xref: /openbmc/u-boot/arch/arm/mach-imx/imx8m/clock.c (revision 224f7452)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2017 NXP
4  *
5  * Peng Fan <peng.fan@nxp.com>
6  */
7 
8 #include <common.h>
9 #include <asm/arch/clock.h>
10 #include <asm/arch/imx-regs.h>
11 #include <asm/io.h>
12 #include <asm/arch/sys_proto.h>
13 #include <errno.h>
14 #include <linux/iopoll.h>
15 
16 static struct anamix_pll *ana_pll = (struct anamix_pll *)ANATOP_BASE_ADDR;
17 
18 static u32 decode_frac_pll(enum clk_root_src frac_pll)
19 {
20 	u32 pll_cfg0, pll_cfg1, pllout;
21 	u32 pll_refclk_sel, pll_refclk;
22 	u32 divr_val, divq_val, divf_val, divff, divfi;
23 	u32 pllout_div_shift, pllout_div_mask, pllout_div;
24 
25 	switch (frac_pll) {
26 	case ARM_PLL_CLK:
27 		pll_cfg0 = readl(&ana_pll->arm_pll_cfg0);
28 		pll_cfg1 = readl(&ana_pll->arm_pll_cfg1);
29 		pllout_div_shift = HW_FRAC_ARM_PLL_DIV_SHIFT;
30 		pllout_div_mask = HW_FRAC_ARM_PLL_DIV_MASK;
31 		break;
32 	default:
33 		printf("Frac PLL %d not supporte\n", frac_pll);
34 		return 0;
35 	}
36 
37 	pllout_div = readl(&ana_pll->frac_pllout_div_cfg);
38 	pllout_div = (pllout_div & pllout_div_mask) >> pllout_div_shift;
39 
40 	/* Power down */
41 	if (pll_cfg0 & FRAC_PLL_PD_MASK)
42 		return 0;
43 
44 	/* output not enabled */
45 	if ((pll_cfg0 & FRAC_PLL_CLKE_MASK) == 0)
46 		return 0;
47 
48 	pll_refclk_sel = pll_cfg0 & FRAC_PLL_REFCLK_SEL_MASK;
49 
50 	if (pll_refclk_sel == FRAC_PLL_REFCLK_SEL_OSC_25M)
51 		pll_refclk = 25000000u;
52 	else if (pll_refclk_sel == FRAC_PLL_REFCLK_SEL_OSC_27M)
53 		pll_refclk = 27000000u;
54 	else if (pll_refclk_sel == FRAC_PLL_REFCLK_SEL_HDMI_PHY_27M)
55 		pll_refclk = 27000000u;
56 	else
57 		pll_refclk = 0;
58 
59 	if (pll_cfg0 & FRAC_PLL_BYPASS_MASK)
60 		return pll_refclk;
61 
62 	divr_val = (pll_cfg0 & FRAC_PLL_REFCLK_DIV_VAL_MASK) >>
63 		FRAC_PLL_REFCLK_DIV_VAL_SHIFT;
64 	divq_val = pll_cfg0 & FRAC_PLL_OUTPUT_DIV_VAL_MASK;
65 
66 	divff = (pll_cfg1 & FRAC_PLL_FRAC_DIV_CTL_MASK) >>
67 		FRAC_PLL_FRAC_DIV_CTL_SHIFT;
68 	divfi = pll_cfg1 & FRAC_PLL_INT_DIV_CTL_MASK;
69 
70 	divf_val = 1 + divfi + divff / (1 << 24);
71 
72 	pllout = pll_refclk / (divr_val + 1) * 8 * divf_val /
73 		((divq_val + 1) * 2);
74 
75 	return pllout / (pllout_div + 1);
76 }
77 
78 static u32 decode_sscg_pll(enum clk_root_src sscg_pll)
79 {
80 	u32 pll_cfg0, pll_cfg1, pll_cfg2;
81 	u32 pll_refclk_sel, pll_refclk;
82 	u32 divr1, divr2, divf1, divf2, divq, div;
83 	u32 sse;
84 	u32 pll_clke;
85 	u32 pllout_div_shift, pllout_div_mask, pllout_div;
86 	u32 pllout;
87 
88 	switch (sscg_pll) {
89 	case SYSTEM_PLL1_800M_CLK:
90 	case SYSTEM_PLL1_400M_CLK:
91 	case SYSTEM_PLL1_266M_CLK:
92 	case SYSTEM_PLL1_200M_CLK:
93 	case SYSTEM_PLL1_160M_CLK:
94 	case SYSTEM_PLL1_133M_CLK:
95 	case SYSTEM_PLL1_100M_CLK:
96 	case SYSTEM_PLL1_80M_CLK:
97 	case SYSTEM_PLL1_40M_CLK:
98 		pll_cfg0 = readl(&ana_pll->sys_pll1_cfg0);
99 		pll_cfg1 = readl(&ana_pll->sys_pll1_cfg1);
100 		pll_cfg2 = readl(&ana_pll->sys_pll1_cfg2);
101 		pllout_div_shift = HW_SSCG_SYSTEM_PLL1_DIV_SHIFT;
102 		pllout_div_mask = HW_SSCG_SYSTEM_PLL1_DIV_MASK;
103 		break;
104 	case SYSTEM_PLL2_1000M_CLK:
105 	case SYSTEM_PLL2_500M_CLK:
106 	case SYSTEM_PLL2_333M_CLK:
107 	case SYSTEM_PLL2_250M_CLK:
108 	case SYSTEM_PLL2_200M_CLK:
109 	case SYSTEM_PLL2_166M_CLK:
110 	case SYSTEM_PLL2_125M_CLK:
111 	case SYSTEM_PLL2_100M_CLK:
112 	case SYSTEM_PLL2_50M_CLK:
113 		pll_cfg0 = readl(&ana_pll->sys_pll2_cfg0);
114 		pll_cfg1 = readl(&ana_pll->sys_pll2_cfg1);
115 		pll_cfg2 = readl(&ana_pll->sys_pll2_cfg2);
116 		pllout_div_shift = HW_SSCG_SYSTEM_PLL2_DIV_SHIFT;
117 		pllout_div_mask = HW_SSCG_SYSTEM_PLL2_DIV_MASK;
118 		break;
119 	case SYSTEM_PLL3_CLK:
120 		pll_cfg0 = readl(&ana_pll->sys_pll3_cfg0);
121 		pll_cfg1 = readl(&ana_pll->sys_pll3_cfg1);
122 		pll_cfg2 = readl(&ana_pll->sys_pll3_cfg2);
123 		pllout_div_shift = HW_SSCG_SYSTEM_PLL3_DIV_SHIFT;
124 		pllout_div_mask = HW_SSCG_SYSTEM_PLL3_DIV_MASK;
125 		break;
126 	case DRAM_PLL1_CLK:
127 		pll_cfg0 = readl(&ana_pll->dram_pll_cfg0);
128 		pll_cfg1 = readl(&ana_pll->dram_pll_cfg1);
129 		pll_cfg2 = readl(&ana_pll->dram_pll_cfg2);
130 		pllout_div_shift = HW_SSCG_DRAM_PLL_DIV_SHIFT;
131 		pllout_div_mask = HW_SSCG_DRAM_PLL_DIV_MASK;
132 		break;
133 	default:
134 		printf("sscg pll %d not supporte\n", sscg_pll);
135 		return 0;
136 	}
137 
138 	switch (sscg_pll) {
139 	case DRAM_PLL1_CLK:
140 		pll_clke = SSCG_PLL_DRAM_PLL_CLKE_MASK;
141 		div = 1;
142 		break;
143 	case SYSTEM_PLL3_CLK:
144 		pll_clke = SSCG_PLL_PLL3_CLKE_MASK;
145 		div = 1;
146 		break;
147 	case SYSTEM_PLL2_1000M_CLK:
148 	case SYSTEM_PLL1_800M_CLK:
149 		pll_clke = SSCG_PLL_CLKE_MASK;
150 		div = 1;
151 		break;
152 	case SYSTEM_PLL2_500M_CLK:
153 	case SYSTEM_PLL1_400M_CLK:
154 		pll_clke = SSCG_PLL_DIV2_CLKE_MASK;
155 		div = 2;
156 		break;
157 	case SYSTEM_PLL2_333M_CLK:
158 	case SYSTEM_PLL1_266M_CLK:
159 		pll_clke = SSCG_PLL_DIV3_CLKE_MASK;
160 		div = 3;
161 		break;
162 	case SYSTEM_PLL2_250M_CLK:
163 	case SYSTEM_PLL1_200M_CLK:
164 		pll_clke = SSCG_PLL_DIV4_CLKE_MASK;
165 		div = 4;
166 		break;
167 	case SYSTEM_PLL2_200M_CLK:
168 	case SYSTEM_PLL1_160M_CLK:
169 		pll_clke = SSCG_PLL_DIV5_CLKE_MASK;
170 		div = 5;
171 		break;
172 	case SYSTEM_PLL2_166M_CLK:
173 	case SYSTEM_PLL1_133M_CLK:
174 		pll_clke = SSCG_PLL_DIV6_CLKE_MASK;
175 		div = 6;
176 		break;
177 	case SYSTEM_PLL2_125M_CLK:
178 	case SYSTEM_PLL1_100M_CLK:
179 		pll_clke = SSCG_PLL_DIV8_CLKE_MASK;
180 		div = 8;
181 		break;
182 	case SYSTEM_PLL2_100M_CLK:
183 	case SYSTEM_PLL1_80M_CLK:
184 		pll_clke = SSCG_PLL_DIV10_CLKE_MASK;
185 		div = 10;
186 		break;
187 	case SYSTEM_PLL2_50M_CLK:
188 	case SYSTEM_PLL1_40M_CLK:
189 		pll_clke = SSCG_PLL_DIV20_CLKE_MASK;
190 		div = 20;
191 		break;
192 	default:
193 		printf("sscg pll %d not supporte\n", sscg_pll);
194 		return 0;
195 	}
196 
197 	/* Power down */
198 	if (pll_cfg0 & SSCG_PLL_PD_MASK)
199 		return 0;
200 
201 	/* output not enabled */
202 	if ((pll_cfg0 & pll_clke) == 0)
203 		return 0;
204 
205 	pllout_div = readl(&ana_pll->sscg_pllout_div_cfg);
206 	pllout_div = (pllout_div & pllout_div_mask) >> pllout_div_shift;
207 
208 	pll_refclk_sel = pll_cfg0 & SSCG_PLL_REFCLK_SEL_MASK;
209 
210 	if (pll_refclk_sel == SSCG_PLL_REFCLK_SEL_OSC_25M)
211 		pll_refclk = 25000000u;
212 	else if (pll_refclk_sel == SSCG_PLL_REFCLK_SEL_OSC_27M)
213 		pll_refclk = 27000000u;
214 	else if (pll_refclk_sel == SSCG_PLL_REFCLK_SEL_HDMI_PHY_27M)
215 		pll_refclk = 27000000u;
216 	else
217 		pll_refclk = 0;
218 
219 	/* We assume bypass1/2 are the same value */
220 	if ((pll_cfg0 & SSCG_PLL_BYPASS1_MASK) ||
221 	    (pll_cfg0 & SSCG_PLL_BYPASS2_MASK))
222 		return pll_refclk;
223 
224 	divr1 = (pll_cfg2 & SSCG_PLL_REF_DIVR1_MASK) >>
225 		SSCG_PLL_REF_DIVR1_SHIFT;
226 	divr2 = (pll_cfg2 & SSCG_PLL_REF_DIVR2_MASK) >>
227 		SSCG_PLL_REF_DIVR2_SHIFT;
228 	divf1 = (pll_cfg2 & SSCG_PLL_FEEDBACK_DIV_F1_MASK) >>
229 		SSCG_PLL_FEEDBACK_DIV_F1_SHIFT;
230 	divf2 = (pll_cfg2 & SSCG_PLL_FEEDBACK_DIV_F2_MASK) >>
231 		SSCG_PLL_FEEDBACK_DIV_F2_SHIFT;
232 	divq = (pll_cfg2 & SSCG_PLL_OUTPUT_DIV_VAL_MASK) >>
233 		SSCG_PLL_OUTPUT_DIV_VAL_SHIFT;
234 	sse = pll_cfg1 & SSCG_PLL_SSE_MASK;
235 
236 	if (sse)
237 		sse = 8;
238 	else
239 		sse = 2;
240 
241 	pllout = pll_refclk / (divr1 + 1) * sse * (divf1 + 1) /
242 		(divr2 + 1) * (divf2 + 1) / (divq + 1);
243 
244 	return pllout / (pllout_div + 1) / div;
245 }
246 
247 static u32 get_root_src_clk(enum clk_root_src root_src)
248 {
249 	switch (root_src) {
250 	case OSC_25M_CLK:
251 		return 25000000;
252 	case OSC_27M_CLK:
253 		return 25000000;
254 	case OSC_32K_CLK:
255 		return 32000;
256 	case ARM_PLL_CLK:
257 		return decode_frac_pll(root_src);
258 	case SYSTEM_PLL1_800M_CLK:
259 	case SYSTEM_PLL1_400M_CLK:
260 	case SYSTEM_PLL1_266M_CLK:
261 	case SYSTEM_PLL1_200M_CLK:
262 	case SYSTEM_PLL1_160M_CLK:
263 	case SYSTEM_PLL1_133M_CLK:
264 	case SYSTEM_PLL1_100M_CLK:
265 	case SYSTEM_PLL1_80M_CLK:
266 	case SYSTEM_PLL1_40M_CLK:
267 	case SYSTEM_PLL2_1000M_CLK:
268 	case SYSTEM_PLL2_500M_CLK:
269 	case SYSTEM_PLL2_333M_CLK:
270 	case SYSTEM_PLL2_250M_CLK:
271 	case SYSTEM_PLL2_200M_CLK:
272 	case SYSTEM_PLL2_166M_CLK:
273 	case SYSTEM_PLL2_125M_CLK:
274 	case SYSTEM_PLL2_100M_CLK:
275 	case SYSTEM_PLL2_50M_CLK:
276 	case SYSTEM_PLL3_CLK:
277 		return decode_sscg_pll(root_src);
278 	default:
279 		return 0;
280 	}
281 
282 	return 0;
283 }
284 
285 static u32 get_root_clk(enum clk_root_index clock_id)
286 {
287 	enum clk_root_src root_src;
288 	u32 post_podf, pre_podf, root_src_clk;
289 
290 	if (clock_root_enabled(clock_id) <= 0)
291 		return 0;
292 
293 	if (clock_get_prediv(clock_id, &pre_podf) < 0)
294 		return 0;
295 
296 	if (clock_get_postdiv(clock_id, &post_podf) < 0)
297 		return 0;
298 
299 	if (clock_get_src(clock_id, &root_src) < 0)
300 		return 0;
301 
302 	root_src_clk = get_root_src_clk(root_src);
303 
304 	return root_src_clk / (post_podf + 1) / (pre_podf + 1);
305 }
306 
307 #ifdef CONFIG_MXC_OCOTP
308 void enable_ocotp_clk(unsigned char enable)
309 {
310 	clock_enable(CCGR_OCOTP, !!enable);
311 }
312 #endif
313 
314 int enable_i2c_clk(unsigned char enable, unsigned int i2c_num)
315 {
316 	/* 0 - 3 is valid i2c num */
317 	if (i2c_num > 3)
318 		return -EINVAL;
319 
320 	clock_enable(CCGR_I2C1 + i2c_num, !!enable);
321 
322 	return 0;
323 }
324 
325 unsigned int mxc_get_clock(enum clk_root_index clk)
326 {
327 	u32 val;
328 
329 	if (clk >= CLK_ROOT_MAX)
330 		return 0;
331 
332 	if (clk == MXC_ARM_CLK)
333 		return get_root_clk(ARM_A53_CLK_ROOT);
334 
335 	if (clk == MXC_IPG_CLK) {
336 		clock_get_target_val(IPG_CLK_ROOT, &val);
337 		val = val & 0x3;
338 		return get_root_clk(AHB_CLK_ROOT) / (val + 1);
339 	}
340 
341 	return get_root_clk(clk);
342 }
343 
344 u32 imx_get_uartclk(void)
345 {
346 	return mxc_get_clock(UART1_CLK_ROOT);
347 }
348 
349 void mxs_set_lcdclk(u32 base_addr, u32 freq)
350 {
351 	/*
352 	 * LCDIF_PIXEL_CLK: select 800MHz root clock,
353 	 * select pre divider 8, output is 100 MHz
354 	 */
355 	clock_set_target_val(LCDIF_PIXEL_CLK_ROOT, CLK_ROOT_ON |
356 			     CLK_ROOT_SOURCE_SEL(4) |
357 			     CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV8));
358 }
359 
360 void init_wdog_clk(void)
361 {
362 	clock_enable(CCGR_WDOG1, 0);
363 	clock_enable(CCGR_WDOG2, 0);
364 	clock_enable(CCGR_WDOG3, 0);
365 	clock_set_target_val(WDOG_CLK_ROOT, CLK_ROOT_ON |
366 			     CLK_ROOT_SOURCE_SEL(0));
367 	clock_set_target_val(WDOG_CLK_ROOT, CLK_ROOT_ON |
368 			     CLK_ROOT_SOURCE_SEL(0));
369 	clock_set_target_val(WDOG_CLK_ROOT, CLK_ROOT_ON |
370 			     CLK_ROOT_SOURCE_SEL(0));
371 	clock_enable(CCGR_WDOG1, 1);
372 	clock_enable(CCGR_WDOG2, 1);
373 	clock_enable(CCGR_WDOG3, 1);
374 }
375 
376 void init_usb_clk(void)
377 {
378 	if (!is_usb_boot()) {
379 		clock_enable(CCGR_USB_CTRL1, 0);
380 		clock_enable(CCGR_USB_CTRL2, 0);
381 		clock_enable(CCGR_USB_PHY1, 0);
382 		clock_enable(CCGR_USB_PHY2, 0);
383 		/* 500MHz */
384 		clock_set_target_val(USB_BUS_CLK_ROOT, CLK_ROOT_ON |
385 				     CLK_ROOT_SOURCE_SEL(1));
386 		/* 100MHz */
387 		clock_set_target_val(USB_CORE_REF_CLK_ROOT, CLK_ROOT_ON |
388 				     CLK_ROOT_SOURCE_SEL(1));
389 		/* 100MHz */
390 		clock_set_target_val(USB_PHY_REF_CLK_ROOT, CLK_ROOT_ON |
391 				     CLK_ROOT_SOURCE_SEL(1));
392 		clock_enable(CCGR_USB_CTRL1, 1);
393 		clock_enable(CCGR_USB_CTRL2, 1);
394 		clock_enable(CCGR_USB_PHY1, 1);
395 		clock_enable(CCGR_USB_PHY2, 1);
396 	}
397 }
398 
399 void init_uart_clk(u32 index)
400 {
401 	/* Set uart clock root 25M OSC */
402 	switch (index) {
403 	case 0:
404 		clock_enable(CCGR_UART1, 0);
405 		clock_set_target_val(UART1_CLK_ROOT, CLK_ROOT_ON |
406 				     CLK_ROOT_SOURCE_SEL(0));
407 		clock_enable(CCGR_UART1, 1);
408 		return;
409 	case 1:
410 		clock_enable(CCGR_UART2, 0);
411 		clock_set_target_val(UART2_CLK_ROOT, CLK_ROOT_ON |
412 				     CLK_ROOT_SOURCE_SEL(0));
413 		clock_enable(CCGR_UART2, 1);
414 		return;
415 	case 2:
416 		clock_enable(CCGR_UART3, 0);
417 		clock_set_target_val(UART3_CLK_ROOT, CLK_ROOT_ON |
418 				     CLK_ROOT_SOURCE_SEL(0));
419 		clock_enable(CCGR_UART3, 1);
420 		return;
421 	case 3:
422 		clock_enable(CCGR_UART4, 0);
423 		clock_set_target_val(UART4_CLK_ROOT, CLK_ROOT_ON |
424 				     CLK_ROOT_SOURCE_SEL(0));
425 		clock_enable(CCGR_UART4, 1);
426 		return;
427 	default:
428 		printf("Invalid uart index\n");
429 		return;
430 	}
431 }
432 
433 void init_clk_usdhc(u32 index)
434 {
435 	/*
436 	 * set usdhc clock root
437 	 * sys pll1 400M
438 	 */
439 	switch (index) {
440 	case 0:
441 		clock_enable(CCGR_USDHC1, 0);
442 		clock_set_target_val(USDHC1_CLK_ROOT, CLK_ROOT_ON |
443 				     CLK_ROOT_SOURCE_SEL(1) |
444 				     CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2));
445 		clock_enable(CCGR_USDHC1, 1);
446 		return;
447 	case 1:
448 		clock_enable(CCGR_USDHC2, 0);
449 		clock_set_target_val(USDHC2_CLK_ROOT, CLK_ROOT_ON |
450 				     CLK_ROOT_SOURCE_SEL(1) |
451 				     CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2));
452 		clock_enable(CCGR_USDHC2, 1);
453 		return;
454 	default:
455 		printf("Invalid usdhc index\n");
456 		return;
457 	}
458 }
459 
460 int set_clk_qspi(void)
461 {
462 	/*
463 	 * set qspi root
464 	 * sys pll1 100M
465 	 */
466 	clock_enable(CCGR_QSPI, 0);
467 	clock_set_target_val(QSPI_CLK_ROOT, CLK_ROOT_ON |
468 			     CLK_ROOT_SOURCE_SEL(7));
469 	clock_enable(CCGR_QSPI, 1);
470 
471 	return 0;
472 }
473 
474 #ifdef CONFIG_FEC_MXC
475 int set_clk_enet(enum enet_freq type)
476 {
477 	u32 target;
478 	u32 enet1_ref;
479 
480 	switch (type) {
481 	case ENET_125MHZ:
482 		enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_125M_CLK;
483 		break;
484 	case ENET_50MHZ:
485 		enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_50M_CLK;
486 		break;
487 	case ENET_25MHZ:
488 		enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_25M_CLK;
489 		break;
490 	default:
491 		return -EINVAL;
492 	}
493 
494 	/* disable the clock first */
495 	clock_enable(CCGR_ENET1, 0);
496 	clock_enable(CCGR_SIM_ENET, 0);
497 
498 	/* set enet axi clock 266Mhz */
499 	target = CLK_ROOT_ON | ENET_AXI_CLK_ROOT_FROM_SYS1_PLL_266M |
500 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
501 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
502 	clock_set_target_val(ENET_AXI_CLK_ROOT, target);
503 
504 	target = CLK_ROOT_ON | enet1_ref |
505 		 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
506 		 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
507 	clock_set_target_val(ENET_REF_CLK_ROOT, target);
508 
509 	target = CLK_ROOT_ON |
510 		ENET1_TIME_CLK_ROOT_FROM_PLL_ENET_MAIN_100M_CLK |
511 		CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
512 		CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4);
513 	clock_set_target_val(ENET_TIMER_CLK_ROOT, target);
514 
515 	/* enable clock */
516 	clock_enable(CCGR_SIM_ENET, 1);
517 	clock_enable(CCGR_ENET1, 1);
518 
519 	return 0;
520 }
521 #endif
522 
523 u32 imx_get_fecclk(void)
524 {
525 	return get_root_clk(ENET_AXI_CLK_ROOT);
526 }
527 
528 static struct dram_bypass_clk_setting imx8mq_dram_bypass_tbl[] = {
529 	DRAM_BYPASS_ROOT_CONFIG(MHZ(100), 2, CLK_ROOT_PRE_DIV1, 2,
530 				CLK_ROOT_PRE_DIV2),
531 	DRAM_BYPASS_ROOT_CONFIG(MHZ(250), 3, CLK_ROOT_PRE_DIV2, 2,
532 				CLK_ROOT_PRE_DIV2),
533 	DRAM_BYPASS_ROOT_CONFIG(MHZ(400), 1, CLK_ROOT_PRE_DIV2, 3,
534 				CLK_ROOT_PRE_DIV2),
535 };
536 
537 void dram_enable_bypass(ulong clk_val)
538 {
539 	int i;
540 	struct dram_bypass_clk_setting *config;
541 
542 	for (i = 0; i < ARRAY_SIZE(imx8mq_dram_bypass_tbl); i++) {
543 		if (clk_val == imx8mq_dram_bypass_tbl[i].clk)
544 			break;
545 	}
546 
547 	if (i == ARRAY_SIZE(imx8mq_dram_bypass_tbl)) {
548 		printf("No matched freq table %lu\n", clk_val);
549 		return;
550 	}
551 
552 	config = &imx8mq_dram_bypass_tbl[i];
553 
554 	clock_set_target_val(DRAM_ALT_CLK_ROOT, CLK_ROOT_ON |
555 			     CLK_ROOT_SOURCE_SEL(config->alt_root_sel) |
556 			     CLK_ROOT_PRE_DIV(config->alt_pre_div));
557 	clock_set_target_val(DRAM_APB_CLK_ROOT, CLK_ROOT_ON |
558 			     CLK_ROOT_SOURCE_SEL(config->apb_root_sel) |
559 			     CLK_ROOT_PRE_DIV(config->apb_pre_div));
560 	clock_set_target_val(DRAM_SEL_CFG, CLK_ROOT_ON |
561 			     CLK_ROOT_SOURCE_SEL(1));
562 }
563 
564 void dram_disable_bypass(void)
565 {
566 	clock_set_target_val(DRAM_SEL_CFG, CLK_ROOT_ON |
567 			     CLK_ROOT_SOURCE_SEL(0));
568 	clock_set_target_val(DRAM_APB_CLK_ROOT, CLK_ROOT_ON |
569 			     CLK_ROOT_SOURCE_SEL(4) |
570 			     CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV5));
571 }
572 
573 #ifdef CONFIG_SPL_BUILD
574 void dram_pll_init(ulong pll_val)
575 {
576 	u32 val;
577 	void __iomem *pll_control_reg = &ana_pll->dram_pll_cfg0;
578 	void __iomem *pll_cfg_reg2 = &ana_pll->dram_pll_cfg2;
579 
580 	/* Bypass */
581 	setbits_le32(pll_control_reg, SSCG_PLL_BYPASS1_MASK);
582 	setbits_le32(pll_control_reg, SSCG_PLL_BYPASS2_MASK);
583 
584 	switch (pll_val) {
585 	case MHZ(800):
586 		val = readl(pll_cfg_reg2);
587 		val &= ~(SSCG_PLL_OUTPUT_DIV_VAL_MASK |
588 			 SSCG_PLL_FEEDBACK_DIV_F2_MASK |
589 			 SSCG_PLL_FEEDBACK_DIV_F1_MASK |
590 			 SSCG_PLL_REF_DIVR2_MASK);
591 		val |= SSCG_PLL_OUTPUT_DIV_VAL(0);
592 		val |= SSCG_PLL_FEEDBACK_DIV_F2_VAL(11);
593 		val |= SSCG_PLL_FEEDBACK_DIV_F1_VAL(39);
594 		val |= SSCG_PLL_REF_DIVR2_VAL(29);
595 		writel(val, pll_cfg_reg2);
596 		break;
597 	case MHZ(600):
598 		val = readl(pll_cfg_reg2);
599 		val &= ~(SSCG_PLL_OUTPUT_DIV_VAL_MASK |
600 			 SSCG_PLL_FEEDBACK_DIV_F2_MASK |
601 			 SSCG_PLL_FEEDBACK_DIV_F1_MASK |
602 			 SSCG_PLL_REF_DIVR2_MASK);
603 		val |= SSCG_PLL_OUTPUT_DIV_VAL(1);
604 		val |= SSCG_PLL_FEEDBACK_DIV_F2_VAL(17);
605 		val |= SSCG_PLL_FEEDBACK_DIV_F1_VAL(39);
606 		val |= SSCG_PLL_REF_DIVR2_VAL(29);
607 		writel(val, pll_cfg_reg2);
608 		break;
609 	case MHZ(400):
610 		val = readl(pll_cfg_reg2);
611 		val &= ~(SSCG_PLL_OUTPUT_DIV_VAL_MASK |
612 			 SSCG_PLL_FEEDBACK_DIV_F2_MASK |
613 			 SSCG_PLL_FEEDBACK_DIV_F1_MASK |
614 			 SSCG_PLL_REF_DIVR2_MASK);
615 		val |= SSCG_PLL_OUTPUT_DIV_VAL(1);
616 		val |= SSCG_PLL_FEEDBACK_DIV_F2_VAL(11);
617 		val |= SSCG_PLL_FEEDBACK_DIV_F1_VAL(39);
618 		val |= SSCG_PLL_REF_DIVR2_VAL(29);
619 		writel(val, pll_cfg_reg2);
620 		break;
621 	case MHZ(167):
622 		val = readl(pll_cfg_reg2);
623 		val &= ~(SSCG_PLL_OUTPUT_DIV_VAL_MASK |
624 			 SSCG_PLL_FEEDBACK_DIV_F2_MASK |
625 			 SSCG_PLL_FEEDBACK_DIV_F1_MASK |
626 			 SSCG_PLL_REF_DIVR2_MASK);
627 		val |= SSCG_PLL_OUTPUT_DIV_VAL(3);
628 		val |= SSCG_PLL_FEEDBACK_DIV_F2_VAL(8);
629 		val |= SSCG_PLL_FEEDBACK_DIV_F1_VAL(45);
630 		val |= SSCG_PLL_REF_DIVR2_VAL(30);
631 		writel(val, pll_cfg_reg2);
632 		break;
633 	default:
634 		break;
635 	}
636 
637 	/* Clear power down bit */
638 	clrbits_le32(pll_control_reg, SSCG_PLL_PD_MASK);
639 	/* Eanble ARM_PLL/SYS_PLL  */
640 	setbits_le32(pll_control_reg, SSCG_PLL_DRAM_PLL_CLKE_MASK);
641 
642 	/* Clear bypass */
643 	clrbits_le32(pll_control_reg, SSCG_PLL_BYPASS1_MASK);
644 	__udelay(100);
645 	clrbits_le32(pll_control_reg, SSCG_PLL_BYPASS2_MASK);
646 	/* Wait lock */
647 	while (!(readl(pll_control_reg) & SSCG_PLL_LOCK_MASK))
648 		;
649 }
650 
651 int frac_pll_init(u32 pll, enum frac_pll_out_val val)
652 {
653 	void __iomem *pll_cfg0, __iomem *pll_cfg1;
654 	u32 val_cfg0, val_cfg1;
655 	int ret;
656 
657 	switch (pll) {
658 	case ANATOP_ARM_PLL:
659 		pll_cfg0 = &ana_pll->arm_pll_cfg0;
660 		pll_cfg1 = &ana_pll->arm_pll_cfg1;
661 
662 		if (val == FRAC_PLL_OUT_1000M)
663 			val_cfg1 = FRAC_PLL_INT_DIV_CTL_VAL(49);
664 		else
665 			val_cfg1 = FRAC_PLL_INT_DIV_CTL_VAL(79);
666 		val_cfg0 = FRAC_PLL_CLKE_MASK | FRAC_PLL_REFCLK_SEL_OSC_25M |
667 			FRAC_PLL_LOCK_SEL_MASK | FRAC_PLL_NEWDIV_VAL_MASK |
668 			FRAC_PLL_REFCLK_DIV_VAL(4) |
669 			FRAC_PLL_OUTPUT_DIV_VAL(0);
670 		break;
671 	default:
672 		return -EINVAL;
673 	}
674 
675 	/* bypass the clock */
676 	setbits_le32(pll_cfg0, FRAC_PLL_BYPASS_MASK);
677 	/* Set the value */
678 	writel(val_cfg1, pll_cfg1);
679 	writel(val_cfg0 | FRAC_PLL_BYPASS_MASK, pll_cfg0);
680 	val_cfg0 = readl(pll_cfg0);
681 	/* unbypass the clock */
682 	clrbits_le32(pll_cfg0, FRAC_PLL_BYPASS_MASK);
683 	ret = readl_poll_timeout(pll_cfg0, val_cfg0,
684 				 val_cfg0 & FRAC_PLL_LOCK_MASK, 1);
685 	if (ret)
686 		printf("%s timeout\n", __func__);
687 	clrbits_le32(pll_cfg0, FRAC_PLL_NEWDIV_VAL_MASK);
688 
689 	return 0;
690 }
691 
692 int sscg_pll_init(u32 pll)
693 {
694 	void __iomem *pll_cfg0, __iomem *pll_cfg1, __iomem *pll_cfg2;
695 	u32 val_cfg0, val_cfg1, val_cfg2, val;
696 	u32 bypass1_mask = 0x20, bypass2_mask = 0x10;
697 	int ret;
698 
699 	switch (pll) {
700 	case ANATOP_SYSTEM_PLL1:
701 		pll_cfg0 = &ana_pll->sys_pll1_cfg0;
702 		pll_cfg1 = &ana_pll->sys_pll1_cfg1;
703 		pll_cfg2 = &ana_pll->sys_pll1_cfg2;
704 		/* 800MHz */
705 		val_cfg2 = SSCG_PLL_FEEDBACK_DIV_F1_VAL(3) |
706 			SSCG_PLL_FEEDBACK_DIV_F2_VAL(3);
707 		val_cfg1 = 0;
708 		val_cfg0 = SSCG_PLL_CLKE_MASK | SSCG_PLL_DIV2_CLKE_MASK |
709 			SSCG_PLL_DIV3_CLKE_MASK | SSCG_PLL_DIV4_CLKE_MASK |
710 			SSCG_PLL_DIV5_CLKE_MASK | SSCG_PLL_DIV6_CLKE_MASK |
711 			SSCG_PLL_DIV8_CLKE_MASK | SSCG_PLL_DIV10_CLKE_MASK |
712 			SSCG_PLL_DIV20_CLKE_MASK | SSCG_PLL_LOCK_SEL_MASK |
713 			SSCG_PLL_REFCLK_SEL_OSC_25M;
714 		break;
715 	case ANATOP_SYSTEM_PLL2:
716 		pll_cfg0 = &ana_pll->sys_pll2_cfg0;
717 		pll_cfg1 = &ana_pll->sys_pll2_cfg1;
718 		pll_cfg2 = &ana_pll->sys_pll2_cfg2;
719 		/* 1000MHz */
720 		val_cfg2 = SSCG_PLL_FEEDBACK_DIV_F1_VAL(3) |
721 			SSCG_PLL_FEEDBACK_DIV_F2_VAL(4);
722 		val_cfg1 = 0;
723 		val_cfg0 = SSCG_PLL_CLKE_MASK | SSCG_PLL_DIV2_CLKE_MASK |
724 			SSCG_PLL_DIV3_CLKE_MASK | SSCG_PLL_DIV4_CLKE_MASK |
725 			SSCG_PLL_DIV5_CLKE_MASK | SSCG_PLL_DIV6_CLKE_MASK |
726 			SSCG_PLL_DIV8_CLKE_MASK | SSCG_PLL_DIV10_CLKE_MASK |
727 			SSCG_PLL_DIV20_CLKE_MASK | SSCG_PLL_LOCK_SEL_MASK |
728 			SSCG_PLL_REFCLK_SEL_OSC_25M;
729 		break;
730 	case ANATOP_SYSTEM_PLL3:
731 		pll_cfg0 = &ana_pll->sys_pll3_cfg0;
732 		pll_cfg1 = &ana_pll->sys_pll3_cfg1;
733 		pll_cfg2 = &ana_pll->sys_pll3_cfg2;
734 		/* 800MHz */
735 		val_cfg2 = SSCG_PLL_FEEDBACK_DIV_F1_VAL(3) |
736 			SSCG_PLL_FEEDBACK_DIV_F2_VAL(3);
737 		val_cfg1 = 0;
738 		val_cfg0 = SSCG_PLL_PLL3_CLKE_MASK |  SSCG_PLL_LOCK_SEL_MASK |
739 			SSCG_PLL_REFCLK_SEL_OSC_25M;
740 		break;
741 	default:
742 		return -EINVAL;
743 	}
744 
745 	/*bypass*/
746 	setbits_le32(pll_cfg0, bypass1_mask | bypass2_mask);
747 	/* set value */
748 	writel(val_cfg2, pll_cfg2);
749 	writel(val_cfg1, pll_cfg1);
750 	/*unbypass1 and wait 70us */
751 	writel(val_cfg0 | bypass2_mask, pll_cfg1);
752 
753 	__udelay(70);
754 
755 	/* unbypass2 and wait lock */
756 	writel(val_cfg0, pll_cfg1);
757 	ret = readl_poll_timeout(pll_cfg0, val, val & SSCG_PLL_LOCK_MASK, 1);
758 	if (ret)
759 		printf("%s timeout\n", __func__);
760 
761 	return ret;
762 }
763 
764 int clock_init(void)
765 {
766 	u32 grade;
767 
768 	clock_set_target_val(ARM_A53_CLK_ROOT, CLK_ROOT_ON |
769 			     CLK_ROOT_SOURCE_SEL(0));
770 
771 	/*
772 	 * 8MQ only supports two grades: consumer and industrial.
773 	 * We set ARM clock to 1Ghz for consumer, 800Mhz for industrial
774 	 */
775 	grade = get_cpu_temp_grade(NULL, NULL);
776 	if (!grade) {
777 		frac_pll_init(ANATOP_ARM_PLL, FRAC_PLL_OUT_1000M);
778 		clock_set_target_val(ARM_A53_CLK_ROOT, CLK_ROOT_ON |
779 			     CLK_ROOT_SOURCE_SEL(1) |
780 			     CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1));
781 	} else {
782 		frac_pll_init(ANATOP_ARM_PLL, FRAC_PLL_OUT_1600M);
783 		clock_set_target_val(ARM_A53_CLK_ROOT, CLK_ROOT_ON |
784 			     CLK_ROOT_SOURCE_SEL(1) |
785 			     CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2));
786 	}
787 	/*
788 	 * According to ANAMIX SPEC
789 	 * sys pll1 fixed at 800MHz
790 	 * sys pll2 fixed at 1GHz
791 	 * Here we only enable the outputs.
792 	 */
793 	setbits_le32(&ana_pll->sys_pll1_cfg0, SSCG_PLL_CLKE_MASK |
794 		     SSCG_PLL_DIV2_CLKE_MASK | SSCG_PLL_DIV3_CLKE_MASK |
795 		     SSCG_PLL_DIV4_CLKE_MASK | SSCG_PLL_DIV5_CLKE_MASK |
796 		     SSCG_PLL_DIV6_CLKE_MASK | SSCG_PLL_DIV8_CLKE_MASK |
797 		     SSCG_PLL_DIV10_CLKE_MASK | SSCG_PLL_DIV20_CLKE_MASK);
798 
799 	setbits_le32(&ana_pll->sys_pll2_cfg0, SSCG_PLL_CLKE_MASK |
800 		     SSCG_PLL_DIV2_CLKE_MASK | SSCG_PLL_DIV3_CLKE_MASK |
801 		     SSCG_PLL_DIV4_CLKE_MASK | SSCG_PLL_DIV5_CLKE_MASK |
802 		     SSCG_PLL_DIV6_CLKE_MASK | SSCG_PLL_DIV8_CLKE_MASK |
803 		     SSCG_PLL_DIV10_CLKE_MASK | SSCG_PLL_DIV20_CLKE_MASK);
804 
805 	clock_set_target_val(NAND_USDHC_BUS_CLK_ROOT, CLK_ROOT_ON |
806 			     CLK_ROOT_SOURCE_SEL(1));
807 
808 	init_wdog_clk();
809 	clock_enable(CCGR_TSENSOR, 1);
810 
811 	return 0;
812 }
813 #endif
814 
815 /*
816  * Dump some clockes.
817  */
818 #ifndef CONFIG_SPL_BUILD
819 int do_imx8m_showclocks(cmd_tbl_t *cmdtp, int flag, int argc,
820 		       char * const argv[])
821 {
822 	u32 freq;
823 
824 	freq = decode_frac_pll(ARM_PLL_CLK);
825 	printf("ARM_PLL    %8d MHz\n", freq / 1000000);
826 	freq = decode_sscg_pll(SYSTEM_PLL1_800M_CLK);
827 	printf("SYS_PLL1_800    %8d MHz\n", freq / 1000000);
828 	freq = decode_sscg_pll(SYSTEM_PLL1_400M_CLK);
829 	printf("SYS_PLL1_400    %8d MHz\n", freq / 1000000);
830 	freq = decode_sscg_pll(SYSTEM_PLL1_266M_CLK);
831 	printf("SYS_PLL1_266    %8d MHz\n", freq / 1000000);
832 	freq = decode_sscg_pll(SYSTEM_PLL1_200M_CLK);
833 	printf("SYS_PLL1_200    %8d MHz\n", freq / 1000000);
834 	freq = decode_sscg_pll(SYSTEM_PLL1_160M_CLK);
835 	printf("SYS_PLL1_160    %8d MHz\n", freq / 1000000);
836 	freq = decode_sscg_pll(SYSTEM_PLL1_133M_CLK);
837 	printf("SYS_PLL1_133    %8d MHz\n", freq / 1000000);
838 	freq = decode_sscg_pll(SYSTEM_PLL1_100M_CLK);
839 	printf("SYS_PLL1_100    %8d MHz\n", freq / 1000000);
840 	freq = decode_sscg_pll(SYSTEM_PLL1_80M_CLK);
841 	printf("SYS_PLL1_80    %8d MHz\n", freq / 1000000);
842 	freq = decode_sscg_pll(SYSTEM_PLL1_40M_CLK);
843 	printf("SYS_PLL1_40    %8d MHz\n", freq / 1000000);
844 	freq = decode_sscg_pll(SYSTEM_PLL2_1000M_CLK);
845 	printf("SYS_PLL2_1000    %8d MHz\n", freq / 1000000);
846 	freq = decode_sscg_pll(SYSTEM_PLL2_500M_CLK);
847 	printf("SYS_PLL2_500    %8d MHz\n", freq / 1000000);
848 	freq = decode_sscg_pll(SYSTEM_PLL2_333M_CLK);
849 	printf("SYS_PLL2_333    %8d MHz\n", freq / 1000000);
850 	freq = decode_sscg_pll(SYSTEM_PLL2_250M_CLK);
851 	printf("SYS_PLL2_250    %8d MHz\n", freq / 1000000);
852 	freq = decode_sscg_pll(SYSTEM_PLL2_200M_CLK);
853 	printf("SYS_PLL2_200    %8d MHz\n", freq / 1000000);
854 	freq = decode_sscg_pll(SYSTEM_PLL2_166M_CLK);
855 	printf("SYS_PLL2_166    %8d MHz\n", freq / 1000000);
856 	freq = decode_sscg_pll(SYSTEM_PLL2_125M_CLK);
857 	printf("SYS_PLL2_125    %8d MHz\n", freq / 1000000);
858 	freq = decode_sscg_pll(SYSTEM_PLL2_100M_CLK);
859 	printf("SYS_PLL2_100    %8d MHz\n", freq / 1000000);
860 	freq = decode_sscg_pll(SYSTEM_PLL2_50M_CLK);
861 	printf("SYS_PLL2_50    %8d MHz\n", freq / 1000000);
862 	freq = decode_sscg_pll(SYSTEM_PLL3_CLK);
863 	printf("SYS_PLL3       %8d MHz\n", freq / 1000000);
864 	freq = mxc_get_clock(UART1_CLK_ROOT);
865 	printf("UART1          %8d MHz\n", freq / 1000000);
866 	freq = mxc_get_clock(USDHC1_CLK_ROOT);
867 	printf("USDHC1         %8d MHz\n", freq / 1000000);
868 	freq = mxc_get_clock(QSPI_CLK_ROOT);
869 	printf("QSPI           %8d MHz\n", freq / 1000000);
870 	return 0;
871 }
872 
873 U_BOOT_CMD(
874 	clocks,	CONFIG_SYS_MAXARGS, 1, do_imx8m_showclocks,
875 	"display clocks",
876 	""
877 );
878 #endif
879