1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright 2018 NXP 4 */ 5 6 #include <common.h> 7 #include <clk.h> 8 #include <cpu.h> 9 #include <dm.h> 10 #include <dm/device-internal.h> 11 #include <dm/lists.h> 12 #include <dm/uclass.h> 13 #include <errno.h> 14 #include <asm/arch/sci/sci.h> 15 #include <asm/arch/sys_proto.h> 16 #include <asm/arch-imx/cpu.h> 17 #include <asm/armv8/cpu.h> 18 #include <asm/armv8/mmu.h> 19 #include <asm/mach-imx/boot_mode.h> 20 21 DECLARE_GLOBAL_DATA_PTR; 22 23 #define BT_PASSOVER_TAG 0x504F 24 struct pass_over_info_t *get_pass_over_info(void) 25 { 26 struct pass_over_info_t *p = 27 (struct pass_over_info_t *)PASS_OVER_INFO_ADDR; 28 29 if (p->barker != BT_PASSOVER_TAG || 30 p->len != sizeof(struct pass_over_info_t)) 31 return NULL; 32 33 return p; 34 } 35 36 int arch_cpu_init(void) 37 { 38 struct pass_over_info_t *pass_over = get_pass_over_info(); 39 40 if (pass_over && pass_over->g_ap_mu == 0) { 41 /* 42 * When ap_mu is 0, means the U-Boot booted 43 * from first container 44 */ 45 sc_misc_boot_status(-1, SC_MISC_BOOT_STATUS_SUCCESS); 46 } 47 48 return 0; 49 } 50 51 int arch_cpu_init_dm(void) 52 { 53 struct udevice *devp; 54 int node, ret; 55 56 node = fdt_node_offset_by_compatible(gd->fdt_blob, -1, "fsl,imx8-mu"); 57 ret = device_bind_driver_to_node(gd->dm_root, "imx8_scu", "imx8_scu", 58 offset_to_ofnode(node), &devp); 59 60 if (ret) { 61 printf("could not find scu %d\n", ret); 62 return ret; 63 } 64 65 ret = device_probe(devp); 66 if (ret) { 67 printf("scu probe failed %d\n", ret); 68 return ret; 69 } 70 71 return 0; 72 } 73 74 int print_bootinfo(void) 75 { 76 enum boot_device bt_dev = get_boot_device(); 77 78 puts("Boot: "); 79 switch (bt_dev) { 80 case SD1_BOOT: 81 puts("SD0\n"); 82 break; 83 case SD2_BOOT: 84 puts("SD1\n"); 85 break; 86 case SD3_BOOT: 87 puts("SD2\n"); 88 break; 89 case MMC1_BOOT: 90 puts("MMC0\n"); 91 break; 92 case MMC2_BOOT: 93 puts("MMC1\n"); 94 break; 95 case MMC3_BOOT: 96 puts("MMC2\n"); 97 break; 98 case FLEXSPI_BOOT: 99 puts("FLEXSPI\n"); 100 break; 101 case SATA_BOOT: 102 puts("SATA\n"); 103 break; 104 case NAND_BOOT: 105 puts("NAND\n"); 106 break; 107 case USB_BOOT: 108 puts("USB\n"); 109 break; 110 default: 111 printf("Unknown device %u\n", bt_dev); 112 break; 113 } 114 115 return 0; 116 } 117 118 enum boot_device get_boot_device(void) 119 { 120 enum boot_device boot_dev = SD1_BOOT; 121 122 sc_rsrc_t dev_rsrc; 123 124 sc_misc_get_boot_dev(-1, &dev_rsrc); 125 126 switch (dev_rsrc) { 127 case SC_R_SDHC_0: 128 boot_dev = MMC1_BOOT; 129 break; 130 case SC_R_SDHC_1: 131 boot_dev = SD2_BOOT; 132 break; 133 case SC_R_SDHC_2: 134 boot_dev = SD3_BOOT; 135 break; 136 case SC_R_NAND: 137 boot_dev = NAND_BOOT; 138 break; 139 case SC_R_FSPI_0: 140 boot_dev = FLEXSPI_BOOT; 141 break; 142 case SC_R_SATA_0: 143 boot_dev = SATA_BOOT; 144 break; 145 case SC_R_USB_0: 146 case SC_R_USB_1: 147 case SC_R_USB_2: 148 boot_dev = USB_BOOT; 149 break; 150 default: 151 break; 152 } 153 154 return boot_dev; 155 } 156 157 #ifdef CONFIG_ENV_IS_IN_MMC 158 __weak int board_mmc_get_env_dev(int devno) 159 { 160 return CONFIG_SYS_MMC_ENV_DEV; 161 } 162 163 int mmc_get_env_dev(void) 164 { 165 sc_rsrc_t dev_rsrc; 166 int devno; 167 168 sc_misc_get_boot_dev(-1, &dev_rsrc); 169 170 switch (dev_rsrc) { 171 case SC_R_SDHC_0: 172 devno = 0; 173 break; 174 case SC_R_SDHC_1: 175 devno = 1; 176 break; 177 case SC_R_SDHC_2: 178 devno = 2; 179 break; 180 default: 181 /* If not boot from sd/mmc, use default value */ 182 return CONFIG_SYS_MMC_ENV_DEV; 183 } 184 185 return board_mmc_get_env_dev(devno); 186 } 187 #endif 188 189 #define MEMSTART_ALIGNMENT SZ_2M /* Align the memory start with 2MB */ 190 191 static int get_owned_memreg(sc_rm_mr_t mr, sc_faddr_t *addr_start, 192 sc_faddr_t *addr_end) 193 { 194 sc_faddr_t start, end; 195 int ret; 196 bool owned; 197 198 owned = sc_rm_is_memreg_owned(-1, mr); 199 if (owned) { 200 ret = sc_rm_get_memreg_info(-1, mr, &start, &end); 201 if (ret) { 202 printf("Memreg get info failed, %d\n", ret); 203 return -EINVAL; 204 } 205 debug("0x%llx -- 0x%llx\n", start, end); 206 *addr_start = start; 207 *addr_end = end; 208 209 return 0; 210 } 211 212 return -EINVAL; 213 } 214 215 phys_size_t get_effective_memsize(void) 216 { 217 sc_rm_mr_t mr; 218 sc_faddr_t start, end, end1; 219 int err; 220 221 end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE; 222 223 for (mr = 0; mr < 64; mr++) { 224 err = get_owned_memreg(mr, &start, &end); 225 if (!err) { 226 start = roundup(start, MEMSTART_ALIGNMENT); 227 /* Too small memory region, not use it */ 228 if (start > end) 229 continue; 230 231 /* Find the memory region runs the U-Boot */ 232 if (start >= PHYS_SDRAM_1 && start <= end1 && 233 (start <= CONFIG_SYS_TEXT_BASE && 234 end >= CONFIG_SYS_TEXT_BASE)) { 235 if ((end + 1) <= ((sc_faddr_t)PHYS_SDRAM_1 + 236 PHYS_SDRAM_1_SIZE)) 237 return (end - PHYS_SDRAM_1 + 1); 238 else 239 return PHYS_SDRAM_1_SIZE; 240 } 241 } 242 } 243 244 return PHYS_SDRAM_1_SIZE; 245 } 246 247 int dram_init(void) 248 { 249 sc_rm_mr_t mr; 250 sc_faddr_t start, end, end1, end2; 251 int err; 252 253 end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE; 254 end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE; 255 for (mr = 0; mr < 64; mr++) { 256 err = get_owned_memreg(mr, &start, &end); 257 if (!err) { 258 start = roundup(start, MEMSTART_ALIGNMENT); 259 /* Too small memory region, not use it */ 260 if (start > end) 261 continue; 262 263 if (start >= PHYS_SDRAM_1 && start <= end1) { 264 if ((end + 1) <= end1) 265 gd->ram_size += end - start + 1; 266 else 267 gd->ram_size += end1 - start; 268 } else if (start >= PHYS_SDRAM_2 && start <= end2) { 269 if ((end + 1) <= end2) 270 gd->ram_size += end - start + 1; 271 else 272 gd->ram_size += end2 - start; 273 } 274 } 275 } 276 277 /* If error, set to the default value */ 278 if (!gd->ram_size) { 279 gd->ram_size = PHYS_SDRAM_1_SIZE; 280 gd->ram_size += PHYS_SDRAM_2_SIZE; 281 } 282 return 0; 283 } 284 285 static void dram_bank_sort(int current_bank) 286 { 287 phys_addr_t start; 288 phys_size_t size; 289 290 while (current_bank > 0) { 291 if (gd->bd->bi_dram[current_bank - 1].start > 292 gd->bd->bi_dram[current_bank].start) { 293 start = gd->bd->bi_dram[current_bank - 1].start; 294 size = gd->bd->bi_dram[current_bank - 1].size; 295 296 gd->bd->bi_dram[current_bank - 1].start = 297 gd->bd->bi_dram[current_bank].start; 298 gd->bd->bi_dram[current_bank - 1].size = 299 gd->bd->bi_dram[current_bank].size; 300 301 gd->bd->bi_dram[current_bank].start = start; 302 gd->bd->bi_dram[current_bank].size = size; 303 } 304 current_bank--; 305 } 306 } 307 308 int dram_init_banksize(void) 309 { 310 sc_rm_mr_t mr; 311 sc_faddr_t start, end, end1, end2; 312 int i = 0; 313 int err; 314 315 end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE; 316 end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE; 317 318 for (mr = 0; mr < 64 && i < CONFIG_NR_DRAM_BANKS; mr++) { 319 err = get_owned_memreg(mr, &start, &end); 320 if (!err) { 321 start = roundup(start, MEMSTART_ALIGNMENT); 322 if (start > end) /* Small memory region, no use it */ 323 continue; 324 325 if (start >= PHYS_SDRAM_1 && start <= end1) { 326 gd->bd->bi_dram[i].start = start; 327 328 if ((end + 1) <= end1) 329 gd->bd->bi_dram[i].size = 330 end - start + 1; 331 else 332 gd->bd->bi_dram[i].size = end1 - start; 333 334 dram_bank_sort(i); 335 i++; 336 } else if (start >= PHYS_SDRAM_2 && start <= end2) { 337 gd->bd->bi_dram[i].start = start; 338 339 if ((end + 1) <= end2) 340 gd->bd->bi_dram[i].size = 341 end - start + 1; 342 else 343 gd->bd->bi_dram[i].size = end2 - start; 344 345 dram_bank_sort(i); 346 i++; 347 } 348 } 349 } 350 351 /* If error, set to the default value */ 352 if (!i) { 353 gd->bd->bi_dram[0].start = PHYS_SDRAM_1; 354 gd->bd->bi_dram[0].size = PHYS_SDRAM_1_SIZE; 355 gd->bd->bi_dram[1].start = PHYS_SDRAM_2; 356 gd->bd->bi_dram[1].size = PHYS_SDRAM_2_SIZE; 357 } 358 359 return 0; 360 } 361 362 static u64 get_block_attrs(sc_faddr_t addr_start) 363 { 364 u64 attr = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | 365 PTE_BLOCK_PXN | PTE_BLOCK_UXN; 366 367 if ((addr_start >= PHYS_SDRAM_1 && 368 addr_start <= ((sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE)) || 369 (addr_start >= PHYS_SDRAM_2 && 370 addr_start <= ((sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE))) 371 return (PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE); 372 373 return attr; 374 } 375 376 static u64 get_block_size(sc_faddr_t addr_start, sc_faddr_t addr_end) 377 { 378 sc_faddr_t end1, end2; 379 380 end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE; 381 end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE; 382 383 if (addr_start >= PHYS_SDRAM_1 && addr_start <= end1) { 384 if ((addr_end + 1) > end1) 385 return end1 - addr_start; 386 } else if (addr_start >= PHYS_SDRAM_2 && addr_start <= end2) { 387 if ((addr_end + 1) > end2) 388 return end2 - addr_start; 389 } 390 391 return (addr_end - addr_start + 1); 392 } 393 394 #define MAX_PTE_ENTRIES 512 395 #define MAX_MEM_MAP_REGIONS 16 396 397 static struct mm_region imx8_mem_map[MAX_MEM_MAP_REGIONS]; 398 struct mm_region *mem_map = imx8_mem_map; 399 400 void enable_caches(void) 401 { 402 sc_rm_mr_t mr; 403 sc_faddr_t start, end; 404 int err, i; 405 406 /* Create map for registers access from 0x1c000000 to 0x80000000*/ 407 imx8_mem_map[0].virt = 0x1c000000UL; 408 imx8_mem_map[0].phys = 0x1c000000UL; 409 imx8_mem_map[0].size = 0x64000000UL; 410 imx8_mem_map[0].attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | 411 PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN; 412 413 i = 1; 414 for (mr = 0; mr < 64 && i < MAX_MEM_MAP_REGIONS; mr++) { 415 err = get_owned_memreg(mr, &start, &end); 416 if (!err) { 417 imx8_mem_map[i].virt = start; 418 imx8_mem_map[i].phys = start; 419 imx8_mem_map[i].size = get_block_size(start, end); 420 imx8_mem_map[i].attrs = get_block_attrs(start); 421 i++; 422 } 423 } 424 425 if (i < MAX_MEM_MAP_REGIONS) { 426 imx8_mem_map[i].size = 0; 427 imx8_mem_map[i].attrs = 0; 428 } else { 429 puts("Error, need more MEM MAP REGIONS reserved\n"); 430 icache_enable(); 431 return; 432 } 433 434 for (i = 0; i < MAX_MEM_MAP_REGIONS; i++) { 435 debug("[%d] vir = 0x%llx phys = 0x%llx size = 0x%llx attrs = 0x%llx\n", 436 i, imx8_mem_map[i].virt, imx8_mem_map[i].phys, 437 imx8_mem_map[i].size, imx8_mem_map[i].attrs); 438 } 439 440 icache_enable(); 441 dcache_enable(); 442 } 443 444 #ifndef CONFIG_SYS_DCACHE_OFF 445 u64 get_page_table_size(void) 446 { 447 u64 one_pt = MAX_PTE_ENTRIES * sizeof(u64); 448 u64 size = 0; 449 450 /* 451 * For each memory region, the max table size: 452 * 2 level 3 tables + 2 level 2 tables + 1 level 1 table 453 */ 454 size = (2 + 2 + 1) * one_pt * MAX_MEM_MAP_REGIONS + one_pt; 455 456 /* 457 * We need to duplicate our page table once to have an emergency pt to 458 * resort to when splitting page tables later on 459 */ 460 size *= 2; 461 462 /* 463 * We may need to split page tables later on if dcache settings change, 464 * so reserve up to 4 (random pick) page tables for that. 465 */ 466 size += one_pt * 4; 467 468 return size; 469 } 470 #endif 471 472 #define FUSE_MAC0_WORD0 708 473 #define FUSE_MAC0_WORD1 709 474 #define FUSE_MAC1_WORD0 710 475 #define FUSE_MAC1_WORD1 711 476 477 void imx_get_mac_from_fuse(int dev_id, unsigned char *mac) 478 { 479 u32 word[2], val[2] = {}; 480 int i, ret; 481 482 if (dev_id == 0) { 483 word[0] = FUSE_MAC0_WORD0; 484 word[1] = FUSE_MAC0_WORD1; 485 } else { 486 word[0] = FUSE_MAC1_WORD0; 487 word[1] = FUSE_MAC1_WORD1; 488 } 489 490 for (i = 0; i < 2; i++) { 491 ret = sc_misc_otp_fuse_read(-1, word[i], &val[i]); 492 if (ret < 0) 493 goto err; 494 } 495 496 mac[0] = val[0]; 497 mac[1] = val[0] >> 8; 498 mac[2] = val[0] >> 16; 499 mac[3] = val[0] >> 24; 500 mac[4] = val[1]; 501 mac[5] = val[1] >> 8; 502 503 debug("%s: MAC%d: %02x.%02x.%02x.%02x.%02x.%02x\n", 504 __func__, dev_id, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]); 505 return; 506 err: 507 printf("%s: fuse %d, err: %d\n", __func__, word[i], ret); 508 } 509 510 #if CONFIG_IS_ENABLED(CPU) 511 struct cpu_imx_platdata { 512 const char *name; 513 const char *rev; 514 const char *type; 515 u32 cpurev; 516 u32 freq_mhz; 517 }; 518 519 u32 get_cpu_rev(void) 520 { 521 u32 id = 0, rev = 0; 522 int ret; 523 524 ret = sc_misc_get_control(-1, SC_R_SYSTEM, SC_C_ID, &id); 525 if (ret) 526 return 0; 527 528 rev = (id >> 5) & 0xf; 529 id = (id & 0x1f) + MXC_SOC_IMX8; /* Dummy ID for chip */ 530 531 return (id << 12) | rev; 532 } 533 534 const char *get_imx8_type(u32 imxtype) 535 { 536 switch (imxtype) { 537 case MXC_CPU_IMX8QXP: 538 case MXC_CPU_IMX8QXP_A0: 539 return "QXP"; 540 default: 541 return "??"; 542 } 543 } 544 545 const char *get_imx8_rev(u32 rev) 546 { 547 switch (rev) { 548 case CHIP_REV_A: 549 return "A"; 550 case CHIP_REV_B: 551 return "B"; 552 default: 553 return "?"; 554 } 555 } 556 557 const char *get_core_name(void) 558 { 559 if (is_cortex_a35()) 560 return "A35"; 561 else if (is_cortex_a53()) 562 return "A53"; 563 else if (is_cortex_a72()) 564 return "A72"; 565 else 566 return "?"; 567 } 568 569 int cpu_imx_get_desc(struct udevice *dev, char *buf, int size) 570 { 571 struct cpu_imx_platdata *plat = dev_get_platdata(dev); 572 573 if (size < 100) 574 return -ENOSPC; 575 576 snprintf(buf, size, "CPU: Freescale i.MX8%s Rev%s %s at %u MHz\n", 577 plat->type, plat->rev, plat->name, plat->freq_mhz); 578 579 return 0; 580 } 581 582 static int cpu_imx_get_info(struct udevice *dev, struct cpu_info *info) 583 { 584 struct cpu_imx_platdata *plat = dev_get_platdata(dev); 585 586 info->cpu_freq = plat->freq_mhz * 1000; 587 info->features = BIT(CPU_FEAT_L1_CACHE) | BIT(CPU_FEAT_MMU); 588 return 0; 589 } 590 591 static int cpu_imx_get_count(struct udevice *dev) 592 { 593 return 4; 594 } 595 596 static int cpu_imx_get_vendor(struct udevice *dev, char *buf, int size) 597 { 598 snprintf(buf, size, "NXP"); 599 return 0; 600 } 601 602 static const struct cpu_ops cpu_imx8_ops = { 603 .get_desc = cpu_imx_get_desc, 604 .get_info = cpu_imx_get_info, 605 .get_count = cpu_imx_get_count, 606 .get_vendor = cpu_imx_get_vendor, 607 }; 608 609 static const struct udevice_id cpu_imx8_ids[] = { 610 { .compatible = "arm,cortex-a35" }, 611 { } 612 }; 613 614 static int imx8_cpu_probe(struct udevice *dev) 615 { 616 struct cpu_imx_platdata *plat = dev_get_platdata(dev); 617 struct clk cpu_clk; 618 u32 cpurev; 619 int ret; 620 621 cpurev = get_cpu_rev(); 622 plat->cpurev = cpurev; 623 plat->name = get_core_name(); 624 plat->rev = get_imx8_rev(cpurev & 0xFFF); 625 plat->type = get_imx8_type((cpurev & 0xFF000) >> 12); 626 627 ret = clk_get_by_index(dev, 0, &cpu_clk); 628 if (ret) { 629 debug("%s: Failed to get CPU clk: %d\n", __func__, ret); 630 return 0; 631 } 632 633 plat->freq_mhz = clk_get_rate(&cpu_clk) / 1000000; 634 return 0; 635 } 636 637 U_BOOT_DRIVER(cpu_imx8_drv) = { 638 .name = "imx8x_cpu", 639 .id = UCLASS_CPU, 640 .of_match = cpu_imx8_ids, 641 .ops = &cpu_imx8_ops, 642 .probe = imx8_cpu_probe, 643 .platdata_auto_alloc_size = sizeof(struct cpu_imx_platdata), 644 .flags = DM_FLAG_PRE_RELOC, 645 }; 646 #endif 647