1 /*
2  * Copyright 2014-2015 Freescale Semiconductor, Inc.
3  *
4  * SPDX-License-Identifier:	GPL-2.0+
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <linux/errno.h>
10 #include <asm/system.h>
11 #include <asm/armv8/mmu.h>
12 #include <asm/io.h>
13 #include <asm/arch/fsl_serdes.h>
14 #include <asm/arch/soc.h>
15 #include <asm/arch/cpu.h>
16 #include <asm/arch/speed.h>
17 #ifdef CONFIG_MP
18 #include <asm/arch/mp.h>
19 #endif
20 #include <fm_eth.h>
21 #include <fsl-mc/fsl_mc.h>
22 #ifdef CONFIG_FSL_ESDHC
23 #include <fsl_esdhc.h>
24 #endif
25 #ifdef CONFIG_ARMV8_SEC_FIRMWARE_SUPPORT
26 #include <asm/armv8/sec_firmware.h>
27 #endif
28 
29 DECLARE_GLOBAL_DATA_PTR;
30 
31 struct mm_region *mem_map = early_map;
32 
33 void cpu_name(char *name)
34 {
35 	struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
36 	unsigned int i, svr, ver;
37 
38 	svr = gur_in32(&gur->svr);
39 	ver = SVR_SOC_VER(svr);
40 
41 	for (i = 0; i < ARRAY_SIZE(cpu_type_list); i++)
42 		if ((cpu_type_list[i].soc_ver & SVR_WO_E) == ver) {
43 			strcpy(name, cpu_type_list[i].name);
44 
45 			if (IS_E_PROCESSOR(svr))
46 				strcat(name, "E");
47 			break;
48 		}
49 
50 	if (i == ARRAY_SIZE(cpu_type_list))
51 		strcpy(name, "unknown");
52 }
53 
54 #ifndef CONFIG_SYS_DCACHE_OFF
55 /*
56  * To start MMU before DDR is available, we create MMU table in SRAM.
57  * The base address of SRAM is CONFIG_SYS_FSL_OCRAM_BASE. We use three
58  * levels of translation tables here to cover 40-bit address space.
59  * We use 4KB granule size, with 40 bits physical address, T0SZ=24
60  * Address above EARLY_PGTABLE_SIZE (0x5000) is free for other purpose.
61  * Note, the debug print in cache_v8.c is not usable for debugging
62  * these early MMU tables because UART is not yet available.
63  */
64 static inline void early_mmu_setup(void)
65 {
66 	unsigned int el = current_el();
67 
68 	/* global data is already setup, no allocation yet */
69 	gd->arch.tlb_addr = CONFIG_SYS_FSL_OCRAM_BASE;
70 	gd->arch.tlb_fillptr = gd->arch.tlb_addr;
71 	gd->arch.tlb_size = EARLY_PGTABLE_SIZE;
72 
73 	/* Create early page tables */
74 	setup_pgtables();
75 
76 	/* point TTBR to the new table */
77 	set_ttbr_tcr_mair(el, gd->arch.tlb_addr,
78 			  get_tcr(el, NULL, NULL) &
79 			  ~(TCR_ORGN_MASK | TCR_IRGN_MASK),
80 			  MEMORY_ATTRIBUTES);
81 
82 	set_sctlr(get_sctlr() | CR_M);
83 }
84 
85 /*
86  * The final tables look similar to early tables, but different in detail.
87  * These tables are in DRAM. Sub tables are added to enable cache for
88  * QBMan and OCRAM.
89  *
90  * Put the MMU table in secure memory if gd->arch.secure_ram is valid.
91  * OCRAM will be not used for this purpose so gd->arch.secure_ram can't be 0.
92  */
93 static inline void final_mmu_setup(void)
94 {
95 	u64 tlb_addr_save = gd->arch.tlb_addr;
96 	unsigned int el = current_el();
97 #ifdef CONFIG_SYS_MEM_RESERVE_SECURE
98 	int index;
99 #endif
100 
101 	mem_map = final_map;
102 
103 #ifdef CONFIG_SYS_MEM_RESERVE_SECURE
104 	if (gd->arch.secure_ram & MEM_RESERVE_SECURE_MAINTAINED) {
105 		if (el == 3) {
106 			/*
107 			 * Only use gd->arch.secure_ram if the address is
108 			 * recalculated. Align to 4KB for MMU table.
109 			 */
110 			/* put page tables in secure ram */
111 			index = ARRAY_SIZE(final_map) - 2;
112 			gd->arch.tlb_addr = gd->arch.secure_ram & ~0xfff;
113 			final_map[index].virt = gd->arch.secure_ram & ~0x3;
114 			final_map[index].phys = final_map[index].virt;
115 			final_map[index].size = CONFIG_SYS_MEM_RESERVE_SECURE;
116 			final_map[index].attrs = PTE_BLOCK_OUTER_SHARE;
117 			gd->arch.secure_ram |= MEM_RESERVE_SECURE_SECURED;
118 			tlb_addr_save = gd->arch.tlb_addr;
119 		} else {
120 			/* Use allocated (board_f.c) memory for TLB */
121 			tlb_addr_save = gd->arch.tlb_allocated;
122 			gd->arch.tlb_addr = tlb_addr_save;
123 		}
124 	}
125 #endif
126 
127 	/* Reset the fill ptr */
128 	gd->arch.tlb_fillptr = tlb_addr_save;
129 
130 	/* Create normal system page tables */
131 	setup_pgtables();
132 
133 	/* Create emergency page tables */
134 	gd->arch.tlb_addr = gd->arch.tlb_fillptr;
135 	gd->arch.tlb_emerg = gd->arch.tlb_addr;
136 	setup_pgtables();
137 	gd->arch.tlb_addr = tlb_addr_save;
138 
139 	/* flush new MMU table */
140 	flush_dcache_range(gd->arch.tlb_addr,
141 			   gd->arch.tlb_addr + gd->arch.tlb_size);
142 
143 	/* point TTBR to the new table */
144 	set_ttbr_tcr_mair(el, gd->arch.tlb_addr, get_tcr(el, NULL, NULL),
145 			  MEMORY_ATTRIBUTES);
146 	/*
147 	 * EL3 MMU is already enabled, just need to invalidate TLB to load the
148 	 * new table. The new table is compatible with the current table, if
149 	 * MMU somehow walks through the new table before invalidation TLB,
150 	 * it still works. So we don't need to turn off MMU here.
151 	 * When EL2 MMU table is created by calling this function, MMU needs
152 	 * to be enabled.
153 	 */
154 	set_sctlr(get_sctlr() | CR_M);
155 }
156 
157 u64 get_page_table_size(void)
158 {
159 	return 0x10000;
160 }
161 
162 int arch_cpu_init(void)
163 {
164 	icache_enable();
165 	__asm_invalidate_dcache_all();
166 	__asm_invalidate_tlb_all();
167 	early_mmu_setup();
168 	set_sctlr(get_sctlr() | CR_C);
169 	return 0;
170 }
171 
172 void mmu_setup(void)
173 {
174 	final_mmu_setup();
175 }
176 
177 /*
178  * This function is called from common/board_r.c.
179  * It recreates MMU table in main memory.
180  */
181 void enable_caches(void)
182 {
183 	mmu_setup();
184 	__asm_invalidate_tlb_all();
185 	icache_enable();
186 	dcache_enable();
187 }
188 #endif
189 
190 static inline u32 initiator_type(u32 cluster, int init_id)
191 {
192 	struct ccsr_gur *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
193 	u32 idx = (cluster >> (init_id * 8)) & TP_CLUSTER_INIT_MASK;
194 	u32 type = 0;
195 
196 	type = gur_in32(&gur->tp_ityp[idx]);
197 	if (type & TP_ITYP_AV)
198 		return type;
199 
200 	return 0;
201 }
202 
203 u32 cpu_mask(void)
204 {
205 	struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
206 	int i = 0, count = 0;
207 	u32 cluster, type, mask = 0;
208 
209 	do {
210 		int j;
211 
212 		cluster = gur_in32(&gur->tp_cluster[i].lower);
213 		for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
214 			type = initiator_type(cluster, j);
215 			if (type) {
216 				if (TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM)
217 					mask |= 1 << count;
218 				count++;
219 			}
220 		}
221 		i++;
222 	} while ((cluster & TP_CLUSTER_EOC) == 0x0);
223 
224 	return mask;
225 }
226 
227 /*
228  * Return the number of cores on this SOC.
229  */
230 int cpu_numcores(void)
231 {
232 	return hweight32(cpu_mask());
233 }
234 
235 int fsl_qoriq_core_to_cluster(unsigned int core)
236 {
237 	struct ccsr_gur __iomem *gur =
238 		(void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR);
239 	int i = 0, count = 0;
240 	u32 cluster;
241 
242 	do {
243 		int j;
244 
245 		cluster = gur_in32(&gur->tp_cluster[i].lower);
246 		for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
247 			if (initiator_type(cluster, j)) {
248 				if (count == core)
249 					return i;
250 				count++;
251 			}
252 		}
253 		i++;
254 	} while ((cluster & TP_CLUSTER_EOC) == 0x0);
255 
256 	return -1;      /* cannot identify the cluster */
257 }
258 
259 u32 fsl_qoriq_core_to_type(unsigned int core)
260 {
261 	struct ccsr_gur __iomem *gur =
262 		(void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR);
263 	int i = 0, count = 0;
264 	u32 cluster, type;
265 
266 	do {
267 		int j;
268 
269 		cluster = gur_in32(&gur->tp_cluster[i].lower);
270 		for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
271 			type = initiator_type(cluster, j);
272 			if (type) {
273 				if (count == core)
274 					return type;
275 				count++;
276 			}
277 		}
278 		i++;
279 	} while ((cluster & TP_CLUSTER_EOC) == 0x0);
280 
281 	return -1;      /* cannot identify the cluster */
282 }
283 
284 uint get_svr(void)
285 {
286 	struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
287 
288 	return gur_in32(&gur->svr);
289 }
290 
291 #ifdef CONFIG_DISPLAY_CPUINFO
292 int print_cpuinfo(void)
293 {
294 	struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
295 	struct sys_info sysinfo;
296 	char buf[32];
297 	unsigned int i, core;
298 	u32 type, rcw, svr = gur_in32(&gur->svr);
299 
300 	puts("SoC: ");
301 
302 	cpu_name(buf);
303 	printf(" %s (0x%x)\n", buf, svr);
304 	memset((u8 *)buf, 0x00, ARRAY_SIZE(buf));
305 	get_sys_info(&sysinfo);
306 	puts("Clock Configuration:");
307 	for_each_cpu(i, core, cpu_numcores(), cpu_mask()) {
308 		if (!(i % 3))
309 			puts("\n       ");
310 		type = TP_ITYP_VER(fsl_qoriq_core_to_type(core));
311 		printf("CPU%d(%s):%-4s MHz  ", core,
312 		       type == TY_ITYP_VER_A7 ? "A7 " :
313 		       (type == TY_ITYP_VER_A53 ? "A53" :
314 		       (type == TY_ITYP_VER_A57 ? "A57" :
315 		       (type == TY_ITYP_VER_A72 ? "A72" : "   "))),
316 		       strmhz(buf, sysinfo.freq_processor[core]));
317 	}
318 	printf("\n       Bus:      %-4s MHz  ",
319 	       strmhz(buf, sysinfo.freq_systembus));
320 	printf("DDR:      %-4s MT/s", strmhz(buf, sysinfo.freq_ddrbus));
321 #ifdef CONFIG_SYS_DPAA_FMAN
322 	printf("  FMAN:     %-4s MHz", strmhz(buf, sysinfo.freq_fman[0]));
323 #endif
324 #ifdef CONFIG_SYS_FSL_HAS_DP_DDR
325 	if (soc_has_dp_ddr()) {
326 		printf("     DP-DDR:   %-4s MT/s",
327 		       strmhz(buf, sysinfo.freq_ddrbus2));
328 	}
329 #endif
330 	puts("\n");
331 
332 	/*
333 	 * Display the RCW, so that no one gets confused as to what RCW
334 	 * we're actually using for this boot.
335 	 */
336 	puts("Reset Configuration Word (RCW):");
337 	for (i = 0; i < ARRAY_SIZE(gur->rcwsr); i++) {
338 		rcw = gur_in32(&gur->rcwsr[i]);
339 		if ((i % 4) == 0)
340 			printf("\n       %08x:", i * 4);
341 		printf(" %08x", rcw);
342 	}
343 	puts("\n");
344 
345 	return 0;
346 }
347 #endif
348 
349 #ifdef CONFIG_FSL_ESDHC
350 int cpu_mmc_init(bd_t *bis)
351 {
352 	return fsl_esdhc_mmc_init(bis);
353 }
354 #endif
355 
356 int cpu_eth_init(bd_t *bis)
357 {
358 	int error = 0;
359 
360 #ifdef CONFIG_FSL_MC_ENET
361 	error = fsl_mc_ldpaa_init(bis);
362 #endif
363 #ifdef CONFIG_FMAN_ENET
364 	fm_standard_init(bis);
365 #endif
366 	return error;
367 }
368 
369 int arch_early_init_r(void)
370 {
371 #ifdef CONFIG_MP
372 	int rv = 1;
373 	u32 psci_ver = 0xffffffff;
374 #endif
375 
376 #ifdef CONFIG_SYS_FSL_ERRATUM_A009635
377 	erratum_a009635();
378 #endif
379 
380 #ifdef CONFIG_MP
381 #if defined(CONFIG_ARMV8_SEC_FIRMWARE_SUPPORT) && defined(CONFIG_ARMV8_PSCI)
382 	/* Check the psci version to determine if the psci is supported */
383 	psci_ver = sec_firmware_support_psci_version();
384 #endif
385 	if (psci_ver == 0xffffffff) {
386 		rv = fsl_layerscape_wake_seconday_cores();
387 		if (rv)
388 			printf("Did not wake secondary cores\n");
389 	}
390 #endif
391 
392 #ifdef CONFIG_SYS_HAS_SERDES
393 	fsl_serdes_init();
394 #endif
395 #ifdef CONFIG_FMAN_ENET
396 	fman_enet_init();
397 #endif
398 	return 0;
399 }
400 
401 int timer_init(void)
402 {
403 	u32 __iomem *cntcr = (u32 *)CONFIG_SYS_FSL_TIMER_ADDR;
404 #ifdef CONFIG_FSL_LSCH3
405 	u32 __iomem *cltbenr = (u32 *)CONFIG_SYS_FSL_PMU_CLTBENR;
406 #endif
407 #ifdef CONFIG_LS2080A
408 	u32 __iomem *pctbenr = (u32 *)FSL_PMU_PCTBENR_OFFSET;
409 #endif
410 #ifdef COUNTER_FREQUENCY_REAL
411 	unsigned long cntfrq = COUNTER_FREQUENCY_REAL;
412 
413 	/* Update with accurate clock frequency */
414 	asm volatile("msr cntfrq_el0, %0" : : "r" (cntfrq) : "memory");
415 #endif
416 
417 #ifdef CONFIG_FSL_LSCH3
418 	/* Enable timebase for all clusters.
419 	 * It is safe to do so even some clusters are not enabled.
420 	 */
421 	out_le32(cltbenr, 0xf);
422 #endif
423 
424 #ifdef CONFIG_LS2080A
425 	/*
426 	 * In certain Layerscape SoCs, the clock for each core's
427 	 * has an enable bit in the PMU Physical Core Time Base Enable
428 	 * Register (PCTBENR), which allows the watchdog to operate.
429 	 */
430 	setbits_le32(pctbenr, 0xff);
431 #endif
432 
433 	/* Enable clock for timer
434 	 * This is a global setting.
435 	 */
436 	out_le32(cntcr, 0x1);
437 
438 	return 0;
439 }
440 
441 void reset_cpu(ulong addr)
442 {
443 	u32 __iomem *rstcr = (u32 *)CONFIG_SYS_FSL_RST_ADDR;
444 	u32 val;
445 
446 	/* Raise RESET_REQ_B */
447 	val = scfg_in32(rstcr);
448 	val |= 0x02;
449 	scfg_out32(rstcr, val);
450 }
451 
452 phys_size_t board_reserve_ram_top(phys_size_t ram_size)
453 {
454 	phys_size_t ram_top = ram_size;
455 
456 #ifdef CONFIG_SYS_MEM_TOP_HIDE
457 #error CONFIG_SYS_MEM_TOP_HIDE not to be used together with this function
458 #endif
459 
460 /* Carve the MC private DRAM block from the end of DRAM */
461 #ifdef CONFIG_FSL_MC_ENET
462 	ram_top -= mc_get_dram_block_size();
463 	ram_top &= ~(CONFIG_SYS_MC_RSV_MEM_ALIGN - 1);
464 #endif
465 
466 	return ram_top;
467 }
468