xref: /openbmc/u-boot/arch/arm/mach-imx/mx5/clock.c (revision 9ab403d0dd3c88370612c97f8c4cb88199302833)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2007
4  * Sascha Hauer, Pengutronix
5  *
6  * (C) Copyright 2009 Freescale Semiconductor, Inc.
7  */
8 
9 #include <common.h>
10 #include <asm/io.h>
11 #include <linux/errno.h>
12 #include <asm/arch/imx-regs.h>
13 #include <asm/arch/crm_regs.h>
14 #include <asm/arch/clock.h>
15 #include <div64.h>
16 #include <asm/arch/sys_proto.h>
17 
18 enum pll_clocks {
19 	PLL1_CLOCK = 0,
20 	PLL2_CLOCK,
21 	PLL3_CLOCK,
22 #ifdef CONFIG_MX53
23 	PLL4_CLOCK,
24 #endif
25 	PLL_CLOCKS,
26 };
27 
28 struct mxc_pll_reg *mxc_plls[PLL_CLOCKS] = {
29 	[PLL1_CLOCK] = (struct mxc_pll_reg *)PLL1_BASE_ADDR,
30 	[PLL2_CLOCK] = (struct mxc_pll_reg *)PLL2_BASE_ADDR,
31 	[PLL3_CLOCK] = (struct mxc_pll_reg *)PLL3_BASE_ADDR,
32 #ifdef	CONFIG_MX53
33 	[PLL4_CLOCK] = (struct mxc_pll_reg *)PLL4_BASE_ADDR,
34 #endif
35 };
36 
37 #define AHB_CLK_ROOT    133333333
38 #define SZ_DEC_1M       1000000
39 #define PLL_PD_MAX      16      /* Actual pd+1 */
40 #define PLL_MFI_MAX     15
41 #define PLL_MFI_MIN     5
42 #define ARM_DIV_MAX     8
43 #define IPG_DIV_MAX     4
44 #define AHB_DIV_MAX     8
45 #define EMI_DIV_MAX     8
46 #define NFC_DIV_MAX     8
47 
48 #define MX5_CBCMR	0x00015154
49 #define MX5_CBCDR	0x02888945
50 
51 struct fixed_pll_mfd {
52 	u32 ref_clk_hz;
53 	u32 mfd;
54 };
55 
56 const struct fixed_pll_mfd fixed_mfd[] = {
57 	{MXC_HCLK, 24 * 16},
58 };
59 
60 struct pll_param {
61 	u32 pd;
62 	u32 mfi;
63 	u32 mfn;
64 	u32 mfd;
65 };
66 
67 #define PLL_FREQ_MAX(ref_clk)  (4 * (ref_clk) * PLL_MFI_MAX)
68 #define PLL_FREQ_MIN(ref_clk) \
69 		((2 * (ref_clk) * (PLL_MFI_MIN - 1)) / PLL_PD_MAX)
70 #define MAX_DDR_CLK     420000000
71 #define NFC_CLK_MAX     34000000
72 
73 struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)MXC_CCM_BASE;
74 
75 void set_usboh3_clk(void)
76 {
77 	clrsetbits_le32(&mxc_ccm->cscmr1,
78 			MXC_CCM_CSCMR1_USBOH3_CLK_SEL_MASK,
79 			MXC_CCM_CSCMR1_USBOH3_CLK_SEL(1));
80 	clrsetbits_le32(&mxc_ccm->cscdr1,
81 			MXC_CCM_CSCDR1_USBOH3_CLK_PODF_MASK |
82 			MXC_CCM_CSCDR1_USBOH3_CLK_PRED_MASK,
83 			MXC_CCM_CSCDR1_USBOH3_CLK_PRED(4) |
84 			MXC_CCM_CSCDR1_USBOH3_CLK_PODF(1));
85 }
86 
87 void enable_usboh3_clk(bool enable)
88 {
89 	unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
90 
91 	clrsetbits_le32(&mxc_ccm->CCGR2,
92 			MXC_CCM_CCGR2_USBOH3_60M(MXC_CCM_CCGR_CG_MASK),
93 			MXC_CCM_CCGR2_USBOH3_60M(cg));
94 }
95 
96 #ifdef CONFIG_SYS_I2C_MXC
97 /* i2c_num can be from 0, to 1 for i.MX51 and 2 for i.MX53 */
98 int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
99 {
100 	u32 mask;
101 
102 #if defined(CONFIG_MX51)
103 	if (i2c_num > 1)
104 #elif defined(CONFIG_MX53)
105 	if (i2c_num > 2)
106 #endif
107 		return -EINVAL;
108 	mask = MXC_CCM_CCGR_CG_MASK <<
109 			(MXC_CCM_CCGR1_I2C1_OFFSET + (i2c_num << 1));
110 	if (enable)
111 		setbits_le32(&mxc_ccm->CCGR1, mask);
112 	else
113 		clrbits_le32(&mxc_ccm->CCGR1, mask);
114 	return 0;
115 }
116 #endif
117 
118 void set_usb_phy_clk(void)
119 {
120 	clrbits_le32(&mxc_ccm->cscmr1, MXC_CCM_CSCMR1_USB_PHY_CLK_SEL);
121 }
122 
123 #if defined(CONFIG_MX51)
124 void enable_usb_phy1_clk(bool enable)
125 {
126 	unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
127 
128 	clrsetbits_le32(&mxc_ccm->CCGR2,
129 			MXC_CCM_CCGR2_USB_PHY(MXC_CCM_CCGR_CG_MASK),
130 			MXC_CCM_CCGR2_USB_PHY(cg));
131 }
132 
133 void enable_usb_phy2_clk(bool enable)
134 {
135 	/* i.MX51 has a single USB PHY clock, so do nothing here. */
136 }
137 #elif defined(CONFIG_MX53)
138 void enable_usb_phy1_clk(bool enable)
139 {
140 	unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
141 
142 	clrsetbits_le32(&mxc_ccm->CCGR4,
143 			MXC_CCM_CCGR4_USB_PHY1(MXC_CCM_CCGR_CG_MASK),
144 			MXC_CCM_CCGR4_USB_PHY1(cg));
145 }
146 
147 void enable_usb_phy2_clk(bool enable)
148 {
149 	unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
150 
151 	clrsetbits_le32(&mxc_ccm->CCGR4,
152 			MXC_CCM_CCGR4_USB_PHY2(MXC_CCM_CCGR_CG_MASK),
153 			MXC_CCM_CCGR4_USB_PHY2(cg));
154 }
155 #endif
156 
157 /*
158  * Calculate the frequency of PLLn.
159  */
160 static uint32_t decode_pll(struct mxc_pll_reg *pll, uint32_t infreq)
161 {
162 	uint32_t ctrl, op, mfd, mfn, mfi, pdf, ret;
163 	uint64_t refclk, temp;
164 	int32_t mfn_abs;
165 
166 	ctrl = readl(&pll->ctrl);
167 
168 	if (ctrl & MXC_DPLLC_CTL_HFSM) {
169 		mfn = readl(&pll->hfs_mfn);
170 		mfd = readl(&pll->hfs_mfd);
171 		op = readl(&pll->hfs_op);
172 	} else {
173 		mfn = readl(&pll->mfn);
174 		mfd = readl(&pll->mfd);
175 		op = readl(&pll->op);
176 	}
177 
178 	mfd &= MXC_DPLLC_MFD_MFD_MASK;
179 	mfn &= MXC_DPLLC_MFN_MFN_MASK;
180 	pdf = op & MXC_DPLLC_OP_PDF_MASK;
181 	mfi = MXC_DPLLC_OP_MFI_RD(op);
182 
183 	/* 21.2.3 */
184 	if (mfi < 5)
185 		mfi = 5;
186 
187 	/* Sign extend */
188 	if (mfn >= 0x04000000) {
189 		mfn |= 0xfc000000;
190 		mfn_abs = -mfn;
191 	} else
192 		mfn_abs = mfn;
193 
194 	refclk = infreq * 2;
195 	if (ctrl & MXC_DPLLC_CTL_DPDCK0_2_EN)
196 		refclk *= 2;
197 
198 	do_div(refclk, pdf + 1);
199 	temp = refclk * mfn_abs;
200 	do_div(temp, mfd + 1);
201 	ret = refclk * mfi;
202 
203 	if ((int)mfn < 0)
204 		ret -= temp;
205 	else
206 		ret += temp;
207 
208 	return ret;
209 }
210 
211 #ifdef CONFIG_MX51
212 /*
213  * This function returns the Frequency Pre-Multiplier clock.
214  */
215 static u32 get_fpm(void)
216 {
217 	u32 mult;
218 	u32 ccr = readl(&mxc_ccm->ccr);
219 
220 	if (ccr & MXC_CCM_CCR_FPM_MULT)
221 		mult = 1024;
222 	else
223 		mult = 512;
224 
225 	return MXC_CLK32 * mult;
226 }
227 #endif
228 
229 /*
230  * This function returns the low power audio clock.
231  */
232 static u32 get_lp_apm(void)
233 {
234 	u32 ret_val = 0;
235 	u32 ccsr = readl(&mxc_ccm->ccsr);
236 
237 	if (ccsr & MXC_CCM_CCSR_LP_APM)
238 #if defined(CONFIG_MX51)
239 		ret_val = get_fpm();
240 #elif defined(CONFIG_MX53)
241 		ret_val = decode_pll(mxc_plls[PLL4_CLOCK], MXC_HCLK);
242 #endif
243 	else
244 		ret_val = MXC_HCLK;
245 
246 	return ret_val;
247 }
248 
249 /*
250  * Get mcu main rate
251  */
252 u32 get_mcu_main_clk(void)
253 {
254 	u32 reg, freq;
255 
256 	reg = MXC_CCM_CACRR_ARM_PODF_RD(readl(&mxc_ccm->cacrr));
257 	freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
258 	return freq / (reg + 1);
259 }
260 
261 /*
262  * Get the rate of peripheral's root clock.
263  */
264 u32 get_periph_clk(void)
265 {
266 	u32 reg;
267 
268 	reg = readl(&mxc_ccm->cbcdr);
269 	if (!(reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL))
270 		return decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
271 	reg = readl(&mxc_ccm->cbcmr);
272 	switch (MXC_CCM_CBCMR_PERIPH_CLK_SEL_RD(reg)) {
273 	case 0:
274 		return decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
275 	case 1:
276 		return decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
277 	case 2:
278 		return get_lp_apm();
279 	default:
280 		return 0;
281 	}
282 	/* NOTREACHED */
283 }
284 
285 /*
286  * Get the rate of ipg clock.
287  */
288 static u32 get_ipg_clk(void)
289 {
290 	uint32_t freq, reg, div;
291 
292 	freq = get_ahb_clk();
293 
294 	reg = readl(&mxc_ccm->cbcdr);
295 	div = MXC_CCM_CBCDR_IPG_PODF_RD(reg) + 1;
296 
297 	return freq / div;
298 }
299 
300 /*
301  * Get the rate of ipg_per clock.
302  */
303 static u32 get_ipg_per_clk(void)
304 {
305 	u32 freq, pred1, pred2, podf;
306 
307 	if (readl(&mxc_ccm->cbcmr) & MXC_CCM_CBCMR_PERCLK_IPG_CLK_SEL)
308 		return get_ipg_clk();
309 
310 	if (readl(&mxc_ccm->cbcmr) & MXC_CCM_CBCMR_PERCLK_LP_APM_CLK_SEL)
311 		freq = get_lp_apm();
312 	else
313 		freq = get_periph_clk();
314 	podf = readl(&mxc_ccm->cbcdr);
315 	pred1 = MXC_CCM_CBCDR_PERCLK_PRED1_RD(podf);
316 	pred2 = MXC_CCM_CBCDR_PERCLK_PRED2_RD(podf);
317 	podf = MXC_CCM_CBCDR_PERCLK_PODF_RD(podf);
318 	return freq / ((pred1 + 1) * (pred2 + 1) * (podf + 1));
319 }
320 
321 /* Get the output clock rate of a standard PLL MUX for peripherals. */
322 static u32 get_standard_pll_sel_clk(u32 clk_sel)
323 {
324 	u32 freq = 0;
325 
326 	switch (clk_sel & 0x3) {
327 	case 0:
328 		freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
329 		break;
330 	case 1:
331 		freq = decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
332 		break;
333 	case 2:
334 		freq = decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
335 		break;
336 	case 3:
337 		freq = get_lp_apm();
338 		break;
339 	}
340 
341 	return freq;
342 }
343 
344 /*
345  * Get the rate of uart clk.
346  */
347 static u32 get_uart_clk(void)
348 {
349 	unsigned int clk_sel, freq, reg, pred, podf;
350 
351 	reg = readl(&mxc_ccm->cscmr1);
352 	clk_sel = MXC_CCM_CSCMR1_UART_CLK_SEL_RD(reg);
353 	freq = get_standard_pll_sel_clk(clk_sel);
354 
355 	reg = readl(&mxc_ccm->cscdr1);
356 	pred = MXC_CCM_CSCDR1_UART_CLK_PRED_RD(reg);
357 	podf = MXC_CCM_CSCDR1_UART_CLK_PODF_RD(reg);
358 	freq /= (pred + 1) * (podf + 1);
359 
360 	return freq;
361 }
362 
363 /*
364  * get cspi clock rate.
365  */
366 static u32 imx_get_cspiclk(void)
367 {
368 	u32 ret_val = 0, pdf, pre_pdf, clk_sel, freq;
369 	u32 cscmr1 = readl(&mxc_ccm->cscmr1);
370 	u32 cscdr2 = readl(&mxc_ccm->cscdr2);
371 
372 	pre_pdf = MXC_CCM_CSCDR2_CSPI_CLK_PRED_RD(cscdr2);
373 	pdf = MXC_CCM_CSCDR2_CSPI_CLK_PODF_RD(cscdr2);
374 	clk_sel = MXC_CCM_CSCMR1_CSPI_CLK_SEL_RD(cscmr1);
375 	freq = get_standard_pll_sel_clk(clk_sel);
376 	ret_val = freq / ((pre_pdf + 1) * (pdf + 1));
377 	return ret_val;
378 }
379 
380 /*
381  * get esdhc clock rate.
382  */
383 static u32 get_esdhc_clk(u32 port)
384 {
385 	u32 clk_sel = 0, pred = 0, podf = 0, freq = 0;
386 	u32 cscmr1 = readl(&mxc_ccm->cscmr1);
387 	u32 cscdr1 = readl(&mxc_ccm->cscdr1);
388 
389 	switch (port) {
390 	case 0:
391 		clk_sel = MXC_CCM_CSCMR1_ESDHC1_MSHC1_CLK_SEL_RD(cscmr1);
392 		pred = MXC_CCM_CSCDR1_ESDHC1_MSHC1_CLK_PRED_RD(cscdr1);
393 		podf = MXC_CCM_CSCDR1_ESDHC1_MSHC1_CLK_PODF_RD(cscdr1);
394 		break;
395 	case 1:
396 		clk_sel = MXC_CCM_CSCMR1_ESDHC2_MSHC2_CLK_SEL_RD(cscmr1);
397 		pred = MXC_CCM_CSCDR1_ESDHC2_MSHC2_CLK_PRED_RD(cscdr1);
398 		podf = MXC_CCM_CSCDR1_ESDHC2_MSHC2_CLK_PODF_RD(cscdr1);
399 		break;
400 	case 2:
401 		if (cscmr1 & MXC_CCM_CSCMR1_ESDHC3_CLK_SEL)
402 			return get_esdhc_clk(1);
403 		else
404 			return get_esdhc_clk(0);
405 	case 3:
406 		if (cscmr1 & MXC_CCM_CSCMR1_ESDHC4_CLK_SEL)
407 			return get_esdhc_clk(1);
408 		else
409 			return get_esdhc_clk(0);
410 	default:
411 		break;
412 	}
413 
414 	freq = get_standard_pll_sel_clk(clk_sel) / ((pred + 1) * (podf + 1));
415 	return freq;
416 }
417 
418 static u32 get_axi_a_clk(void)
419 {
420 	u32 cbcdr = readl(&mxc_ccm->cbcdr);
421 	u32 pdf = MXC_CCM_CBCDR_AXI_A_PODF_RD(cbcdr);
422 
423 	return  get_periph_clk() / (pdf + 1);
424 }
425 
426 static u32 get_axi_b_clk(void)
427 {
428 	u32 cbcdr = readl(&mxc_ccm->cbcdr);
429 	u32 pdf = MXC_CCM_CBCDR_AXI_B_PODF_RD(cbcdr);
430 
431 	return  get_periph_clk() / (pdf + 1);
432 }
433 
434 static u32 get_emi_slow_clk(void)
435 {
436 	u32 cbcdr = readl(&mxc_ccm->cbcdr);
437 	u32 emi_clk_sel = cbcdr & MXC_CCM_CBCDR_EMI_CLK_SEL;
438 	u32 pdf = MXC_CCM_CBCDR_EMI_PODF_RD(cbcdr);
439 
440 	if (emi_clk_sel)
441 		return  get_ahb_clk() / (pdf + 1);
442 
443 	return  get_periph_clk() / (pdf + 1);
444 }
445 
446 static u32 get_ddr_clk(void)
447 {
448 	u32 ret_val = 0;
449 	u32 cbcmr = readl(&mxc_ccm->cbcmr);
450 	u32 ddr_clk_sel = MXC_CCM_CBCMR_DDR_CLK_SEL_RD(cbcmr);
451 #ifdef CONFIG_MX51
452 	u32 cbcdr = readl(&mxc_ccm->cbcdr);
453 	if (cbcdr & MXC_CCM_CBCDR_DDR_HIFREQ_SEL) {
454 		u32 ddr_clk_podf = MXC_CCM_CBCDR_DDR_PODF_RD(cbcdr);
455 
456 		ret_val = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
457 		ret_val /= ddr_clk_podf + 1;
458 
459 		return ret_val;
460 	}
461 #endif
462 	switch (ddr_clk_sel) {
463 	case 0:
464 		ret_val = get_axi_a_clk();
465 		break;
466 	case 1:
467 		ret_val = get_axi_b_clk();
468 		break;
469 	case 2:
470 		ret_val = get_emi_slow_clk();
471 		break;
472 	case 3:
473 		ret_val = get_ahb_clk();
474 		break;
475 	default:
476 		break;
477 	}
478 
479 	return ret_val;
480 }
481 
482 /*
483  * The API of get mxc clocks.
484  */
485 unsigned int mxc_get_clock(enum mxc_clock clk)
486 {
487 	switch (clk) {
488 	case MXC_ARM_CLK:
489 		return get_mcu_main_clk();
490 	case MXC_AHB_CLK:
491 		return get_ahb_clk();
492 	case MXC_IPG_CLK:
493 		return get_ipg_clk();
494 	case MXC_IPG_PERCLK:
495 	case MXC_I2C_CLK:
496 		return get_ipg_per_clk();
497 	case MXC_UART_CLK:
498 		return get_uart_clk();
499 	case MXC_CSPI_CLK:
500 		return imx_get_cspiclk();
501 	case MXC_ESDHC_CLK:
502 		return get_esdhc_clk(0);
503 	case MXC_ESDHC2_CLK:
504 		return get_esdhc_clk(1);
505 	case MXC_ESDHC3_CLK:
506 		return get_esdhc_clk(2);
507 	case MXC_ESDHC4_CLK:
508 		return get_esdhc_clk(3);
509 	case MXC_FEC_CLK:
510 		return get_ipg_clk();
511 	case MXC_SATA_CLK:
512 		return get_ahb_clk();
513 	case MXC_DDR_CLK:
514 		return get_ddr_clk();
515 	default:
516 		break;
517 	}
518 	return -EINVAL;
519 }
520 
521 u32 imx_get_uartclk(void)
522 {
523 	return get_uart_clk();
524 }
525 
526 u32 imx_get_fecclk(void)
527 {
528 	return get_ipg_clk();
529 }
530 
531 static int gcd(int m, int n)
532 {
533 	int t;
534 	while (m > 0) {
535 		if (n > m) {
536 			t = m;
537 			m = n;
538 			n = t;
539 		} /* swap */
540 		m -= n;
541 	}
542 	return n;
543 }
544 
545 /*
546  * This is to calculate various parameters based on reference clock and
547  * targeted clock based on the equation:
548  *      t_clk = 2*ref_freq*(mfi + mfn/(mfd+1))/(pd+1)
549  * This calculation is based on a fixed MFD value for simplicity.
550  */
551 static int calc_pll_params(u32 ref, u32 target, struct pll_param *pll)
552 {
553 	u64 pd, mfi = 1, mfn, mfd, t1;
554 	u32 n_target = target;
555 	u32 n_ref = ref, i;
556 
557 	/*
558 	 * Make sure targeted freq is in the valid range.
559 	 * Otherwise the following calculation might be wrong!!!
560 	 */
561 	if (n_target < PLL_FREQ_MIN(ref) ||
562 		n_target > PLL_FREQ_MAX(ref)) {
563 		printf("Targeted peripheral clock should be"
564 			"within [%d - %d]\n",
565 			PLL_FREQ_MIN(ref) / SZ_DEC_1M,
566 			PLL_FREQ_MAX(ref) / SZ_DEC_1M);
567 		return -EINVAL;
568 	}
569 
570 	for (i = 0; i < ARRAY_SIZE(fixed_mfd); i++) {
571 		if (fixed_mfd[i].ref_clk_hz == ref) {
572 			mfd = fixed_mfd[i].mfd;
573 			break;
574 		}
575 	}
576 
577 	if (i == ARRAY_SIZE(fixed_mfd))
578 		return -EINVAL;
579 
580 	/* Use n_target and n_ref to avoid overflow */
581 	for (pd = 1; pd <= PLL_PD_MAX; pd++) {
582 		t1 = n_target * pd;
583 		do_div(t1, (4 * n_ref));
584 		mfi = t1;
585 		if (mfi > PLL_MFI_MAX)
586 			return -EINVAL;
587 		else if (mfi < 5)
588 			continue;
589 		break;
590 	}
591 	/*
592 	 * Now got pd and mfi already
593 	 *
594 	 * mfn = (((n_target * pd) / 4 - n_ref * mfi) * mfd) / n_ref;
595 	 */
596 	t1 = n_target * pd;
597 	do_div(t1, 4);
598 	t1 -= n_ref * mfi;
599 	t1 *= mfd;
600 	do_div(t1, n_ref);
601 	mfn = t1;
602 	debug("ref=%d, target=%d, pd=%d," "mfi=%d,mfn=%d, mfd=%d\n",
603 		ref, n_target, (u32)pd, (u32)mfi, (u32)mfn, (u32)mfd);
604 	i = 1;
605 	if (mfn != 0)
606 		i = gcd(mfd, mfn);
607 	pll->pd = (u32)pd;
608 	pll->mfi = (u32)mfi;
609 	do_div(mfn, i);
610 	pll->mfn = (u32)mfn;
611 	do_div(mfd, i);
612 	pll->mfd = (u32)mfd;
613 
614 	return 0;
615 }
616 
617 #define calc_div(tgt_clk, src_clk, limit) ({		\
618 		u32 v = 0;				\
619 		if (((src_clk) % (tgt_clk)) <= 100)	\
620 			v = (src_clk) / (tgt_clk);	\
621 		else					\
622 			v = ((src_clk) / (tgt_clk)) + 1;\
623 		if (v > limit)				\
624 			v = limit;			\
625 		(v - 1);				\
626 	})
627 
628 #define CHANGE_PLL_SETTINGS(pll, pd, fi, fn, fd) \
629 	{	\
630 		writel(0x1232, &pll->ctrl);		\
631 		writel(0x2, &pll->config);		\
632 		writel((((pd) - 1) << 0) | ((fi) << 4),	\
633 			&pll->op);			\
634 		writel(fn, &(pll->mfn));		\
635 		writel((fd) - 1, &pll->mfd);		\
636 		writel((((pd) - 1) << 0) | ((fi) << 4),	\
637 			&pll->hfs_op);			\
638 		writel(fn, &pll->hfs_mfn);		\
639 		writel((fd) - 1, &pll->hfs_mfd);	\
640 		writel(0x1232, &pll->ctrl);		\
641 		while (!readl(&pll->ctrl) & 0x1)	\
642 			;\
643 	}
644 
645 static int config_pll_clk(enum pll_clocks index, struct pll_param *pll_param)
646 {
647 	u32 ccsr = readl(&mxc_ccm->ccsr);
648 	struct mxc_pll_reg *pll = mxc_plls[index];
649 
650 	switch (index) {
651 	case PLL1_CLOCK:
652 		/* Switch ARM to PLL2 clock */
653 		writel(ccsr | MXC_CCM_CCSR_PLL1_SW_CLK_SEL,
654 				&mxc_ccm->ccsr);
655 		CHANGE_PLL_SETTINGS(pll, pll_param->pd,
656 					pll_param->mfi, pll_param->mfn,
657 					pll_param->mfd);
658 		/* Switch back */
659 		writel(ccsr & ~MXC_CCM_CCSR_PLL1_SW_CLK_SEL,
660 				&mxc_ccm->ccsr);
661 		break;
662 	case PLL2_CLOCK:
663 		/* Switch to pll2 bypass clock */
664 		writel(ccsr | MXC_CCM_CCSR_PLL2_SW_CLK_SEL,
665 				&mxc_ccm->ccsr);
666 		CHANGE_PLL_SETTINGS(pll, pll_param->pd,
667 					pll_param->mfi, pll_param->mfn,
668 					pll_param->mfd);
669 		/* Switch back */
670 		writel(ccsr & ~MXC_CCM_CCSR_PLL2_SW_CLK_SEL,
671 				&mxc_ccm->ccsr);
672 		break;
673 	case PLL3_CLOCK:
674 		/* Switch to pll3 bypass clock */
675 		writel(ccsr | MXC_CCM_CCSR_PLL3_SW_CLK_SEL,
676 				&mxc_ccm->ccsr);
677 		CHANGE_PLL_SETTINGS(pll, pll_param->pd,
678 					pll_param->mfi, pll_param->mfn,
679 					pll_param->mfd);
680 		/* Switch back */
681 		writel(ccsr & ~MXC_CCM_CCSR_PLL3_SW_CLK_SEL,
682 				&mxc_ccm->ccsr);
683 		break;
684 #ifdef CONFIG_MX53
685 	case PLL4_CLOCK:
686 		/* Switch to pll4 bypass clock */
687 		writel(ccsr | MXC_CCM_CCSR_PLL4_SW_CLK_SEL,
688 				&mxc_ccm->ccsr);
689 		CHANGE_PLL_SETTINGS(pll, pll_param->pd,
690 					pll_param->mfi, pll_param->mfn,
691 					pll_param->mfd);
692 		/* Switch back */
693 		writel(ccsr & ~MXC_CCM_CCSR_PLL4_SW_CLK_SEL,
694 				&mxc_ccm->ccsr);
695 		break;
696 #endif
697 	default:
698 		return -EINVAL;
699 	}
700 
701 	return 0;
702 }
703 
704 /* Config CPU clock */
705 static int config_core_clk(u32 ref, u32 freq)
706 {
707 	int ret = 0;
708 	struct pll_param pll_param;
709 
710 	memset(&pll_param, 0, sizeof(struct pll_param));
711 
712 	/* The case that periph uses PLL1 is not considered here */
713 	ret = calc_pll_params(ref, freq, &pll_param);
714 	if (ret != 0) {
715 		printf("Error:Can't find pll parameters: %d\n", ret);
716 		return ret;
717 	}
718 
719 	return config_pll_clk(PLL1_CLOCK, &pll_param);
720 }
721 
722 static int config_nfc_clk(u32 nfc_clk)
723 {
724 	u32 parent_rate = get_emi_slow_clk();
725 	u32 div;
726 
727 	if (nfc_clk == 0)
728 		return -EINVAL;
729 	div = parent_rate / nfc_clk;
730 	if (div == 0)
731 		div++;
732 	if (parent_rate / div > NFC_CLK_MAX)
733 		div++;
734 	clrsetbits_le32(&mxc_ccm->cbcdr,
735 			MXC_CCM_CBCDR_NFC_PODF_MASK,
736 			MXC_CCM_CBCDR_NFC_PODF(div - 1));
737 	while (readl(&mxc_ccm->cdhipr) != 0)
738 		;
739 	return 0;
740 }
741 
742 void enable_nfc_clk(unsigned char enable)
743 {
744 	unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
745 
746 	clrsetbits_le32(&mxc_ccm->CCGR5,
747 		MXC_CCM_CCGR5_EMI_ENFC(MXC_CCM_CCGR_CG_MASK),
748 		MXC_CCM_CCGR5_EMI_ENFC(cg));
749 }
750 
751 #ifdef CONFIG_FSL_IIM
752 void enable_efuse_prog_supply(bool enable)
753 {
754 	if (enable)
755 		setbits_le32(&mxc_ccm->cgpr,
756 			     MXC_CCM_CGPR_EFUSE_PROG_SUPPLY_GATE);
757 	else
758 		clrbits_le32(&mxc_ccm->cgpr,
759 			     MXC_CCM_CGPR_EFUSE_PROG_SUPPLY_GATE);
760 }
761 #endif
762 
763 /* Config main_bus_clock for periphs */
764 static int config_periph_clk(u32 ref, u32 freq)
765 {
766 	int ret = 0;
767 	struct pll_param pll_param;
768 
769 	memset(&pll_param, 0, sizeof(struct pll_param));
770 
771 	if (readl(&mxc_ccm->cbcdr) & MXC_CCM_CBCDR_PERIPH_CLK_SEL) {
772 		ret = calc_pll_params(ref, freq, &pll_param);
773 		if (ret != 0) {
774 			printf("Error:Can't find pll parameters: %d\n",
775 				ret);
776 			return ret;
777 		}
778 		switch (MXC_CCM_CBCMR_PERIPH_CLK_SEL_RD(
779 				readl(&mxc_ccm->cbcmr))) {
780 		case 0:
781 			return config_pll_clk(PLL1_CLOCK, &pll_param);
782 			break;
783 		case 1:
784 			return config_pll_clk(PLL3_CLOCK, &pll_param);
785 			break;
786 		default:
787 			return -EINVAL;
788 		}
789 	}
790 
791 	return 0;
792 }
793 
794 static int config_ddr_clk(u32 emi_clk)
795 {
796 	u32 clk_src;
797 	s32 shift = 0, clk_sel, div = 1;
798 	u32 cbcmr = readl(&mxc_ccm->cbcmr);
799 
800 	if (emi_clk > MAX_DDR_CLK) {
801 		printf("Warning:DDR clock should not exceed %d MHz\n",
802 			MAX_DDR_CLK / SZ_DEC_1M);
803 		emi_clk = MAX_DDR_CLK;
804 	}
805 
806 	clk_src = get_periph_clk();
807 	/* Find DDR clock input */
808 	clk_sel = MXC_CCM_CBCMR_DDR_CLK_SEL_RD(cbcmr);
809 	switch (clk_sel) {
810 	case 0:
811 		shift = 16;
812 		break;
813 	case 1:
814 		shift = 19;
815 		break;
816 	case 2:
817 		shift = 22;
818 		break;
819 	case 3:
820 		shift = 10;
821 		break;
822 	default:
823 		return -EINVAL;
824 	}
825 
826 	if ((clk_src % emi_clk) < 10000000)
827 		div = clk_src / emi_clk;
828 	else
829 		div = (clk_src / emi_clk) + 1;
830 	if (div > 8)
831 		div = 8;
832 
833 	clrsetbits_le32(&mxc_ccm->cbcdr, 0x7 << shift, (div - 1) << shift);
834 	while (readl(&mxc_ccm->cdhipr) != 0)
835 		;
836 	writel(0x0, &mxc_ccm->ccdr);
837 
838 	return 0;
839 }
840 
841 #ifdef CONFIG_MX53
842 static int config_ldb_clk(u32 ref, u32 freq)
843 {
844 	int ret = 0;
845 	struct pll_param pll_param;
846 
847 	memset(&pll_param, 0, sizeof(struct pll_param));
848 
849 	ret = calc_pll_params(ref, freq, &pll_param);
850 	if (ret != 0) {
851 		printf("Error:Can't find pll parameters: %d\n",
852 			ret);
853 		return ret;
854 	}
855 
856 	return config_pll_clk(PLL4_CLOCK, &pll_param);
857 }
858 #else
859 static int config_ldb_clk(u32 ref, u32 freq)
860 {
861 	/* Platform not supported */
862 	return -EINVAL;
863 }
864 #endif
865 
866 /*
867  * This function assumes the expected core clock has to be changed by
868  * modifying the PLL. This is NOT true always but for most of the times,
869  * it is. So it assumes the PLL output freq is the same as the expected
870  * core clock (presc=1) unless the core clock is less than PLL_FREQ_MIN.
871  * In the latter case, it will try to increase the presc value until
872  * (presc*core_clk) is greater than PLL_FREQ_MIN. It then makes call to
873  * calc_pll_params() and obtains the values of PD, MFI,MFN, MFD based
874  * on the targeted PLL and reference input clock to the PLL. Lastly,
875  * it sets the register based on these values along with the dividers.
876  * Note 1) There is no value checking for the passed-in divider values
877  *         so the caller has to make sure those values are sensible.
878  *      2) Also adjust the NFC divider such that the NFC clock doesn't
879  *         exceed NFC_CLK_MAX.
880  *      3) IPU HSP clock is independent of AHB clock. Even it can go up to
881  *         177MHz for higher voltage, this function fixes the max to 133MHz.
882  *      4) This function should not have allowed diag_printf() calls since
883  *         the serial driver has been stoped. But leave then here to allow
884  *         easy debugging by NOT calling the cyg_hal_plf_serial_stop().
885  */
886 int mxc_set_clock(u32 ref, u32 freq, enum mxc_clock clk)
887 {
888 	freq *= SZ_DEC_1M;
889 
890 	switch (clk) {
891 	case MXC_ARM_CLK:
892 		if (config_core_clk(ref, freq))
893 			return -EINVAL;
894 		break;
895 	case MXC_PERIPH_CLK:
896 		if (config_periph_clk(ref, freq))
897 			return -EINVAL;
898 		break;
899 	case MXC_DDR_CLK:
900 		if (config_ddr_clk(freq))
901 			return -EINVAL;
902 		break;
903 	case MXC_NFC_CLK:
904 		if (config_nfc_clk(freq))
905 			return -EINVAL;
906 		break;
907 	case MXC_LDB_CLK:
908 		if (config_ldb_clk(ref, freq))
909 			return -EINVAL;
910 		break;
911 	default:
912 		printf("Warning:Unsupported or invalid clock type\n");
913 	}
914 
915 	return 0;
916 }
917 
918 #ifdef CONFIG_MX53
919 /*
920  * The clock for the external interface can be set to use internal clock
921  * if fuse bank 4, row 3, bit 2 is set.
922  * This is an undocumented feature and it was confirmed by Freescale's support:
923  * Fuses (but not pins) may be used to configure SATA clocks.
924  * Particularly the i.MX53 Fuse_Map contains the next information
925  * about configuring SATA clocks :  SATA_ALT_REF_CLK[1:0] (offset 0x180C)
926  * '00' - 100MHz (External)
927  * '01' - 50MHz (External)
928  * '10' - 120MHz, internal (USB PHY)
929  * '11' - Reserved
930 */
931 void mxc_set_sata_internal_clock(void)
932 {
933 	u32 *tmp_base =
934 		(u32 *)(IIM_BASE_ADDR + 0x180c);
935 
936 	set_usb_phy_clk();
937 
938 	clrsetbits_le32(tmp_base, 0x6, 0x4);
939 }
940 #endif
941 
942 #ifndef CONFIG_SPL_BUILD
943 /*
944  * Dump some core clockes.
945  */
946 static int do_mx5_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
947 {
948 	u32 freq;
949 
950 	freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
951 	printf("PLL1       %8d MHz\n", freq / 1000000);
952 	freq = decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
953 	printf("PLL2       %8d MHz\n", freq / 1000000);
954 	freq = decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
955 	printf("PLL3       %8d MHz\n", freq / 1000000);
956 #ifdef	CONFIG_MX53
957 	freq = decode_pll(mxc_plls[PLL4_CLOCK], MXC_HCLK);
958 	printf("PLL4       %8d MHz\n", freq / 1000000);
959 #endif
960 
961 	printf("\n");
962 	printf("AHB        %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000);
963 	printf("IPG        %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000);
964 	printf("IPG PERCLK %8d kHz\n", mxc_get_clock(MXC_IPG_PERCLK) / 1000);
965 	printf("DDR        %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000);
966 #ifdef CONFIG_MXC_SPI
967 	printf("CSPI       %8d kHz\n", mxc_get_clock(MXC_CSPI_CLK) / 1000);
968 #endif
969 	return 0;
970 }
971 
972 /***************************************************/
973 
974 U_BOOT_CMD(
975 	clocks,	CONFIG_SYS_MAXARGS, 1, do_mx5_showclocks,
976 	"display clocks",
977 	""
978 );
979 #endif
980