MASK); 1094 } 1095 #endif 1096 1097 #ifdef CONFIG_PCIE_IMX 1098 static void ungate_pcie_clock(void) 1099 { 1100 struct mxc_ccm_reg *const imx_ccm = 1101 (struct mxc_ccm_reg *)CCM_BASE_ADDR; 1102 1103 /* Enable PCIe clock. */ 1104 setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_PCIE_MASK); 1105 } 1106 1107 int enable_pcie_clock(void) 1108 { 1109 struct anatop_regs *anatop_regs = 1110 (struct anatop_regs *)ANATOP_BASE_ADDR; 1111 struct mxc_ccm_reg *ccm_regs = (struct mxc_ccm_reg *)CCM_BASE_ADDR; 1112 u32 lvds1_clk_sel; 1113 1114 /* 1115 * Here be dragons! 1116 * 1117 * The register ANATOP_MISC1 is not documented in the Freescale 1118 * MX6RM. The register that is mapped in the ANATOP space and 1119 * marked as ANATOP_MISC1 is actually documented in the PMU section 1120 * of the datasheet as PMU_MISC1. 1121 * 1122 * Switch LVDS clock source to SATA (0xb) on mx6q/dl or PCI (0xa) on 1123 * mx6sx, disable clock INPUT and enable clock OUTPUT. This is important 1124 * for PCI express link that is clocked from the i.MX6. 1125 */ 1126 #define ANADIG_ANA_MISC1_LVDSCLK1_IBEN (1 << 12) 1127 #define ANADIG_ANA_MISC1_LVDSCLK1_OBEN (1 << 10) 1128 #define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_MASK 0x0000001F 1129 #define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_PCIE_REF 0xa 1130 #define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_SATA_REF 0xb 1131 1132 if (is_mx6sx()) 1133 lvds1_clk_sel = ANADIG_ANA_MISC1_LVDS1_CLK_SEL_PCIE_REF; 1134 else 1135 lvds1_clk_sel = ANADIG_ANA_MISC1_LVDS1_CLK_SEL_SATA_REF; 1136 1137 clrsetbits_le32(&anatop_regs->ana_misc1, 1138 ANADIG_ANA_MISC1_LVDSCLK1_IBEN | 1139 ANADIG_ANA_MISC1_LVDS1_CLK_SEL_MASK, 1140 ANADIG_ANA_MISC1_LVDSCLK1_OBEN | lvds1_clk_sel); 1141 1142 /* PCIe reference clock sourced from AXI. */ 1143 clrbits_le32(&ccm_regs->cbcmr, MXC_CCM_CBCMR_PCIE_AXI_CLK_SEL); 1144 1145 /* Party time! Ungate the clock to the PCIe. */ 1146 #ifdef CONFIG_SATA 1147 ungate_sata_clock(); 1148 #endif 1149 ungate_pcie_clock(); 1150 1151 return enable_enet_pll(BM_ANADIG_PLL_ENET_ENABLE_SATA | 1152 BM_ANADIG_PLL_ENET_ENABLE_PCIE); 1153 } 1154 #endif 1155 1156 #ifdef CONFIG_SECURE_BOOT 1157 void hab_caam_clock_enable(unsigned char enable) 1158 { 1159 u32 reg; 1160 1161 if (is_mx6ull() || is_mx6sll()) { 1162 /* CG5, DCP clock */ 1163 reg = __raw_readl(&imx_ccm->CCGR0); 1164 if (enable) 1165 reg |= MXC_CCM_CCGR0_DCP_CLK_MASK; 1166 else 1167 reg &= ~MXC_CCM_CCGR0_DCP_CLK_MASK; 1168 __raw_writel(reg, &imx_ccm->CCGR0); 1169 } else { 1170 /* CG4 ~ CG6, CAAM clocks */ 1171 reg = __raw_readl(&imx_ccm->CCGR0); 1172 if (enable) 1173 reg |= (MXC_CCM_CCGR0_CAAM_WRAPPER_IPG_MASK | 1174 MXC_CCM_CCGR0_CAAM_WRAPPER_ACLK_MASK | 1175 MXC_CCM_CCGR0_CAAM_SECURE_MEM_MASK); 1176 else 1177 reg &= ~(MXC_CCM_CCGR0_CAAM_WRAPPER_IPG_MASK | 1178 MXC_CCM_CCGR0_CAAM_WRAPPER_ACLK_MASK | 1179 MXC_CCM_CCGR0_CAAM_SECURE_MEM_MASK); 1180 __raw_writel(reg, &imx_ccm->CCGR0); 1181 } 1182 1183 /* EMI slow clk */ 1184 reg = __raw_readl(&imx_ccm->CCGR6); 1185 if (enable) 1186 reg |= MXC_CCM_CCGR6_EMI_SLOW_MASK; 1187 else 1188 reg &= ~MXC_CCM_CCGR6_EMI_SLOW_MASK; 1189 __raw_writel(reg, &imx_ccm->CCGR6); 1190 } 1191 #endif 1192 1193 static void enable_pll3(void) 1194 { 1195 struct anatop_regs __iomem *anatop = 1196 (struct anatop_regs __iomem *)ANATOP_BASE_ADDR; 1197 1198 /* make sure pll3 is enabled */ 1199 if ((readl(&anatop->usb1_pll_480_ctrl) & 1200 BM_ANADIG_USB1_PLL_480_CTRL_LOCK) == 0) { 1201 /* enable pll's power */ 1202 writel(BM_ANADIG_USB1_PLL_480_CTRL_POWER, 1203 &anatop->usb1_pll_480_ctrl_set); 1204 writel(0x80, &anatop->ana_misc2_clr); 1205 /* wait for pll lock */ 1206 while ((readl(&anatop->usb1_pll_480_ctrl) & 1207 BM_ANADIG_USB1_PLL_480_CTRL_LOCK) == 0) 1208 ; 1209 /* disable bypass */ 1210 writel(BM_ANADIG_USB1_PLL_480_CTRL_BYPASS, 1211 &anatop->usb1_pll_480_ctrl_clr); 1212 /* enable pll output */ 1213 writel(BM_ANADIG_USB1_PLL_480_CTRL_ENABLE, 1214 &anatop->usb1_pll_480_ctrl_set); 1215 } 1216 } 1217 1218 void enable_thermal_clk(void) 1219 { 1220 enable_pll3(); 1221 } 1222 1223 unsigned int mxc_get_clock(enum mxc_clock clk) 1224 { 1225 switch (clk) { 1226 case MXC_ARM_CLK: 1227 return get_mcu_main_clk(); 1228 case MXC_PER_CLK: 1229 return get_periph_clk(); 1230 case MXC_AHB_CLK: 1231 return get_ahb_clk(); 1232 case MXC_IPG_CLK: 1233 return get_ipg_clk(); 1234 case MXC_IPG_PERCLK: 1235 case MXC_I2C_CLK: 1236 return get_ipg_per_clk(); 1237 case MXC_UART_CLK: 1238 return get_uart_clk(); 1239 case MXC_CSPI_CLK: 1240 return get_cspi_clk(); 1241 case MXC_AXI_CLK: 1242 return get_axi_clk(); 1243 case MXC_EMI_SLOW_CLK: 1244 return get_emi_slow_clk(); 1245 case MXC_DDR_CLK: 1246 return get_mmdc_ch0_clk(); 1247 case MXC_ESDHC_CLK: 1248 return get_usdhc_clk(0); 1249 case MXC_ESDHC2_CLK: 1250 return get_usdhc_clk(1); 1251 case MXC_ESDHC3_CLK: 1252 return get_usdhc_clk(2); 1253 case MXC_ESDHC4_CLK: 1254 return get_usdhc_clk(3); 1255 case MXC_SATA_CLK: 1256 return get_ahb_clk(); 1257 default: 1258 printf("Unsupported MXC CLK: %d\n", clk); 1259 break; 1260 } 1261 1262 return 0; 1263 } 1264 1265 /* 1266 * Dump some core clockes. 1267 */ 1268 int do_mx6_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) 1269 { 1270 u32 freq; 1271 freq = decode_pll(PLL_SYS, MXC_HCLK); 1272 printf("PLL_SYS %8d MHz\n", freq / 1000000); 1273 freq = decode_pll(PLL_BUS, MXC_HCLK); 1274 printf("PLL_BUS %8d MHz\n", freq / 1000000); 1275 freq = decode_pll(PLL_USBOTG, MXC_HCLK); 1276 printf("PLL_OTG %8d MHz\n", freq / 1000000); 1277 freq = decode_pll(PLL_ENET, MXC_HCLK); 1278 printf("PLL_NET %8d MHz\n", freq / 1000000); 1279 1280 printf("\n"); 1281 printf("ARM %8d kHz\n", mxc_get_clock(MXC_ARM_CLK) / 1000); 1282 printf("IPG %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000); 1283 printf("UART %8d kHz\n", mxc_get_clock(MXC_UART_CLK) / 1000); 1284 #ifdef CONFIG_MXC_SPI 1285 printf("CSPI %8d kHz\n", mxc_get_clock(MXC_CSPI_CLK) / 1000); 1286 #endif 1287 printf("AHB %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000); 1288 printf("AXI %8d kHz\n", mxc_get_clock(MXC_AXI_CLK) / 1000); 1289 printf("DDR %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000); 1290 printf("USDHC1 %8d kHz\n", mxc_get_clock(MXC_ESDHC_CLK) / 1000); 1291 printf("USDHC2 %8d kHz\n", mxc_get_clock(MXC_ESDHC2_CLK) / 1000); 1292 printf("USDHC3 %8d kHz\n", mxc_get_clock(MXC_ESDHC3_CLK) / 1000); 1293 printf("USDHC4 %8d kHz\n", mxc_get_clock(MXC_ESDHC4_CLK) / 1000); 1294 printf("EMI SLOW %8d kHz\n", mxc_get_clock(MXC_EMI_SLOW_CLK) / 1000); 1295 printf("IPG PERCLK %8d kHz\n", mxc_get_clock(MXC_IPG_PERCLK) / 1000); 1296 1297 return 0; 1298 } 1299 1300 #ifndef CONFIG_MX6SX 1301 void enable_ipu_clock(void) 1302 { 1303 struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR; 1304 int reg; 1305 reg = readl(&mxc_ccm->CCGR3); 1306 reg |= MXC_CCM_CCGR3_IPU1_IPU_MASK; 1307 writel(reg, &mxc_ccm->CCGR3); 1308 1309 if (is_mx6dqp()) { 1310 setbits_le32(&mxc_ccm->CCGR6, MXC_CCM_CCGR6_PRG_CLK0_MASK); 1311 setbits_le32(&mxc_ccm->CCGR3, MXC_CCM_CCGR3_IPU2_IPU_MASK); 1312 } 1313 } 1314 #endif 1315 1316 #if defined(CONFIG_MX6Q) || defined(CONFIG_MX6D) || defined(CONFIG_MX6DL) || \ 1317 defined(CONFIG_MX6S) 1318 static void disable_ldb_di_clock_sources(void) 1319 { 1320 struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR; 1321 int reg; 1322 1323 /* Make sure PFDs are disabled at boot. */ 1324 reg = readl(&mxc_ccm->analog_pfd_528); 1325 /* Cannot disable pll2_pfd2_396M, as it is the MMDC clock in iMX6DL */ 1326 if (is_mx6sdl()) 1327 reg |= 0x80008080; 1328 else 1329 reg |= 0x80808080; 1330 writel(reg, &mxc_ccm->analog_pfd_528); 1331 1332 /* Disable PLL3 PFDs */ 1333 reg = readl(&mxc_ccm->analog_pfd_480); 1334 reg |= 0x80808080; 1335 writel(reg, &mxc_ccm->analog_pfd_480); 1336 1337 /* Disable PLL5 */ 1338 reg = readl(&mxc_ccm->analog_pll_video); 1339 reg &= ~(1 << 13); 1340 writel(reg, &mxc_ccm->analog_pll_video); 1341 } 1342 1343 static void enable_ldb_di_clock_sources(void) 1344 { 1345 struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR; 1346 int reg; 1347 1348 reg = readl(&mxc_ccm->analog_pfd_528); 1349 if (is_mx6sdl()) 1350 reg &= ~(0x80008080); 1351 else 1352 reg &= ~(0x80808080); 1353 writel(reg, &mxc_ccm->analog_pfd_528); 1354 1355 reg = readl(&mxc_ccm->analog_pfd_480); 1356 reg &= ~(0x80808080); 1357 writel(reg, &mxc_ccm->analog_pfd_480); 1358 } 1359 1360 /* 1361 * Try call this function as early in the boot process as possible since the 1362 * function temporarily disables PLL2 PFD's, PLL3 PFD's and PLL5. 1363 */ 1364 void select_ldb_di_clock_source(enum ldb_di_clock clk) 1365 { 1366 struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR; 1367 int reg; 1368 1369 /* 1370 * Need to follow a strict procedure when changing the LDB 1371 * clock, else we can introduce a glitch. Things to keep in 1372 * mind: 1373 * 1. The current and new parent clocks must be disabled. 1374 * 2. The default clock for ldb_dio_clk is mmdc_ch1 which has 1375 * no CG bit. 1376 * 3. In the RTL implementation of the LDB_DI_CLK_SEL mux 1377 * the top four options are in one mux and the PLL3 option along 1378 * with another option is in the second mux. There is third mux 1379 * used to decide between the first and second mux. 1380 * The code below switches the parent to the bottom mux first 1381 * and then manipulates the top mux. This ensures that no glitch 1382 * will enter the divider. 1383 * 1384 * Need to disable MMDC_CH1 clock manually as there is no CG bit 1385 * for this clock. The only way to disable this clock is to move 1386 * it to pll3_sw_clk and then to disable pll3_sw_clk 1387 * Make sure periph2_clk2_sel is set to pll3_sw_clk 1388 */ 1389 1390 /* Disable all ldb_di clock parents */ 1391 disable_ldb_di_clock_sources(); 1392 1393 /* Set MMDC_CH1 mask bit */ 1394 reg = readl(&mxc_ccm->ccdr); 1395 reg |= MXC_CCM_CCDR_MMDC_CH1_HS_MASK; 1396 writel(reg, &mxc_ccm->ccdr); 1397 1398 /* Set periph2_clk2_sel to be sourced from PLL3_sw_clk */ 1399 reg = readl(&mxc_ccm->cbcmr); 1400 reg &= ~MXC_CCM_CBCMR_PERIPH2_CLK2_SEL; 1401 writel(reg, &mxc_ccm->cbcmr); 1402 1403 /* 1404 * Set the periph2_clk_sel to the top mux so that 1405 * mmdc_ch1 is from pll3_sw_clk. 1406 */ 1407 reg = readl(&mxc_ccm->cbcdr); 1408 reg |= MXC_CCM_CBCDR_PERIPH2_CLK_SEL; 1409 writel(reg, &mxc_ccm->cbcdr); 1410 1411 /* Wait for the clock switch */ 1412 while (readl(&mxc_ccm->cdhipr)) 1413 ; 1414 /* Disable pll3_sw_clk by selecting bypass clock source */ 1415 reg = readl(&mxc_ccm->ccsr); 1416 reg |= MXC_CCM_CCSR_PLL3_SW_CLK_SEL; 1417 writel(reg, &mxc_ccm->ccsr); 1418 1419 /* Set the ldb_di0_clk and ldb_di1_clk to 111b */ 1420 reg = readl(&mxc_ccm->cs2cdr); 1421 reg |= ((7 << MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_OFFSET) 1422 | (7 << MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_OFFSET)); 1423 writel(reg, &mxc_ccm->cs2cdr); 1424 1425 /* Set the ldb_di0_clk and ldb_di1_clk to 100b */ 1426 reg = readl(&mxc_ccm->cs2cdr); 1427 reg &= ~(MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_MASK 1428 | MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_MASK); 1429 reg |= ((4 << MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_OFFSET) 1430 | (4 << MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_OFFSET)); 1431 writel(reg, &mxc_ccm->cs2cdr); 1432 1433 /* Set the ldb_di0_clk and ldb_di1_clk to desired source */ 1434 reg = readl(&mxc_ccm->cs2cdr); 1435 reg &= ~(MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_MASK 1436 | MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_MASK); 1437 reg |= ((clk << MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_OFFSET) 1438 | (clk << MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_OFFSET)); 1439 writel(reg, &mxc_ccm->cs2cdr); 1440 1441 /* Unbypass pll3_sw_clk */ 1442 reg = readl(&mxc_ccm->ccsr); 1443 reg &= ~MXC_CCM_CCSR_PLL3_SW_CLK_SEL; 1444 writel(reg, &mxc_ccm->ccsr); 1445 1446 /* 1447 * Set the periph2_clk_sel back to the bottom mux so that 1448 * mmdc_ch1 is from its original parent. 1449 */ 1450 reg = readl(&mxc_ccm->cbcdr); 1451 reg &= ~MXC_CCM_CBCDR_PERIPH2_CLK_SEL; 1452 writel(reg, &mxc_ccm->cbcdr); 1453 1454 /* Wait for the clock switch */ 1455 while (readl(&mxc_ccm->cdhipr)) 1456 ; 1457 /* Clear MMDC_CH1 mask bit */ 1458 reg = readl(&mxc_ccm->ccdr); 1459 reg &= ~MXC_CCM_CCDR_MMDC_CH1_HS_MASK; 1460 writel(reg, &mxc_ccm->ccdr); 1461 1462 enable_ldb_di_clock_sources(); 1463 } 1464 #endif 1465 1466 #ifdef CONFIG_MTD_NOR_FLASH 1467 void enable_eim_clk(unsigned char enable) 1468 { 1469 u32 reg; 1470 1471 reg = __raw_readl(&imx_ccm->CCGR6); 1472 if (enable) 1473 reg |= MXC_CCM_CCGR6_EMI_SLOW_MASK; 1474 else 1475 reg &= ~MXC_CCM_CCGR6_EMI_SLOW_MASK; 1476 __raw_writel(reg, &imx_ccm->CCGR6); 1477 } 1478 #endif 1479 1480 /***************************************************/ 1481 1482 U_BOOT_CMD( 1483 clocks, CONFIG_SYS_MAXARGS, 1, do_mx6_showclocks, 1484 "display clocks", 1485 "" 1486 ); 1487