xref: /openbmc/u-boot/arch/arm/cpu/armv7/sunxi/psci.c (revision 8e51c0f2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2016
4  * Author: Chen-Yu Tsai <wens@csie.org>
5  *
6  * Based on assembly code by Marc Zyngier <marc.zyngier@arm.com>,
7  * which was based on code by Carl van Schaik <carl@ok-labs.com>.
8  */
9 #include <config.h>
10 #include <common.h>
11 
12 #include <asm/arch/cpu.h>
13 #include <asm/arch/cpucfg.h>
14 #include <asm/arch/prcm.h>
15 #include <asm/armv7.h>
16 #include <asm/gic.h>
17 #include <asm/io.h>
18 #include <asm/psci.h>
19 #include <asm/secure.h>
20 #include <asm/system.h>
21 
22 #include <linux/bitops.h>
23 
24 #define __irq		__attribute__ ((interrupt ("IRQ")))
25 
26 #define	GICD_BASE	(SUNXI_GIC400_BASE + GIC_DIST_OFFSET)
27 #define	GICC_BASE	(SUNXI_GIC400_BASE + GIC_CPU_OFFSET_A15)
28 
29 /*
30  * R40 is different from other single cluster SoCs.
31  *
32  * The power clamps are located in the unused space after the per-core
33  * reset controls for core 3. The secondary core entry address register
34  * is in the SRAM controller address range.
35  */
36 #define SUN8I_R40_PWROFF			(0x110)
37 #define SUN8I_R40_PWR_CLAMP(cpu)		(0x120 + (cpu) * 0x4)
38 #define SUN8I_R40_SRAMC_SOFT_ENTRY_REG0		(0xbc)
39 
40 static void __secure cp15_write_cntp_tval(u32 tval)
41 {
42 	asm volatile ("mcr p15, 0, %0, c14, c2, 0" : : "r" (tval));
43 }
44 
45 static void __secure cp15_write_cntp_ctl(u32 val)
46 {
47 	asm volatile ("mcr p15, 0, %0, c14, c2, 1" : : "r" (val));
48 }
49 
50 static u32 __secure cp15_read_cntp_ctl(void)
51 {
52 	u32 val;
53 
54 	asm volatile ("mrc p15, 0, %0, c14, c2, 1" : "=r" (val));
55 
56 	return val;
57 }
58 
59 #define ONE_MS (COUNTER_FREQUENCY / 1000)
60 
61 static void __secure __mdelay(u32 ms)
62 {
63 	u32 reg = ONE_MS * ms;
64 
65 	cp15_write_cntp_tval(reg);
66 	isb();
67 	cp15_write_cntp_ctl(3);
68 
69 	do {
70 		isb();
71 		reg = cp15_read_cntp_ctl();
72 	} while (!(reg & BIT(2)));
73 
74 	cp15_write_cntp_ctl(0);
75 	isb();
76 }
77 
78 static void __secure clamp_release(u32 __maybe_unused *clamp)
79 {
80 #if defined(CONFIG_MACH_SUN6I) || defined(CONFIG_MACH_SUN7I) || \
81 	defined(CONFIG_MACH_SUN8I_H3) || \
82 	defined(CONFIG_MACH_SUN8I_R40)
83 	u32 tmp = 0x1ff;
84 	do {
85 		tmp >>= 1;
86 		writel(tmp, clamp);
87 	} while (tmp);
88 
89 	__mdelay(10);
90 #endif
91 }
92 
93 static void __secure clamp_set(u32 __maybe_unused *clamp)
94 {
95 #if defined(CONFIG_MACH_SUN6I) || defined(CONFIG_MACH_SUN7I) || \
96 	defined(CONFIG_MACH_SUN8I_H3) || \
97 	defined(CONFIG_MACH_SUN8I_R40)
98 	writel(0xff, clamp);
99 #endif
100 }
101 
102 static void __secure sunxi_power_switch(u32 *clamp, u32 *pwroff, bool on,
103 					int cpu)
104 {
105 	if (on) {
106 		/* Release power clamp */
107 		clamp_release(clamp);
108 
109 		/* Clear power gating */
110 		clrbits_le32(pwroff, BIT(cpu));
111 	} else {
112 		/* Set power gating */
113 		setbits_le32(pwroff, BIT(cpu));
114 
115 		/* Activate power clamp */
116 		clamp_set(clamp);
117 	}
118 }
119 
120 #ifdef CONFIG_MACH_SUN8I_R40
121 /* secondary core entry address is programmed differently on R40 */
122 static void __secure sunxi_set_entry_address(void *entry)
123 {
124 	writel((u32)entry,
125 	       SUNXI_SRAMC_BASE + SUN8I_R40_SRAMC_SOFT_ENTRY_REG0);
126 }
127 #else
128 static void __secure sunxi_set_entry_address(void *entry)
129 {
130 	struct sunxi_cpucfg_reg *cpucfg =
131 		(struct sunxi_cpucfg_reg *)SUNXI_CPUCFG_BASE;
132 
133 	writel((u32)entry, &cpucfg->priv0);
134 }
135 #endif
136 
137 #ifdef CONFIG_MACH_SUN7I
138 /* sun7i (A20) is different from other single cluster SoCs */
139 static void __secure sunxi_cpu_set_power(int __always_unused cpu, bool on)
140 {
141 	struct sunxi_cpucfg_reg *cpucfg =
142 		(struct sunxi_cpucfg_reg *)SUNXI_CPUCFG_BASE;
143 
144 	sunxi_power_switch(&cpucfg->cpu1_pwr_clamp, &cpucfg->cpu1_pwroff,
145 			   on, 0);
146 }
147 #elif defined CONFIG_MACH_SUN8I_R40
148 static void __secure sunxi_cpu_set_power(int cpu, bool on)
149 {
150 	struct sunxi_cpucfg_reg *cpucfg =
151 		(struct sunxi_cpucfg_reg *)SUNXI_CPUCFG_BASE;
152 
153 	sunxi_power_switch((void *)cpucfg + SUN8I_R40_PWR_CLAMP(cpu),
154 			   (void *)cpucfg + SUN8I_R40_PWROFF,
155 			   on, 0);
156 }
157 #else /* ! CONFIG_MACH_SUN7I && ! CONFIG_MACH_SUN8I_R40 */
158 static void __secure sunxi_cpu_set_power(int cpu, bool on)
159 {
160 	struct sunxi_prcm_reg *prcm =
161 		(struct sunxi_prcm_reg *)SUNXI_PRCM_BASE;
162 
163 	sunxi_power_switch(&prcm->cpu_pwr_clamp[cpu], &prcm->cpu_pwroff,
164 			   on, cpu);
165 }
166 #endif /* CONFIG_MACH_SUN7I */
167 
168 void __secure sunxi_cpu_power_off(u32 cpuid)
169 {
170 	struct sunxi_cpucfg_reg *cpucfg =
171 		(struct sunxi_cpucfg_reg *)SUNXI_CPUCFG_BASE;
172 	u32 cpu = cpuid & 0x3;
173 
174 	/* Wait for the core to enter WFI */
175 	while (1) {
176 		if (readl(&cpucfg->cpu[cpu].status) & BIT(2))
177 			break;
178 		__mdelay(1);
179 	}
180 
181 	/* Assert reset on target CPU */
182 	writel(0, &cpucfg->cpu[cpu].rst);
183 
184 	/* Lock CPU (Disable external debug access) */
185 	clrbits_le32(&cpucfg->dbg_ctrl1, BIT(cpu));
186 
187 	/* Power down CPU */
188 	sunxi_cpu_set_power(cpuid, false);
189 
190 	/* Unlock CPU (Disable external debug access) */
191 	setbits_le32(&cpucfg->dbg_ctrl1, BIT(cpu));
192 }
193 
194 static u32 __secure cp15_read_scr(void)
195 {
196 	u32 scr;
197 
198 	asm volatile ("mrc p15, 0, %0, c1, c1, 0" : "=r" (scr));
199 
200 	return scr;
201 }
202 
203 static void __secure cp15_write_scr(u32 scr)
204 {
205 	asm volatile ("mcr p15, 0, %0, c1, c1, 0" : : "r" (scr));
206 	isb();
207 }
208 
209 /*
210  * Although this is an FIQ handler, the FIQ is processed in monitor mode,
211  * which means there's no FIQ banked registers. This is the same as IRQ
212  * mode, so use the IRQ attribute to ask the compiler to handler entry
213  * and return.
214  */
215 void __secure __irq psci_fiq_enter(void)
216 {
217 	u32 scr, reg, cpu;
218 
219 	/* Switch to secure mode */
220 	scr = cp15_read_scr();
221 	cp15_write_scr(scr & ~BIT(0));
222 
223 	/* Validate reason based on IAR and acknowledge */
224 	reg = readl(GICC_BASE + GICC_IAR);
225 
226 	/* Skip spurious interrupts 1022 and 1023 */
227 	if (reg == 1023 || reg == 1022)
228 		goto out;
229 
230 	/* End of interrupt */
231 	writel(reg, GICC_BASE + GICC_EOIR);
232 	dsb();
233 
234 	/* Get CPU number */
235 	cpu = (reg >> 10) & 0x7;
236 
237 	/* Power off the CPU */
238 	sunxi_cpu_power_off(cpu);
239 
240 out:
241 	/* Restore security level */
242 	cp15_write_scr(scr);
243 }
244 
245 int __secure psci_cpu_on(u32 __always_unused unused, u32 mpidr, u32 pc,
246 			 u32 context_id)
247 {
248 	struct sunxi_cpucfg_reg *cpucfg =
249 		(struct sunxi_cpucfg_reg *)SUNXI_CPUCFG_BASE;
250 	u32 cpu = (mpidr & 0x3);
251 
252 	/* store target PC and context id */
253 	psci_save(cpu, pc, context_id);
254 
255 	/* Set secondary core power on PC */
256 	sunxi_set_entry_address(&psci_cpu_entry);
257 
258 	/* Assert reset on target CPU */
259 	writel(0, &cpucfg->cpu[cpu].rst);
260 
261 	/* Invalidate L1 cache */
262 	clrbits_le32(&cpucfg->gen_ctrl, BIT(cpu));
263 
264 	/* Lock CPU (Disable external debug access) */
265 	clrbits_le32(&cpucfg->dbg_ctrl1, BIT(cpu));
266 
267 	/* Power up target CPU */
268 	sunxi_cpu_set_power(cpu, true);
269 
270 	/* De-assert reset on target CPU */
271 	writel(BIT(1) | BIT(0), &cpucfg->cpu[cpu].rst);
272 
273 	/* Unlock CPU (Disable external debug access) */
274 	setbits_le32(&cpucfg->dbg_ctrl1, BIT(cpu));
275 
276 	return ARM_PSCI_RET_SUCCESS;
277 }
278 
279 void __secure psci_cpu_off(void)
280 {
281 	psci_cpu_off_common();
282 
283 	/* Ask CPU0 via SGI15 to pull the rug... */
284 	writel(BIT(16) | 15, GICD_BASE + GICD_SGIR);
285 	dsb();
286 
287 	/* Wait to be turned off */
288 	while (1)
289 		wfi();
290 }
291 
292 void __secure psci_arch_init(void)
293 {
294 	u32 reg;
295 
296 	/* SGI15 as Group-0 */
297 	clrbits_le32(GICD_BASE + GICD_IGROUPRn, BIT(15));
298 
299 	/* Set SGI15 priority to 0 */
300 	writeb(0, GICD_BASE + GICD_IPRIORITYRn + 15);
301 
302 	/* Be cool with non-secure */
303 	writel(0xff, GICC_BASE + GICC_PMR);
304 
305 	/* Switch FIQEn on */
306 	setbits_le32(GICC_BASE + GICC_CTLR, BIT(3));
307 
308 	reg = cp15_read_scr();
309 	reg |= BIT(2);  /* Enable FIQ in monitor mode */
310 	reg &= ~BIT(0); /* Secure mode */
311 	cp15_write_scr(reg);
312 }
313