xref: /openbmc/u-boot/arch/arm/cpu/armv8/fsl-layerscape/cpu.c (revision 225f5eeccd6c0d376a20c15897edd8c69500d8cc)
1 /*
2  * Copyright 2014-2015 Freescale Semiconductor, Inc.
3  *
4  * SPDX-License-Identifier:	GPL-2.0+
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/errno.h>
10 #include <asm/system.h>
11 #include <asm/armv8/mmu.h>
12 #include <asm/io.h>
13 #include <asm/arch/fsl_serdes.h>
14 #include <asm/arch/soc.h>
15 #include <asm/arch/cpu.h>
16 #include <asm/arch/speed.h>
17 #ifdef CONFIG_MP
18 #include <asm/arch/mp.h>
19 #endif
20 #include <fm_eth.h>
21 #include <fsl_debug_server.h>
22 #include <fsl-mc/fsl_mc.h>
23 #ifdef CONFIG_FSL_ESDHC
24 #include <fsl_esdhc.h>
25 #endif
26 
27 DECLARE_GLOBAL_DATA_PTR;
28 
29 void cpu_name(char *name)
30 {
31 	struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
32 	unsigned int i, svr, ver;
33 
34 	svr = gur_in32(&gur->svr);
35 	ver = SVR_SOC_VER(svr);
36 
37 	for (i = 0; i < ARRAY_SIZE(cpu_type_list); i++)
38 		if ((cpu_type_list[i].soc_ver & SVR_WO_E) == ver) {
39 			strcpy(name, cpu_type_list[i].name);
40 
41 			if (IS_E_PROCESSOR(svr))
42 				strcat(name, "E");
43 			break;
44 		}
45 
46 	if (i == ARRAY_SIZE(cpu_type_list))
47 		strcpy(name, "unknown");
48 }
49 
50 #ifndef CONFIG_SYS_DCACHE_OFF
51 /*
52  * Set the block entries according to the information of the table.
53  */
54 static int set_block_entry(const struct sys_mmu_table *list,
55 			   struct table_info *table)
56 {
57 	u64 block_size = 0, block_shift = 0;
58 	u64 block_addr, index;
59 	int j;
60 
61 	if (table->entry_size == BLOCK_SIZE_L1) {
62 		block_size = BLOCK_SIZE_L1;
63 		block_shift = SECTION_SHIFT_L1;
64 	} else if (table->entry_size == BLOCK_SIZE_L2) {
65 		block_size = BLOCK_SIZE_L2;
66 		block_shift = SECTION_SHIFT_L2;
67 	} else {
68 		return -EINVAL;
69 	}
70 
71 	block_addr = list->phys_addr;
72 	index = (list->virt_addr - table->table_base) >> block_shift;
73 
74 	for (j = 0; j < (list->size >> block_shift); j++) {
75 		set_pgtable_section(table->ptr,
76 				    index,
77 				    block_addr,
78 				    list->memory_type,
79 				    list->share);
80 		block_addr += block_size;
81 		index++;
82 	}
83 
84 	return 0;
85 }
86 
87 /*
88  * Find the corresponding table entry for the list.
89  */
90 static int find_table(const struct sys_mmu_table *list,
91 		      struct table_info *table, u64 *level0_table)
92 {
93 	u64 index = 0, level = 0;
94 	u64 *level_table = level0_table;
95 	u64 temp_base = 0, block_size = 0, block_shift = 0;
96 
97 	while (level < 3) {
98 		if (level == 0) {
99 			block_size = BLOCK_SIZE_L0;
100 			block_shift = SECTION_SHIFT_L0;
101 		} else if (level == 1) {
102 			block_size = BLOCK_SIZE_L1;
103 			block_shift = SECTION_SHIFT_L1;
104 		} else if (level == 2) {
105 			block_size = BLOCK_SIZE_L2;
106 			block_shift = SECTION_SHIFT_L2;
107 		}
108 
109 		index = 0;
110 		while (list->virt_addr >= temp_base) {
111 			index++;
112 			temp_base += block_size;
113 		}
114 
115 		temp_base -= block_size;
116 
117 		if ((level_table[index - 1] & PMD_TYPE_MASK) ==
118 		    PMD_TYPE_TABLE) {
119 			level_table = (u64 *)(level_table[index - 1] &
120 				      ~PMD_TYPE_MASK);
121 			level++;
122 			continue;
123 		} else {
124 			if (level == 0)
125 				return -EINVAL;
126 
127 			if ((list->phys_addr + list->size) >
128 			    (temp_base + block_size * NUM_OF_ENTRY))
129 				return -EINVAL;
130 
131 			/*
132 			 * Check the address and size of the list member is
133 			 * aligned with the block size.
134 			 */
135 			if (((list->phys_addr & (block_size - 1)) != 0) ||
136 			    ((list->size & (block_size - 1)) != 0))
137 				return -EINVAL;
138 
139 			table->ptr = level_table;
140 			table->table_base = temp_base -
141 					    ((index - 1) << block_shift);
142 			table->entry_size = block_size;
143 
144 			return 0;
145 		}
146 	}
147 	return -EINVAL;
148 }
149 
150 /*
151  * To start MMU before DDR is available, we create MMU table in SRAM.
152  * The base address of SRAM is CONFIG_SYS_FSL_OCRAM_BASE. We use three
153  * levels of translation tables here to cover 40-bit address space.
154  * We use 4KB granule size, with 40 bits physical address, T0SZ=24
155  * Level 0 IA[39], table address @0
156  * Level 1 IA[38:30], table address @0x1000, 0x2000
157  * Level 2 IA[29:21], table address @0x3000, 0x4000
158  * Address above 0x5000 is free for other purpose.
159  */
160 static inline void early_mmu_setup(void)
161 {
162 	unsigned int el, i;
163 	u64 *level0_table = (u64 *)CONFIG_SYS_FSL_OCRAM_BASE;
164 	u64 *level1_table0 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x1000);
165 	u64 *level1_table1 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x2000);
166 	u64 *level2_table0 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x3000);
167 	u64 *level2_table1 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x4000);
168 
169 	struct table_info table = {level0_table, 0, BLOCK_SIZE_L0};
170 
171 	/* Invalidate all table entries */
172 	memset(level0_table, 0, 0x5000);
173 
174 	/* Fill in the table entries */
175 	set_pgtable_table(level0_table, 0, level1_table0);
176 	set_pgtable_table(level0_table, 1, level1_table1);
177 	set_pgtable_table(level1_table0, 0, level2_table0);
178 
179 #ifdef CONFIG_FSL_LSCH3
180 	set_pgtable_table(level1_table0,
181 			  CONFIG_SYS_FLASH_BASE >> SECTION_SHIFT_L1,
182 			  level2_table1);
183 #elif defined(CONFIG_FSL_LSCH2)
184 	set_pgtable_table(level1_table0, 1, level2_table1);
185 #endif
186 	/* Find the table and fill in the block entries */
187 	for (i = 0; i < ARRAY_SIZE(early_mmu_table); i++) {
188 		if (find_table(&early_mmu_table[i],
189 			       &table, level0_table) == 0) {
190 			/*
191 			 * If find_table() returns error, it cannot be dealt
192 			 * with here. Breakpoint can be added for debugging.
193 			 */
194 			set_block_entry(&early_mmu_table[i], &table);
195 			/*
196 			 * If set_block_entry() returns error, it cannot be
197 			 * dealt with here too.
198 			 */
199 		}
200 	}
201 
202 	el = current_el();
203 
204 	set_ttbr_tcr_mair(el, (u64)level0_table, LAYERSCAPE_TCR,
205 			  MEMORY_ATTRIBUTES);
206 	set_sctlr(get_sctlr() | CR_M);
207 }
208 
209 /*
210  * The final tables look similar to early tables, but different in detail.
211  * These tables are in DRAM. Sub tables are added to enable cache for
212  * QBMan and OCRAM.
213  *
214  * Level 1 table 0 contains 512 entries for each 1GB from 0 to 512GB.
215  * Level 1 table 1 contains 512 entries for each 1GB from 512GB to 1TB.
216  * Level 2 table 0 contains 512 entries for each 2MB from 0 to 1GB.
217  *
218  * For LSCH3:
219  * Level 2 table 1 contains 512 entries for each 2MB from 32GB to 33GB.
220  * For LSCH2:
221  * Level 2 table 1 contains 512 entries for each 2MB from 1GB to 2GB.
222  * Level 2 table 2 contains 512 entries for each 2MB from 20GB to 21GB.
223  */
224 static inline void final_mmu_setup(void)
225 {
226 	unsigned int el, i;
227 	u64 *level0_table = (u64 *)gd->arch.tlb_addr;
228 	u64 *level1_table0 = (u64 *)(gd->arch.tlb_addr + 0x1000);
229 	u64 *level1_table1 = (u64 *)(gd->arch.tlb_addr + 0x2000);
230 	u64 *level2_table0 = (u64 *)(gd->arch.tlb_addr + 0x3000);
231 #ifdef CONFIG_FSL_LSCH3
232 	u64 *level2_table1 = (u64 *)(gd->arch.tlb_addr + 0x4000);
233 #elif defined(CONFIG_FSL_LSCH2)
234 	u64 *level2_table1 = (u64 *)(gd->arch.tlb_addr + 0x4000);
235 	u64 *level2_table2 = (u64 *)(gd->arch.tlb_addr + 0x5000);
236 #endif
237 	struct table_info table = {level0_table, 0, BLOCK_SIZE_L0};
238 
239 	/* Invalidate all table entries */
240 	memset(level0_table, 0, PGTABLE_SIZE);
241 
242 	/* Fill in the table entries */
243 	set_pgtable_table(level0_table, 0, level1_table0);
244 	set_pgtable_table(level0_table, 1, level1_table1);
245 	set_pgtable_table(level1_table0, 0, level2_table0);
246 #ifdef CONFIG_FSL_LSCH3
247 	set_pgtable_table(level1_table0,
248 			  CONFIG_SYS_FSL_QBMAN_BASE >> SECTION_SHIFT_L1,
249 			  level2_table1);
250 #elif defined(CONFIG_FSL_LSCH2)
251 	set_pgtable_table(level1_table0, 1, level2_table1);
252 	set_pgtable_table(level1_table0,
253 			  CONFIG_SYS_FSL_QBMAN_BASE >> SECTION_SHIFT_L1,
254 			  level2_table2);
255 #endif
256 
257 	/* Find the table and fill in the block entries */
258 	for (i = 0; i < ARRAY_SIZE(final_mmu_table); i++) {
259 		if (find_table(&final_mmu_table[i],
260 			       &table, level0_table) == 0) {
261 			if (set_block_entry(&final_mmu_table[i],
262 					    &table) != 0) {
263 				printf("MMU error: could not set block entry for %p\n",
264 				       &final_mmu_table[i]);
265 			}
266 
267 		} else {
268 			printf("MMU error: could not find the table for %p\n",
269 			       &final_mmu_table[i]);
270 		}
271 	}
272 
273 	/* flush new MMU table */
274 	flush_dcache_range(gd->arch.tlb_addr,
275 			   gd->arch.tlb_addr + gd->arch.tlb_size);
276 
277 #ifdef CONFIG_SYS_DPAA_FMAN
278 	flush_dcache_all();
279 #endif
280 	/* point TTBR to the new table */
281 	el = current_el();
282 
283 	set_ttbr_tcr_mair(el, (u64)level0_table, LAYERSCAPE_TCR_FINAL,
284 			  MEMORY_ATTRIBUTES);
285 	/*
286 	 * MMU is already enabled, just need to invalidate TLB to load the
287 	 * new table. The new table is compatible with the current table, if
288 	 * MMU somehow walks through the new table before invalidation TLB,
289 	 * it still works. So we don't need to turn off MMU here.
290 	 */
291 }
292 
293 int arch_cpu_init(void)
294 {
295 	icache_enable();
296 	__asm_invalidate_dcache_all();
297 	__asm_invalidate_tlb_all();
298 	early_mmu_setup();
299 	set_sctlr(get_sctlr() | CR_C);
300 	return 0;
301 }
302 
303 /*
304  * This function is called from lib/board.c.
305  * It recreates MMU table in main memory. MMU and d-cache are enabled earlier.
306  * There is no need to disable d-cache for this operation.
307  */
308 void enable_caches(void)
309 {
310 	final_mmu_setup();
311 	__asm_invalidate_tlb_all();
312 }
313 #endif
314 
315 static inline u32 initiator_type(u32 cluster, int init_id)
316 {
317 	struct ccsr_gur *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
318 	u32 idx = (cluster >> (init_id * 8)) & TP_CLUSTER_INIT_MASK;
319 	u32 type = 0;
320 
321 	type = gur_in32(&gur->tp_ityp[idx]);
322 	if (type & TP_ITYP_AV)
323 		return type;
324 
325 	return 0;
326 }
327 
328 u32 cpu_mask(void)
329 {
330 	struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
331 	int i = 0, count = 0;
332 	u32 cluster, type, mask = 0;
333 
334 	do {
335 		int j;
336 
337 		cluster = gur_in32(&gur->tp_cluster[i].lower);
338 		for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
339 			type = initiator_type(cluster, j);
340 			if (type) {
341 				if (TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM)
342 					mask |= 1 << count;
343 				count++;
344 			}
345 		}
346 		i++;
347 	} while ((cluster & TP_CLUSTER_EOC) == 0x0);
348 
349 	return mask;
350 }
351 
352 /*
353  * Return the number of cores on this SOC.
354  */
355 int cpu_numcores(void)
356 {
357 	return hweight32(cpu_mask());
358 }
359 
360 int fsl_qoriq_core_to_cluster(unsigned int core)
361 {
362 	struct ccsr_gur __iomem *gur =
363 		(void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR);
364 	int i = 0, count = 0;
365 	u32 cluster;
366 
367 	do {
368 		int j;
369 
370 		cluster = gur_in32(&gur->tp_cluster[i].lower);
371 		for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
372 			if (initiator_type(cluster, j)) {
373 				if (count == core)
374 					return i;
375 				count++;
376 			}
377 		}
378 		i++;
379 	} while ((cluster & TP_CLUSTER_EOC) == 0x0);
380 
381 	return -1;      /* cannot identify the cluster */
382 }
383 
384 u32 fsl_qoriq_core_to_type(unsigned int core)
385 {
386 	struct ccsr_gur __iomem *gur =
387 		(void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR);
388 	int i = 0, count = 0;
389 	u32 cluster, type;
390 
391 	do {
392 		int j;
393 
394 		cluster = gur_in32(&gur->tp_cluster[i].lower);
395 		for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
396 			type = initiator_type(cluster, j);
397 			if (type) {
398 				if (count == core)
399 					return type;
400 				count++;
401 			}
402 		}
403 		i++;
404 	} while ((cluster & TP_CLUSTER_EOC) == 0x0);
405 
406 	return -1;      /* cannot identify the cluster */
407 }
408 
409 #ifdef CONFIG_DISPLAY_CPUINFO
410 int print_cpuinfo(void)
411 {
412 	struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
413 	struct sys_info sysinfo;
414 	char buf[32];
415 	unsigned int i, core;
416 	u32 type, rcw;
417 
418 	puts("SoC: ");
419 
420 	cpu_name(buf);
421 	printf(" %s (0x%x)\n", buf, gur_in32(&gur->svr));
422 	memset((u8 *)buf, 0x00, ARRAY_SIZE(buf));
423 	get_sys_info(&sysinfo);
424 	puts("Clock Configuration:");
425 	for_each_cpu(i, core, cpu_numcores(), cpu_mask()) {
426 		if (!(i % 3))
427 			puts("\n       ");
428 		type = TP_ITYP_VER(fsl_qoriq_core_to_type(core));
429 		printf("CPU%d(%s):%-4s MHz  ", core,
430 		       type == TY_ITYP_VER_A7 ? "A7 " :
431 		       (type == TY_ITYP_VER_A53 ? "A53" :
432 			(type == TY_ITYP_VER_A57 ? "A57" : "   ")),
433 		       strmhz(buf, sysinfo.freq_processor[core]));
434 	}
435 	printf("\n       Bus:      %-4s MHz  ",
436 	       strmhz(buf, sysinfo.freq_systembus));
437 	printf("DDR:      %-4s MT/s", strmhz(buf, sysinfo.freq_ddrbus));
438 #ifdef CONFIG_SYS_DPAA_FMAN
439 	printf("  FMAN:     %-4s MHz", strmhz(buf, sysinfo.freq_fman[0]));
440 #endif
441 #ifdef CONFIG_FSL_LSCH3
442 	printf("     DP-DDR:   %-4s MT/s", strmhz(buf, sysinfo.freq_ddrbus2));
443 #endif
444 	puts("\n");
445 
446 	/*
447 	 * Display the RCW, so that no one gets confused as to what RCW
448 	 * we're actually using for this boot.
449 	 */
450 	puts("Reset Configuration Word (RCW):");
451 	for (i = 0; i < ARRAY_SIZE(gur->rcwsr); i++) {
452 		rcw = gur_in32(&gur->rcwsr[i]);
453 		if ((i % 4) == 0)
454 			printf("\n       %08x:", i * 4);
455 		printf(" %08x", rcw);
456 	}
457 	puts("\n");
458 
459 	return 0;
460 }
461 #endif
462 
463 #ifdef CONFIG_FSL_ESDHC
464 int cpu_mmc_init(bd_t *bis)
465 {
466 	return fsl_esdhc_mmc_init(bis);
467 }
468 #endif
469 
470 int cpu_eth_init(bd_t *bis)
471 {
472 	int error = 0;
473 
474 #ifdef CONFIG_FSL_MC_ENET
475 	error = fsl_mc_ldpaa_init(bis);
476 #endif
477 #ifdef CONFIG_FMAN_ENET
478 	fm_standard_init(bis);
479 #endif
480 	return error;
481 }
482 
483 int arch_early_init_r(void)
484 {
485 #ifdef CONFIG_MP
486 	int rv = 1;
487 
488 	rv = fsl_layerscape_wake_seconday_cores();
489 	if (rv)
490 		printf("Did not wake secondary cores\n");
491 #endif
492 
493 #ifdef CONFIG_SYS_HAS_SERDES
494 	fsl_serdes_init();
495 #endif
496 #ifdef CONFIG_FMAN_ENET
497 	fman_enet_init();
498 #endif
499 	return 0;
500 }
501 
502 int timer_init(void)
503 {
504 	u32 __iomem *cntcr = (u32 *)CONFIG_SYS_FSL_TIMER_ADDR;
505 #ifdef CONFIG_FSL_LSCH3
506 	u32 __iomem *cltbenr = (u32 *)CONFIG_SYS_FSL_PMU_CLTBENR;
507 #endif
508 #ifdef COUNTER_FREQUENCY_REAL
509 	unsigned long cntfrq = COUNTER_FREQUENCY_REAL;
510 
511 	/* Update with accurate clock frequency */
512 	asm volatile("msr cntfrq_el0, %0" : : "r" (cntfrq) : "memory");
513 #endif
514 
515 #ifdef CONFIG_FSL_LSCH3
516 	/* Enable timebase for all clusters.
517 	 * It is safe to do so even some clusters are not enabled.
518 	 */
519 	out_le32(cltbenr, 0xf);
520 #endif
521 
522 	/* Enable clock for timer
523 	 * This is a global setting.
524 	 */
525 	out_le32(cntcr, 0x1);
526 
527 	return 0;
528 }
529 
530 void reset_cpu(ulong addr)
531 {
532 	u32 __iomem *rstcr = (u32 *)CONFIG_SYS_FSL_RST_ADDR;
533 	u32 val;
534 
535 	/* Raise RESET_REQ_B */
536 	val = scfg_in32(rstcr);
537 	val |= 0x02;
538 	scfg_out32(rstcr, val);
539 }
540