1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright 2018 NXP 4 */ 5 6 #include <common.h> 7 #include <clk.h> 8 #include <cpu.h> 9 #include <dm.h> 10 #include <dm/device-internal.h> 11 #include <dm/lists.h> 12 #include <dm/uclass.h> 13 #include <errno.h> 14 #include <asm/arch/sci/sci.h> 15 #include <asm/arch/sys_proto.h> 16 #include <asm/arch-imx/cpu.h> 17 #include <asm/armv8/cpu.h> 18 #include <asm/armv8/mmu.h> 19 #include <asm/mach-imx/boot_mode.h> 20 21 DECLARE_GLOBAL_DATA_PTR; 22 23 #define BT_PASSOVER_TAG 0x504F 24 struct pass_over_info_t *get_pass_over_info(void) 25 { 26 struct pass_over_info_t *p = 27 (struct pass_over_info_t *)PASS_OVER_INFO_ADDR; 28 29 if (p->barker != BT_PASSOVER_TAG || 30 p->len != sizeof(struct pass_over_info_t)) 31 return NULL; 32 33 return p; 34 } 35 36 int arch_cpu_init(void) 37 { 38 #ifdef CONFIG_SPL_BUILD 39 struct pass_over_info_t *pass_over; 40 41 if (is_soc_rev(CHIP_REV_A)) { 42 pass_over = get_pass_over_info(); 43 if (pass_over && pass_over->g_ap_mu == 0) { 44 /* 45 * When ap_mu is 0, means the U-Boot booted 46 * from first container 47 */ 48 sc_misc_boot_status(-1, SC_MISC_BOOT_STATUS_SUCCESS); 49 } 50 } 51 #endif 52 53 return 0; 54 } 55 56 int arch_cpu_init_dm(void) 57 { 58 struct udevice *devp; 59 int node, ret; 60 61 node = fdt_node_offset_by_compatible(gd->fdt_blob, -1, "fsl,imx8-mu"); 62 ret = device_bind_driver_to_node(gd->dm_root, "imx8_scu", "imx8_scu", 63 offset_to_ofnode(node), &devp); 64 65 if (ret) { 66 printf("could not find scu %d\n", ret); 67 return ret; 68 } 69 70 ret = device_probe(devp); 71 if (ret) { 72 printf("scu probe failed %d\n", ret); 73 return ret; 74 } 75 76 return 0; 77 } 78 79 int print_bootinfo(void) 80 { 81 enum boot_device bt_dev = get_boot_device(); 82 83 puts("Boot: "); 84 switch (bt_dev) { 85 case SD1_BOOT: 86 puts("SD0\n"); 87 break; 88 case SD2_BOOT: 89 puts("SD1\n"); 90 break; 91 case SD3_BOOT: 92 puts("SD2\n"); 93 break; 94 case MMC1_BOOT: 95 puts("MMC0\n"); 96 break; 97 case MMC2_BOOT: 98 puts("MMC1\n"); 99 break; 100 case MMC3_BOOT: 101 puts("MMC2\n"); 102 break; 103 case FLEXSPI_BOOT: 104 puts("FLEXSPI\n"); 105 break; 106 case SATA_BOOT: 107 puts("SATA\n"); 108 break; 109 case NAND_BOOT: 110 puts("NAND\n"); 111 break; 112 case USB_BOOT: 113 puts("USB\n"); 114 break; 115 default: 116 printf("Unknown device %u\n", bt_dev); 117 break; 118 } 119 120 return 0; 121 } 122 123 enum boot_device get_boot_device(void) 124 { 125 enum boot_device boot_dev = SD1_BOOT; 126 127 sc_rsrc_t dev_rsrc; 128 129 sc_misc_get_boot_dev(-1, &dev_rsrc); 130 131 switch (dev_rsrc) { 132 case SC_R_SDHC_0: 133 boot_dev = MMC1_BOOT; 134 break; 135 case SC_R_SDHC_1: 136 boot_dev = SD2_BOOT; 137 break; 138 case SC_R_SDHC_2: 139 boot_dev = SD3_BOOT; 140 break; 141 case SC_R_NAND: 142 boot_dev = NAND_BOOT; 143 break; 144 case SC_R_FSPI_0: 145 boot_dev = FLEXSPI_BOOT; 146 break; 147 case SC_R_SATA_0: 148 boot_dev = SATA_BOOT; 149 break; 150 case SC_R_USB_0: 151 case SC_R_USB_1: 152 case SC_R_USB_2: 153 boot_dev = USB_BOOT; 154 break; 155 default: 156 break; 157 } 158 159 return boot_dev; 160 } 161 162 #ifdef CONFIG_ENV_IS_IN_MMC 163 __weak int board_mmc_get_env_dev(int devno) 164 { 165 return CONFIG_SYS_MMC_ENV_DEV; 166 } 167 168 int mmc_get_env_dev(void) 169 { 170 sc_rsrc_t dev_rsrc; 171 int devno; 172 173 sc_misc_get_boot_dev(-1, &dev_rsrc); 174 175 switch (dev_rsrc) { 176 case SC_R_SDHC_0: 177 devno = 0; 178 break; 179 case SC_R_SDHC_1: 180 devno = 1; 181 break; 182 case SC_R_SDHC_2: 183 devno = 2; 184 break; 185 default: 186 /* If not boot from sd/mmc, use default value */ 187 return CONFIG_SYS_MMC_ENV_DEV; 188 } 189 190 return board_mmc_get_env_dev(devno); 191 } 192 #endif 193 194 #define MEMSTART_ALIGNMENT SZ_2M /* Align the memory start with 2MB */ 195 196 static int get_owned_memreg(sc_rm_mr_t mr, sc_faddr_t *addr_start, 197 sc_faddr_t *addr_end) 198 { 199 sc_faddr_t start, end; 200 int ret; 201 bool owned; 202 203 owned = sc_rm_is_memreg_owned(-1, mr); 204 if (owned) { 205 ret = sc_rm_get_memreg_info(-1, mr, &start, &end); 206 if (ret) { 207 printf("Memreg get info failed, %d\n", ret); 208 return -EINVAL; 209 } 210 debug("0x%llx -- 0x%llx\n", start, end); 211 *addr_start = start; 212 *addr_end = end; 213 214 return 0; 215 } 216 217 return -EINVAL; 218 } 219 220 phys_size_t get_effective_memsize(void) 221 { 222 sc_rm_mr_t mr; 223 sc_faddr_t start, end, end1; 224 int err; 225 226 end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE; 227 228 for (mr = 0; mr < 64; mr++) { 229 err = get_owned_memreg(mr, &start, &end); 230 if (!err) { 231 start = roundup(start, MEMSTART_ALIGNMENT); 232 /* Too small memory region, not use it */ 233 if (start > end) 234 continue; 235 236 /* Find the memory region runs the U-Boot */ 237 if (start >= PHYS_SDRAM_1 && start <= end1 && 238 (start <= CONFIG_SYS_TEXT_BASE && 239 end >= CONFIG_SYS_TEXT_BASE)) { 240 if ((end + 1) <= ((sc_faddr_t)PHYS_SDRAM_1 + 241 PHYS_SDRAM_1_SIZE)) 242 return (end - PHYS_SDRAM_1 + 1); 243 else 244 return PHYS_SDRAM_1_SIZE; 245 } 246 } 247 } 248 249 return PHYS_SDRAM_1_SIZE; 250 } 251 252 int dram_init(void) 253 { 254 sc_rm_mr_t mr; 255 sc_faddr_t start, end, end1, end2; 256 int err; 257 258 end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE; 259 end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE; 260 for (mr = 0; mr < 64; mr++) { 261 err = get_owned_memreg(mr, &start, &end); 262 if (!err) { 263 start = roundup(start, MEMSTART_ALIGNMENT); 264 /* Too small memory region, not use it */ 265 if (start > end) 266 continue; 267 268 if (start >= PHYS_SDRAM_1 && start <= end1) { 269 if ((end + 1) <= end1) 270 gd->ram_size += end - start + 1; 271 else 272 gd->ram_size += end1 - start; 273 } else if (start >= PHYS_SDRAM_2 && start <= end2) { 274 if ((end + 1) <= end2) 275 gd->ram_size += end - start + 1; 276 else 277 gd->ram_size += end2 - start; 278 } 279 } 280 } 281 282 /* If error, set to the default value */ 283 if (!gd->ram_size) { 284 gd->ram_size = PHYS_SDRAM_1_SIZE; 285 gd->ram_size += PHYS_SDRAM_2_SIZE; 286 } 287 return 0; 288 } 289 290 static void dram_bank_sort(int current_bank) 291 { 292 phys_addr_t start; 293 phys_size_t size; 294 295 while (current_bank > 0) { 296 if (gd->bd->bi_dram[current_bank - 1].start > 297 gd->bd->bi_dram[current_bank].start) { 298 start = gd->bd->bi_dram[current_bank - 1].start; 299 size = gd->bd->bi_dram[current_bank - 1].size; 300 301 gd->bd->bi_dram[current_bank - 1].start = 302 gd->bd->bi_dram[current_bank].start; 303 gd->bd->bi_dram[current_bank - 1].size = 304 gd->bd->bi_dram[current_bank].size; 305 306 gd->bd->bi_dram[current_bank].start = start; 307 gd->bd->bi_dram[current_bank].size = size; 308 } 309 current_bank--; 310 } 311 } 312 313 int dram_init_banksize(void) 314 { 315 sc_rm_mr_t mr; 316 sc_faddr_t start, end, end1, end2; 317 int i = 0; 318 int err; 319 320 end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE; 321 end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE; 322 323 for (mr = 0; mr < 64 && i < CONFIG_NR_DRAM_BANKS; mr++) { 324 err = get_owned_memreg(mr, &start, &end); 325 if (!err) { 326 start = roundup(start, MEMSTART_ALIGNMENT); 327 if (start > end) /* Small memory region, no use it */ 328 continue; 329 330 if (start >= PHYS_SDRAM_1 && start <= end1) { 331 gd->bd->bi_dram[i].start = start; 332 333 if ((end + 1) <= end1) 334 gd->bd->bi_dram[i].size = 335 end - start + 1; 336 else 337 gd->bd->bi_dram[i].size = end1 - start; 338 339 dram_bank_sort(i); 340 i++; 341 } else if (start >= PHYS_SDRAM_2 && start <= end2) { 342 gd->bd->bi_dram[i].start = start; 343 344 if ((end + 1) <= end2) 345 gd->bd->bi_dram[i].size = 346 end - start + 1; 347 else 348 gd->bd->bi_dram[i].size = end2 - start; 349 350 dram_bank_sort(i); 351 i++; 352 } 353 } 354 } 355 356 /* If error, set to the default value */ 357 if (!i) { 358 gd->bd->bi_dram[0].start = PHYS_SDRAM_1; 359 gd->bd->bi_dram[0].size = PHYS_SDRAM_1_SIZE; 360 gd->bd->bi_dram[1].start = PHYS_SDRAM_2; 361 gd->bd->bi_dram[1].size = PHYS_SDRAM_2_SIZE; 362 } 363 364 return 0; 365 } 366 367 static u64 get_block_attrs(sc_faddr_t addr_start) 368 { 369 u64 attr = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | 370 PTE_BLOCK_PXN | PTE_BLOCK_UXN; 371 372 if ((addr_start >= PHYS_SDRAM_1 && 373 addr_start <= ((sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE)) || 374 (addr_start >= PHYS_SDRAM_2 && 375 addr_start <= ((sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE))) 376 return (PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE); 377 378 return attr; 379 } 380 381 static u64 get_block_size(sc_faddr_t addr_start, sc_faddr_t addr_end) 382 { 383 sc_faddr_t end1, end2; 384 385 end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE; 386 end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE; 387 388 if (addr_start >= PHYS_SDRAM_1 && addr_start <= end1) { 389 if ((addr_end + 1) > end1) 390 return end1 - addr_start; 391 } else if (addr_start >= PHYS_SDRAM_2 && addr_start <= end2) { 392 if ((addr_end + 1) > end2) 393 return end2 - addr_start; 394 } 395 396 return (addr_end - addr_start + 1); 397 } 398 399 #define MAX_PTE_ENTRIES 512 400 #define MAX_MEM_MAP_REGIONS 16 401 402 static struct mm_region imx8_mem_map[MAX_MEM_MAP_REGIONS]; 403 struct mm_region *mem_map = imx8_mem_map; 404 405 void enable_caches(void) 406 { 407 sc_rm_mr_t mr; 408 sc_faddr_t start, end; 409 int err, i; 410 411 /* Create map for registers access from 0x1c000000 to 0x80000000*/ 412 imx8_mem_map[0].virt = 0x1c000000UL; 413 imx8_mem_map[0].phys = 0x1c000000UL; 414 imx8_mem_map[0].size = 0x64000000UL; 415 imx8_mem_map[0].attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | 416 PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN; 417 418 i = 1; 419 for (mr = 0; mr < 64 && i < MAX_MEM_MAP_REGIONS; mr++) { 420 err = get_owned_memreg(mr, &start, &end); 421 if (!err) { 422 imx8_mem_map[i].virt = start; 423 imx8_mem_map[i].phys = start; 424 imx8_mem_map[i].size = get_block_size(start, end); 425 imx8_mem_map[i].attrs = get_block_attrs(start); 426 i++; 427 } 428 } 429 430 if (i < MAX_MEM_MAP_REGIONS) { 431 imx8_mem_map[i].size = 0; 432 imx8_mem_map[i].attrs = 0; 433 } else { 434 puts("Error, need more MEM MAP REGIONS reserved\n"); 435 icache_enable(); 436 return; 437 } 438 439 for (i = 0; i < MAX_MEM_MAP_REGIONS; i++) { 440 debug("[%d] vir = 0x%llx phys = 0x%llx size = 0x%llx attrs = 0x%llx\n", 441 i, imx8_mem_map[i].virt, imx8_mem_map[i].phys, 442 imx8_mem_map[i].size, imx8_mem_map[i].attrs); 443 } 444 445 icache_enable(); 446 dcache_enable(); 447 } 448 449 #ifndef CONFIG_SYS_DCACHE_OFF 450 u64 get_page_table_size(void) 451 { 452 u64 one_pt = MAX_PTE_ENTRIES * sizeof(u64); 453 u64 size = 0; 454 455 /* 456 * For each memory region, the max table size: 457 * 2 level 3 tables + 2 level 2 tables + 1 level 1 table 458 */ 459 size = (2 + 2 + 1) * one_pt * MAX_MEM_MAP_REGIONS + one_pt; 460 461 /* 462 * We need to duplicate our page table once to have an emergency pt to 463 * resort to when splitting page tables later on 464 */ 465 size *= 2; 466 467 /* 468 * We may need to split page tables later on if dcache settings change, 469 * so reserve up to 4 (random pick) page tables for that. 470 */ 471 size += one_pt * 4; 472 473 return size; 474 } 475 #endif 476 477 #define FUSE_MAC0_WORD0 708 478 #define FUSE_MAC0_WORD1 709 479 #define FUSE_MAC1_WORD0 710 480 #define FUSE_MAC1_WORD1 711 481 482 void imx_get_mac_from_fuse(int dev_id, unsigned char *mac) 483 { 484 u32 word[2], val[2] = {}; 485 int i, ret; 486 487 if (dev_id == 0) { 488 word[0] = FUSE_MAC0_WORD0; 489 word[1] = FUSE_MAC0_WORD1; 490 } else { 491 word[0] = FUSE_MAC1_WORD0; 492 word[1] = FUSE_MAC1_WORD1; 493 } 494 495 for (i = 0; i < 2; i++) { 496 ret = sc_misc_otp_fuse_read(-1, word[i], &val[i]); 497 if (ret < 0) 498 goto err; 499 } 500 501 mac[0] = val[0]; 502 mac[1] = val[0] >> 8; 503 mac[2] = val[0] >> 16; 504 mac[3] = val[0] >> 24; 505 mac[4] = val[1]; 506 mac[5] = val[1] >> 8; 507 508 debug("%s: MAC%d: %02x.%02x.%02x.%02x.%02x.%02x\n", 509 __func__, dev_id, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]); 510 return; 511 err: 512 printf("%s: fuse %d, err: %d\n", __func__, word[i], ret); 513 } 514 515 u32 get_cpu_rev(void) 516 { 517 u32 id = 0, rev = 0; 518 int ret; 519 520 ret = sc_misc_get_control(-1, SC_R_SYSTEM, SC_C_ID, &id); 521 if (ret) 522 return 0; 523 524 rev = (id >> 5) & 0xf; 525 id = (id & 0x1f) + MXC_SOC_IMX8; /* Dummy ID for chip */ 526 527 return (id << 12) | rev; 528 } 529 530 #if CONFIG_IS_ENABLED(CPU) 531 struct cpu_imx_platdata { 532 const char *name; 533 const char *rev; 534 const char *type; 535 u32 cpurev; 536 u32 freq_mhz; 537 }; 538 539 const char *get_imx8_type(u32 imxtype) 540 { 541 switch (imxtype) { 542 case MXC_CPU_IMX8QXP: 543 case MXC_CPU_IMX8QXP_A0: 544 return "QXP"; 545 default: 546 return "??"; 547 } 548 } 549 550 const char *get_imx8_rev(u32 rev) 551 { 552 switch (rev) { 553 case CHIP_REV_A: 554 return "A"; 555 case CHIP_REV_B: 556 return "B"; 557 default: 558 return "?"; 559 } 560 } 561 562 const char *get_core_name(void) 563 { 564 if (is_cortex_a35()) 565 return "A35"; 566 else if (is_cortex_a53()) 567 return "A53"; 568 else if (is_cortex_a72()) 569 return "A72"; 570 else 571 return "?"; 572 } 573 574 int cpu_imx_get_desc(struct udevice *dev, char *buf, int size) 575 { 576 struct cpu_imx_platdata *plat = dev_get_platdata(dev); 577 578 if (size < 100) 579 return -ENOSPC; 580 581 snprintf(buf, size, "NXP i.MX8%s Rev%s %s at %u MHz\n", 582 plat->type, plat->rev, plat->name, plat->freq_mhz); 583 584 return 0; 585 } 586 587 static int cpu_imx_get_info(struct udevice *dev, struct cpu_info *info) 588 { 589 struct cpu_imx_platdata *plat = dev_get_platdata(dev); 590 591 info->cpu_freq = plat->freq_mhz * 1000; 592 info->features = BIT(CPU_FEAT_L1_CACHE) | BIT(CPU_FEAT_MMU); 593 return 0; 594 } 595 596 static int cpu_imx_get_count(struct udevice *dev) 597 { 598 return 4; 599 } 600 601 static int cpu_imx_get_vendor(struct udevice *dev, char *buf, int size) 602 { 603 snprintf(buf, size, "NXP"); 604 return 0; 605 } 606 607 static const struct cpu_ops cpu_imx8_ops = { 608 .get_desc = cpu_imx_get_desc, 609 .get_info = cpu_imx_get_info, 610 .get_count = cpu_imx_get_count, 611 .get_vendor = cpu_imx_get_vendor, 612 }; 613 614 static const struct udevice_id cpu_imx8_ids[] = { 615 { .compatible = "arm,cortex-a35" }, 616 { } 617 }; 618 619 static ulong imx8_get_cpu_rate(void) 620 { 621 ulong rate; 622 int ret; 623 624 ret = sc_pm_get_clock_rate(-1, SC_R_A35, SC_PM_CLK_CPU, 625 (sc_pm_clock_rate_t *)&rate); 626 if (ret) { 627 printf("Could not read CPU frequency: %d\n", ret); 628 return 0; 629 } 630 631 return rate; 632 } 633 634 static int imx8_cpu_probe(struct udevice *dev) 635 { 636 struct cpu_imx_platdata *plat = dev_get_platdata(dev); 637 u32 cpurev; 638 639 cpurev = get_cpu_rev(); 640 plat->cpurev = cpurev; 641 plat->name = get_core_name(); 642 plat->rev = get_imx8_rev(cpurev & 0xFFF); 643 plat->type = get_imx8_type((cpurev & 0xFF000) >> 12); 644 plat->freq_mhz = imx8_get_cpu_rate() / 1000000; 645 return 0; 646 } 647 648 U_BOOT_DRIVER(cpu_imx8_drv) = { 649 .name = "imx8x_cpu", 650 .id = UCLASS_CPU, 651 .of_match = cpu_imx8_ids, 652 .ops = &cpu_imx8_ops, 653 .probe = imx8_cpu_probe, 654 .platdata_auto_alloc_size = sizeof(struct cpu_imx_platdata), 655 .flags = DM_FLAG_PRE_RELOC, 656 }; 657 #endif 658