xref: /openbmc/u-boot/arch/arm/cpu/armv8/cache_v8.c (revision 21845825)
1 /*
2  * (C) Copyright 2013
3  * David Feng <fenghua@phytium.com.cn>
4  *
5  * (C) Copyright 2016
6  * Alexander Graf <agraf@suse.de>
7  *
8  * SPDX-License-Identifier:	GPL-2.0+
9  */
10 
11 #include <common.h>
12 #include <asm/system.h>
13 #include <asm/armv8/mmu.h>
14 
15 DECLARE_GLOBAL_DATA_PTR;
16 
17 #ifndef CONFIG_SYS_DCACHE_OFF
18 
19 /*
20  *  With 4k page granule, a virtual address is split into 4 lookup parts
21  *  spanning 9 bits each:
22  *
23  *    _______________________________________________
24  *   |       |       |       |       |       |       |
25  *   |   0   |  Lv0  |  Lv1  |  Lv2  |  Lv3  |  off  |
26  *   |_______|_______|_______|_______|_______|_______|
27  *     63-48   47-39   38-30   29-21   20-12   11-00
28  *
29  *             mask        page size
30  *
31  *    Lv0: FF8000000000       --
32  *    Lv1:   7FC0000000       1G
33  *    Lv2:     3FE00000       2M
34  *    Lv3:       1FF000       4K
35  *    off:          FFF
36  */
37 
38 #ifdef CONFIG_SYS_FULL_VA
39 static u64 get_tcr(int el, u64 *pips, u64 *pva_bits)
40 {
41 	u64 max_addr = 0;
42 	u64 ips, va_bits;
43 	u64 tcr;
44 	int i;
45 
46 	/* Find the largest address we need to support */
47 	for (i = 0; mem_map[i].size || mem_map[i].attrs; i++)
48 		max_addr = max(max_addr, mem_map[i].base + mem_map[i].size);
49 
50 	/* Calculate the maximum physical (and thus virtual) address */
51 	if (max_addr > (1ULL << 44)) {
52 		ips = 5;
53 		va_bits = 48;
54 	} else  if (max_addr > (1ULL << 42)) {
55 		ips = 4;
56 		va_bits = 44;
57 	} else  if (max_addr > (1ULL << 40)) {
58 		ips = 3;
59 		va_bits = 42;
60 	} else  if (max_addr > (1ULL << 36)) {
61 		ips = 2;
62 		va_bits = 40;
63 	} else  if (max_addr > (1ULL << 32)) {
64 		ips = 1;
65 		va_bits = 36;
66 	} else {
67 		ips = 0;
68 		va_bits = 32;
69 	}
70 
71 	if (el == 1) {
72 		tcr = TCR_EL1_RSVD | (ips << 32) | TCR_EPD1_DISABLE;
73 	} else if (el == 2) {
74 		tcr = TCR_EL2_RSVD | (ips << 16);
75 	} else {
76 		tcr = TCR_EL3_RSVD | (ips << 16);
77 	}
78 
79 	/* PTWs cacheable, inner/outer WBWA and inner shareable */
80 	tcr |= TCR_TG0_4K | TCR_SHARED_INNER | TCR_ORGN_WBWA | TCR_IRGN_WBWA;
81 	tcr |= TCR_T0SZ(va_bits);
82 
83 	if (pips)
84 		*pips = ips;
85 	if (pva_bits)
86 		*pva_bits = va_bits;
87 
88 	return tcr;
89 }
90 
91 #define MAX_PTE_ENTRIES 512
92 
93 static int pte_type(u64 *pte)
94 {
95 	return *pte & PTE_TYPE_MASK;
96 }
97 
98 /* Returns the LSB number for a PTE on level <level> */
99 static int level2shift(int level)
100 {
101 	/* Page is 12 bits wide, every level translates 9 bits */
102 	return (12 + 9 * (3 - level));
103 }
104 
105 static u64 *find_pte(u64 addr, int level)
106 {
107 	int start_level = 0;
108 	u64 *pte;
109 	u64 idx;
110 	u64 va_bits;
111 	int i;
112 
113 	debug("addr=%llx level=%d\n", addr, level);
114 
115 	get_tcr(0, NULL, &va_bits);
116 	if (va_bits < 39)
117 		start_level = 1;
118 
119 	if (level < start_level)
120 		return NULL;
121 
122 	/* Walk through all page table levels to find our PTE */
123 	pte = (u64*)gd->arch.tlb_addr;
124 	for (i = start_level; i < 4; i++) {
125 		idx = (addr >> level2shift(i)) & 0x1FF;
126 		pte += idx;
127 		debug("idx=%llx PTE %p at level %d: %llx\n", idx, pte, i, *pte);
128 
129 		/* Found it */
130 		if (i == level)
131 			return pte;
132 		/* PTE is no table (either invalid or block), can't traverse */
133 		if (pte_type(pte) != PTE_TYPE_TABLE)
134 			return NULL;
135 		/* Off to the next level */
136 		pte = (u64*)(*pte & 0x0000fffffffff000ULL);
137 	}
138 
139 	/* Should never reach here */
140 	return NULL;
141 }
142 
143 /* Returns and creates a new full table (512 entries) */
144 static u64 *create_table(void)
145 {
146 	u64 *new_table = (u64*)gd->arch.tlb_fillptr;
147 	u64 pt_len = MAX_PTE_ENTRIES * sizeof(u64);
148 
149 	/* Allocate MAX_PTE_ENTRIES pte entries */
150 	gd->arch.tlb_fillptr += pt_len;
151 
152 	if (gd->arch.tlb_fillptr - gd->arch.tlb_addr > gd->arch.tlb_size)
153 		panic("Insufficient RAM for page table: 0x%lx > 0x%lx. "
154 		      "Please increase the size in get_page_table_size()",
155 			gd->arch.tlb_fillptr - gd->arch.tlb_addr,
156 			gd->arch.tlb_size);
157 
158 	/* Mark all entries as invalid */
159 	memset(new_table, 0, pt_len);
160 
161 	return new_table;
162 }
163 
164 static void set_pte_table(u64 *pte, u64 *table)
165 {
166 	/* Point *pte to the new table */
167 	debug("Setting %p to addr=%p\n", pte, table);
168 	*pte = PTE_TYPE_TABLE | (ulong)table;
169 }
170 
171 /* Add one mm_region map entry to the page tables */
172 static void add_map(struct mm_region *map)
173 {
174 	u64 *pte;
175 	u64 addr = map->base;
176 	u64 size = map->size;
177 	u64 attrs = map->attrs | PTE_TYPE_BLOCK | PTE_BLOCK_AF;
178 	u64 blocksize;
179 	int level;
180 	u64 *new_table;
181 
182 	while (size) {
183 		pte = find_pte(addr, 0);
184 		if (pte && (pte_type(pte) == PTE_TYPE_FAULT)) {
185 			debug("Creating table for addr 0x%llx\n", addr);
186 			new_table = create_table();
187 			set_pte_table(pte, new_table);
188 		}
189 
190 		for (level = 1; level < 4; level++) {
191 			pte = find_pte(addr, level);
192 			blocksize = 1ULL << level2shift(level);
193 			debug("Checking if pte fits for addr=%llx size=%llx "
194 			      "blocksize=%llx\n", addr, size, blocksize);
195 			if (size >= blocksize && !(addr & (blocksize - 1))) {
196 				/* Page fits, create block PTE */
197 				debug("Setting PTE %p to block addr=%llx\n",
198 				      pte, addr);
199 				*pte = addr | attrs;
200 				addr += blocksize;
201 				size -= blocksize;
202 				break;
203 			} else if ((pte_type(pte) == PTE_TYPE_FAULT)) {
204 				/* Page doesn't fit, create subpages */
205 				debug("Creating subtable for addr 0x%llx "
206 				      "blksize=%llx\n", addr, blocksize);
207 				new_table = create_table();
208 				set_pte_table(pte, new_table);
209 			}
210 		}
211 	}
212 }
213 
214 /* Splits a block PTE into table with subpages spanning the old block */
215 static void split_block(u64 *pte, int level)
216 {
217 	u64 old_pte = *pte;
218 	u64 *new_table;
219 	u64 i = 0;
220 	/* level describes the parent level, we need the child ones */
221 	int levelshift = level2shift(level + 1);
222 
223 	if (pte_type(pte) != PTE_TYPE_BLOCK)
224 		panic("PTE %p (%llx) is not a block. Some driver code wants to "
225 		      "modify dcache settings for an range not covered in "
226 		      "mem_map.", pte, old_pte);
227 
228 	new_table = create_table();
229 	debug("Splitting pte %p (%llx) into %p\n", pte, old_pte, new_table);
230 
231 	for (i = 0; i < MAX_PTE_ENTRIES; i++) {
232 		new_table[i] = old_pte | (i << levelshift);
233 
234 		/* Level 3 block PTEs have the table type */
235 		if ((level + 1) == 3)
236 			new_table[i] |= PTE_TYPE_TABLE;
237 
238 		debug("Setting new_table[%lld] = %llx\n", i, new_table[i]);
239 	}
240 
241 	/* Set the new table into effect */
242 	set_pte_table(pte, new_table);
243 }
244 
245 enum pte_type {
246 	PTE_INVAL,
247 	PTE_BLOCK,
248 	PTE_LEVEL,
249 };
250 
251 /*
252  * This is a recursively called function to count the number of
253  * page tables we need to cover a particular PTE range. If you
254  * call this with level = -1 you basically get the full 48 bit
255  * coverage.
256  */
257 static int count_required_pts(u64 addr, int level, u64 maxaddr)
258 {
259 	int levelshift = level2shift(level);
260 	u64 levelsize = 1ULL << levelshift;
261 	u64 levelmask = levelsize - 1;
262 	u64 levelend = addr + levelsize;
263 	int r = 0;
264 	int i;
265 	enum pte_type pte_type = PTE_INVAL;
266 
267 	for (i = 0; mem_map[i].size || mem_map[i].attrs; i++) {
268 		struct mm_region *map = &mem_map[i];
269 		u64 start = map->base;
270 		u64 end = start + map->size;
271 
272 		/* Check if the PTE would overlap with the map */
273 		if (max(addr, start) <= min(levelend, end)) {
274 			start = max(addr, start);
275 			end = min(levelend, end);
276 
277 			/* We need a sub-pt for this level */
278 			if ((start & levelmask) || (end & levelmask)) {
279 				pte_type = PTE_LEVEL;
280 				break;
281 			}
282 
283 			/* Lv0 can not do block PTEs, so do levels here too */
284 			if (level <= 0) {
285 				pte_type = PTE_LEVEL;
286 				break;
287 			}
288 
289 			/* PTE is active, but fits into a block */
290 			pte_type = PTE_BLOCK;
291 		}
292 	}
293 
294 	/*
295 	 * Block PTEs at this level are already covered by the parent page
296 	 * table, so we only need to count sub page tables.
297 	 */
298 	if (pte_type == PTE_LEVEL) {
299 		int sublevel = level + 1;
300 		u64 sublevelsize = 1ULL << level2shift(sublevel);
301 
302 		/* Account for the new sub page table ... */
303 		r = 1;
304 
305 		/* ... and for all child page tables that one might have */
306 		for (i = 0; i < MAX_PTE_ENTRIES; i++) {
307 			r += count_required_pts(addr, sublevel, maxaddr);
308 			addr += sublevelsize;
309 
310 			if (addr >= maxaddr) {
311 				/*
312 				 * We reached the end of address space, no need
313 				 * to look any further.
314 				 */
315 				break;
316 			}
317 		}
318 	}
319 
320 	return r;
321 }
322 
323 /* Returns the estimated required size of all page tables */
324 u64 get_page_table_size(void)
325 {
326 	u64 one_pt = MAX_PTE_ENTRIES * sizeof(u64);
327 	u64 size = 0;
328 	u64 va_bits;
329 	int start_level = 0;
330 
331 	get_tcr(0, NULL, &va_bits);
332 	if (va_bits < 39)
333 		start_level = 1;
334 
335 	/* Account for all page tables we would need to cover our memory map */
336 	size = one_pt * count_required_pts(0, start_level - 1, 1ULL << va_bits);
337 
338 	/*
339 	 * We need to duplicate our page table once to have an emergency pt to
340 	 * resort to when splitting page tables later on
341 	 */
342 	size *= 2;
343 
344 	/*
345 	 * We may need to split page tables later on if dcache settings change,
346 	 * so reserve up to 4 (random pick) page tables for that.
347 	 */
348 	size += one_pt * 4;
349 
350 	return size;
351 }
352 
353 static void setup_pgtables(void)
354 {
355 	int i;
356 
357 	/*
358 	 * Allocate the first level we're on with invalidate entries.
359 	 * If the starting level is 0 (va_bits >= 39), then this is our
360 	 * Lv0 page table, otherwise it's the entry Lv1 page table.
361 	 */
362 	create_table();
363 
364 	/* Now add all MMU table entries one after another to the table */
365 	for (i = 0; mem_map[i].size || mem_map[i].attrs; i++)
366 		add_map(&mem_map[i]);
367 
368 	/* Create the same thing once more for our emergency page table */
369 	create_table();
370 }
371 
372 static void setup_all_pgtables(void)
373 {
374 	u64 tlb_addr = gd->arch.tlb_addr;
375 
376 	/* Reset the fill ptr */
377 	gd->arch.tlb_fillptr = tlb_addr;
378 
379 	/* Create normal system page tables */
380 	setup_pgtables();
381 
382 	/* Create emergency page tables */
383 	gd->arch.tlb_addr = gd->arch.tlb_fillptr;
384 	setup_pgtables();
385 	gd->arch.tlb_emerg = gd->arch.tlb_addr;
386 	gd->arch.tlb_addr = tlb_addr;
387 }
388 
389 #else
390 
391 inline void set_pgtable_section(u64 *page_table, u64 index, u64 section,
392 			 u64 memory_type, u64 attribute)
393 {
394 	u64 value;
395 
396 	value = section | PMD_TYPE_SECT | PMD_SECT_AF;
397 	value |= PMD_ATTRINDX(memory_type);
398 	value |= attribute;
399 	page_table[index] = value;
400 }
401 
402 inline void set_pgtable_table(u64 *page_table, u64 index, u64 *table_addr)
403 {
404 	u64 value;
405 
406 	value = (u64)table_addr | PMD_TYPE_TABLE;
407 	page_table[index] = value;
408 }
409 #endif
410 
411 /* to activate the MMU we need to set up virtual memory */
412 __weak void mmu_setup(void)
413 {
414 #ifndef CONFIG_SYS_FULL_VA
415 	bd_t *bd = gd->bd;
416 	u64 *page_table = (u64 *)gd->arch.tlb_addr, i, j;
417 #endif
418 	int el;
419 
420 #ifdef CONFIG_SYS_FULL_VA
421 	/* Set up page tables only once */
422 	if (!gd->arch.tlb_fillptr)
423 		setup_all_pgtables();
424 
425 	el = current_el();
426 	set_ttbr_tcr_mair(el, gd->arch.tlb_addr, get_tcr(el, NULL, NULL),
427 			  MEMORY_ATTRIBUTES);
428 #else
429 	/* Setup an identity-mapping for all spaces */
430 	for (i = 0; i < (PGTABLE_SIZE >> 3); i++) {
431 		set_pgtable_section(page_table, i, i << SECTION_SHIFT,
432 				    MT_DEVICE_NGNRNE, PMD_SECT_NON_SHARE);
433 	}
434 
435 	/* Setup an identity-mapping for all RAM space */
436 	for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
437 		ulong start = bd->bi_dram[i].start;
438 		ulong end = bd->bi_dram[i].start + bd->bi_dram[i].size;
439 		for (j = start >> SECTION_SHIFT;
440 		     j < end >> SECTION_SHIFT; j++) {
441 			set_pgtable_section(page_table, j, j << SECTION_SHIFT,
442 					    MT_NORMAL, PMD_SECT_NON_SHARE);
443 		}
444 	}
445 
446 	/* load TTBR0 */
447 	el = current_el();
448 	if (el == 1) {
449 		set_ttbr_tcr_mair(el, gd->arch.tlb_addr,
450 				  TCR_EL1_RSVD | TCR_FLAGS | TCR_EL1_IPS_BITS,
451 				  MEMORY_ATTRIBUTES);
452 	} else if (el == 2) {
453 		set_ttbr_tcr_mair(el, gd->arch.tlb_addr,
454 				  TCR_EL2_RSVD | TCR_FLAGS | TCR_EL2_IPS_BITS,
455 				  MEMORY_ATTRIBUTES);
456 	} else {
457 		set_ttbr_tcr_mair(el, gd->arch.tlb_addr,
458 				  TCR_EL3_RSVD | TCR_FLAGS | TCR_EL3_IPS_BITS,
459 				  MEMORY_ATTRIBUTES);
460 	}
461 #endif
462 
463 	/* enable the mmu */
464 	set_sctlr(get_sctlr() | CR_M);
465 }
466 
467 /*
468  * Performs a invalidation of the entire data cache at all levels
469  */
470 void invalidate_dcache_all(void)
471 {
472 	__asm_invalidate_dcache_all();
473 }
474 
475 /*
476  * Performs a clean & invalidation of the entire data cache at all levels.
477  * This function needs to be inline to avoid using stack.
478  * __asm_flush_l3_cache return status of timeout
479  */
480 inline void flush_dcache_all(void)
481 {
482 	int ret;
483 
484 	__asm_flush_dcache_all();
485 	ret = __asm_flush_l3_cache();
486 	if (ret)
487 		debug("flushing dcache returns 0x%x\n", ret);
488 	else
489 		debug("flushing dcache successfully.\n");
490 }
491 
492 /*
493  * Invalidates range in all levels of D-cache/unified cache
494  */
495 void invalidate_dcache_range(unsigned long start, unsigned long stop)
496 {
497 	__asm_flush_dcache_range(start, stop);
498 }
499 
500 /*
501  * Flush range(clean & invalidate) from all levels of D-cache/unified cache
502  */
503 void flush_dcache_range(unsigned long start, unsigned long stop)
504 {
505 	__asm_flush_dcache_range(start, stop);
506 }
507 
508 void dcache_enable(void)
509 {
510 	/* The data cache is not active unless the mmu is enabled */
511 	if (!(get_sctlr() & CR_M)) {
512 		invalidate_dcache_all();
513 		__asm_invalidate_tlb_all();
514 		mmu_setup();
515 	}
516 
517 	set_sctlr(get_sctlr() | CR_C);
518 }
519 
520 void dcache_disable(void)
521 {
522 	uint32_t sctlr;
523 
524 	sctlr = get_sctlr();
525 
526 	/* if cache isn't enabled no need to disable */
527 	if (!(sctlr & CR_C))
528 		return;
529 
530 	set_sctlr(sctlr & ~(CR_C|CR_M));
531 
532 	flush_dcache_all();
533 	__asm_invalidate_tlb_all();
534 }
535 
536 int dcache_status(void)
537 {
538 	return (get_sctlr() & CR_C) != 0;
539 }
540 
541 u64 *__weak arch_get_page_table(void) {
542 	puts("No page table offset defined\n");
543 
544 	return NULL;
545 }
546 
547 #ifndef CONFIG_SYS_FULL_VA
548 void mmu_set_region_dcache_behaviour(phys_addr_t start, size_t size,
549 				     enum dcache_option option)
550 {
551 	u64 *page_table = arch_get_page_table();
552 	u64 upto, end;
553 
554 	if (page_table == NULL)
555 		return;
556 
557 	end = ALIGN(start + size, (1 << MMU_SECTION_SHIFT)) >>
558 	      MMU_SECTION_SHIFT;
559 	start = start >> MMU_SECTION_SHIFT;
560 	for (upto = start; upto < end; upto++) {
561 		page_table[upto] &= ~PMD_ATTRINDX_MASK;
562 		page_table[upto] |= PMD_ATTRINDX(option);
563 	}
564 	asm volatile("dsb sy");
565 	__asm_invalidate_tlb_all();
566 	asm volatile("dsb sy");
567 	asm volatile("isb");
568 	start = start << MMU_SECTION_SHIFT;
569 	end = end << MMU_SECTION_SHIFT;
570 	flush_dcache_range(start, end);
571 	asm volatile("dsb sy");
572 }
573 #else
574 static bool is_aligned(u64 addr, u64 size, u64 align)
575 {
576 	return !(addr & (align - 1)) && !(size & (align - 1));
577 }
578 
579 static u64 set_one_region(u64 start, u64 size, u64 attrs, int level)
580 {
581 	int levelshift = level2shift(level);
582 	u64 levelsize = 1ULL << levelshift;
583 	u64 *pte = find_pte(start, level);
584 
585 	/* Can we can just modify the current level block PTE? */
586 	if (is_aligned(start, size, levelsize)) {
587 		*pte &= ~PMD_ATTRINDX_MASK;
588 		*pte |= attrs;
589 		debug("Set attrs=%llx pte=%p level=%d\n", attrs, pte, level);
590 
591 		return levelsize;
592 	}
593 
594 	/* Unaligned or doesn't fit, maybe split block into table */
595 	debug("addr=%llx level=%d pte=%p (%llx)\n", start, level, pte, *pte);
596 
597 	/* Maybe we need to split the block into a table */
598 	if (pte_type(pte) == PTE_TYPE_BLOCK)
599 		split_block(pte, level);
600 
601 	/* And then double-check it became a table or already is one */
602 	if (pte_type(pte) != PTE_TYPE_TABLE)
603 		panic("PTE %p (%llx) for addr=%llx should be a table",
604 		      pte, *pte, start);
605 
606 	/* Roll on to the next page table level */
607 	return 0;
608 }
609 
610 void mmu_set_region_dcache_behaviour(phys_addr_t start, size_t size,
611 				     enum dcache_option option)
612 {
613 	u64 attrs = PMD_ATTRINDX(option);
614 	u64 real_start = start;
615 	u64 real_size = size;
616 
617 	debug("start=%lx size=%lx\n", (ulong)start, (ulong)size);
618 
619 	/*
620 	 * We can not modify page tables that we're currently running on,
621 	 * so we first need to switch to the "emergency" page tables where
622 	 * we can safely modify our primary page tables and then switch back
623 	 */
624 	__asm_switch_ttbr(gd->arch.tlb_emerg);
625 
626 	/*
627 	 * Loop through the address range until we find a page granule that fits
628 	 * our alignment constraints, then set it to the new cache attributes
629 	 */
630 	while (size > 0) {
631 		int level;
632 		u64 r;
633 
634 		for (level = 1; level < 4; level++) {
635 			r = set_one_region(start, size, attrs, level);
636 			if (r) {
637 				/* PTE successfully replaced */
638 				size -= r;
639 				start += r;
640 				break;
641 			}
642 		}
643 
644 	}
645 
646 	/* We're done modifying page tables, switch back to our primary ones */
647 	__asm_switch_ttbr(gd->arch.tlb_addr);
648 
649 	/*
650 	 * Make sure there's nothing stale in dcache for a region that might
651 	 * have caches off now
652 	 */
653 	flush_dcache_range(real_start, real_start + real_size);
654 }
655 #endif
656 
657 #else	/* CONFIG_SYS_DCACHE_OFF */
658 
659 void invalidate_dcache_all(void)
660 {
661 }
662 
663 void flush_dcache_all(void)
664 {
665 }
666 
667 void dcache_enable(void)
668 {
669 }
670 
671 void dcache_disable(void)
672 {
673 }
674 
675 int dcache_status(void)
676 {
677 	return 0;
678 }
679 
680 void mmu_set_region_dcache_behaviour(phys_addr_t start, size_t size,
681 				     enum dcache_option option)
682 {
683 }
684 
685 #endif	/* CONFIG_SYS_DCACHE_OFF */
686 
687 #ifndef CONFIG_SYS_ICACHE_OFF
688 
689 void icache_enable(void)
690 {
691 	__asm_invalidate_icache_all();
692 	set_sctlr(get_sctlr() | CR_I);
693 }
694 
695 void icache_disable(void)
696 {
697 	set_sctlr(get_sctlr() & ~CR_I);
698 }
699 
700 int icache_status(void)
701 {
702 	return (get_sctlr() & CR_I) != 0;
703 }
704 
705 void invalidate_icache_all(void)
706 {
707 	__asm_invalidate_icache_all();
708 }
709 
710 #else	/* CONFIG_SYS_ICACHE_OFF */
711 
712 void icache_enable(void)
713 {
714 }
715 
716 void icache_disable(void)
717 {
718 }
719 
720 int icache_status(void)
721 {
722 	return 0;
723 }
724 
725 void invalidate_icache_all(void)
726 {
727 }
728 
729 #endif	/* CONFIG_SYS_ICACHE_OFF */
730 
731 /*
732  * Enable dCache & iCache, whether cache is actually enabled
733  * depend on CONFIG_SYS_DCACHE_OFF and CONFIG_SYS_ICACHE_OFF
734  */
735 void __weak enable_caches(void)
736 {
737 	icache_enable();
738 	dcache_enable();
739 }
740