1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Copyright 2013 Broadcom Corporation. 4 */ 5 6 #include <linux/stddef.h> 7 8 #ifdef CONFIG_CLK_DEBUG 9 #undef writel 10 #undef readl 11 static inline void writel(u32 val, void *addr) 12 { 13 printf("Write [0x%p] = 0x%08x\n", addr, val); 14 *(u32 *)addr = val; 15 } 16 17 static inline u32 readl(void *addr) 18 { 19 u32 val = *(u32 *)addr; 20 printf("Read [0x%p] = 0x%08x\n", addr, val); 21 return val; 22 } 23 #endif 24 25 struct clk; 26 27 struct clk_lookup { 28 const char *dev_id; 29 const char *con_id; 30 struct clk *clk; 31 }; 32 33 extern struct clk_lookup arch_clk_tbl[]; 34 extern unsigned int arch_clk_tbl_array_size; 35 36 /** 37 * struct clk_ops - standard clock operations 38 * @enable: enable/disable clock, see clk_enable() and clk_disable() 39 * @set_rate: set the clock rate, see clk_set_rate(). 40 * @get_rate: get the clock rate, see clk_get_rate(). 41 * @round_rate: round a given clock rate, see clk_round_rate(). 42 * @set_parent: set the clock's parent, see clk_set_parent(). 43 * 44 * Group the common clock implementations together so that we 45 * don't have to keep setting the same fiels again. We leave 46 * enable in struct clk. 47 * 48 */ 49 struct clk_ops { 50 int (*enable)(struct clk *c, int enable); 51 int (*set_rate)(struct clk *c, unsigned long rate); 52 unsigned long (*get_rate)(struct clk *c); 53 unsigned long (*round_rate)(struct clk *c, unsigned long rate); 54 int (*set_parent)(struct clk *c, struct clk *parent); 55 }; 56 57 struct clk { 58 struct clk *parent; 59 const char *name; 60 int use_cnt; 61 unsigned long rate; /* in HZ */ 62 63 /* programmable divider. 0 means fixed ratio to parent clock */ 64 unsigned long div; 65 66 struct clk_src *src; 67 struct clk_ops *ops; 68 69 unsigned long ccu_clk_mgr_base; 70 int sel; 71 }; 72 73 struct refclk *refclk_str_to_clk(const char *name); 74 75 /* The common clock framework uses u8 to represent a parent index */ 76 #define PARENT_COUNT_MAX ((u32)U8_MAX) 77 78 #define BAD_CLK_INDEX U8_MAX /* Can't ever be valid */ 79 #define BAD_CLK_NAME ((const char *)-1) 80 81 #define BAD_SCALED_DIV_VALUE U64_MAX 82 83 /* 84 * Utility macros for object flag management. If possible, flags 85 * should be defined such that 0 is the desired default value. 86 */ 87 #define FLAG(type, flag) BCM_CLK_ ## type ## _FLAGS_ ## flag 88 #define FLAG_SET(obj, type, flag) ((obj)->flags |= FLAG(type, flag)) 89 #define FLAG_CLEAR(obj, type, flag) ((obj)->flags &= ~(FLAG(type, flag))) 90 #define FLAG_FLIP(obj, type, flag) ((obj)->flags ^= FLAG(type, flag)) 91 #define FLAG_TEST(obj, type, flag) (!!((obj)->flags & FLAG(type, flag))) 92 93 /* Clock field state tests */ 94 95 #define gate_exists(gate) FLAG_TEST(gate, GATE, EXISTS) 96 #define gate_is_enabled(gate) FLAG_TEST(gate, GATE, ENABLED) 97 #define gate_is_hw_controllable(gate) FLAG_TEST(gate, GATE, HW) 98 #define gate_is_sw_controllable(gate) FLAG_TEST(gate, GATE, SW) 99 #define gate_is_sw_managed(gate) FLAG_TEST(gate, GATE, SW_MANAGED) 100 #define gate_is_no_disable(gate) FLAG_TEST(gate, GATE, NO_DISABLE) 101 102 #define gate_flip_enabled(gate) FLAG_FLIP(gate, GATE, ENABLED) 103 104 #define divider_exists(div) FLAG_TEST(div, DIV, EXISTS) 105 #define divider_is_fixed(div) FLAG_TEST(div, DIV, FIXED) 106 #define divider_has_fraction(div) (!divider_is_fixed(div) && \ 107 (div)->frac_width > 0) 108 109 #define selector_exists(sel) ((sel)->width != 0) 110 #define trigger_exists(trig) FLAG_TEST(trig, TRIG, EXISTS) 111 112 /* Clock type, used to tell common block what it's part of */ 113 enum bcm_clk_type { 114 bcm_clk_none, /* undefined clock type */ 115 bcm_clk_bus, 116 bcm_clk_core, 117 bcm_clk_peri 118 }; 119 120 /* 121 * Gating control and status is managed by a 32-bit gate register. 122 * 123 * There are several types of gating available: 124 * - (no gate) 125 * A clock with no gate is assumed to be always enabled. 126 * - hardware-only gating (auto-gating) 127 * Enabling or disabling clocks with this type of gate is 128 * managed automatically by the hardware. Such clocks can be 129 * considered by the software to be enabled. The current status 130 * of auto-gated clocks can be read from the gate status bit. 131 * - software-only gating 132 * Auto-gating is not available for this type of clock. 133 * Instead, software manages whether it's enabled by setting or 134 * clearing the enable bit. The current gate status of a gate 135 * under software control can be read from the gate status bit. 136 * To ensure a change to the gating status is complete, the 137 * status bit can be polled to verify that the gate has entered 138 * the desired state. 139 * - selectable hardware or software gating 140 * Gating for this type of clock can be configured to be either 141 * under software or hardware control. Which type is in use is 142 * determined by the hw_sw_sel bit of the gate register. 143 */ 144 struct bcm_clk_gate { 145 u32 offset; /* gate register offset */ 146 u32 status_bit; /* 0: gate is disabled; 0: gatge is enabled */ 147 u32 en_bit; /* 0: disable; 1: enable */ 148 u32 hw_sw_sel_bit; /* 0: hardware gating; 1: software gating */ 149 u32 flags; /* BCM_CLK_GATE_FLAGS_* below */ 150 }; 151 152 /* 153 * Gate flags: 154 * HW means this gate can be auto-gated 155 * SW means the state of this gate can be software controlled 156 * NO_DISABLE means this gate is (only) enabled if under software control 157 * SW_MANAGED means the status of this gate is under software control 158 * ENABLED means this software-managed gate is *supposed* to be enabled 159 */ 160 #define BCM_CLK_GATE_FLAGS_EXISTS ((u32)1 << 0) /* Gate is valid */ 161 #define BCM_CLK_GATE_FLAGS_HW ((u32)1 << 1) /* Can auto-gate */ 162 #define BCM_CLK_GATE_FLAGS_SW ((u32)1 << 2) /* Software control */ 163 #define BCM_CLK_GATE_FLAGS_NO_DISABLE ((u32)1 << 3) /* HW or enabled */ 164 #define BCM_CLK_GATE_FLAGS_SW_MANAGED ((u32)1 << 4) /* SW now in control */ 165 #define BCM_CLK_GATE_FLAGS_ENABLED ((u32)1 << 5) /* If SW_MANAGED */ 166 167 /* 168 * Gate initialization macros. 169 * 170 * Any gate initially under software control will be enabled. 171 */ 172 173 /* A hardware/software gate initially under software control */ 174 #define HW_SW_GATE(_offset, _status_bit, _en_bit, _hw_sw_sel_bit) \ 175 { \ 176 .offset = (_offset), \ 177 .status_bit = (_status_bit), \ 178 .en_bit = (_en_bit), \ 179 .hw_sw_sel_bit = (_hw_sw_sel_bit), \ 180 .flags = FLAG(GATE, HW)|FLAG(GATE, SW)| \ 181 FLAG(GATE, SW_MANAGED)|FLAG(GATE, ENABLED)| \ 182 FLAG(GATE, EXISTS), \ 183 } 184 185 /* A hardware/software gate initially under hardware control */ 186 #define HW_SW_GATE_AUTO(_offset, _status_bit, _en_bit, _hw_sw_sel_bit) \ 187 { \ 188 .offset = (_offset), \ 189 .status_bit = (_status_bit), \ 190 .en_bit = (_en_bit), \ 191 .hw_sw_sel_bit = (_hw_sw_sel_bit), \ 192 .flags = FLAG(GATE, HW)|FLAG(GATE, SW)| \ 193 FLAG(GATE, EXISTS), \ 194 } 195 196 /* A hardware-or-enabled gate (enabled if not under hardware control) */ 197 #define HW_ENABLE_GATE(_offset, _status_bit, _en_bit, _hw_sw_sel_bit) \ 198 { \ 199 .offset = (_offset), \ 200 .status_bit = (_status_bit), \ 201 .en_bit = (_en_bit), \ 202 .hw_sw_sel_bit = (_hw_sw_sel_bit), \ 203 .flags = FLAG(GATE, HW)|FLAG(GATE, SW)| \ 204 FLAG(GATE, NO_DISABLE)|FLAG(GATE, EXISTS), \ 205 } 206 207 /* A software-only gate */ 208 #define SW_ONLY_GATE(_offset, _status_bit, _en_bit) \ 209 { \ 210 .offset = (_offset), \ 211 .status_bit = (_status_bit), \ 212 .en_bit = (_en_bit), \ 213 .flags = FLAG(GATE, SW)|FLAG(GATE, SW_MANAGED)| \ 214 FLAG(GATE, ENABLED)|FLAG(GATE, EXISTS), \ 215 } 216 217 /* A hardware-only gate */ 218 #define HW_ONLY_GATE(_offset, _status_bit) \ 219 { \ 220 .offset = (_offset), \ 221 .status_bit = (_status_bit), \ 222 .flags = FLAG(GATE, HW)|FLAG(GATE, EXISTS), \ 223 } 224 225 /* 226 * Each clock can have zero, one, or two dividers which change the 227 * output rate of the clock. Each divider can be either fixed or 228 * variable. If there are two dividers, they are the "pre-divider" 229 * and the "regular" or "downstream" divider. If there is only one, 230 * there is no pre-divider. 231 * 232 * A fixed divider is any non-zero (positive) value, and it 233 * indicates how the input rate is affected by the divider. 234 * 235 * The value of a variable divider is maintained in a sub-field of a 236 * 32-bit divider register. The position of the field in the 237 * register is defined by its offset and width. The value recorded 238 * in this field is always 1 less than the value it represents. 239 * 240 * In addition, a variable divider can indicate that some subset 241 * of its bits represent a "fractional" part of the divider. Such 242 * bits comprise the low-order portion of the divider field, and can 243 * be viewed as representing the portion of the divider that lies to 244 * the right of the decimal point. Most variable dividers have zero 245 * fractional bits. Variable dividers with non-zero fraction width 246 * still record a value 1 less than the value they represent; the 247 * added 1 does *not* affect the low-order bit in this case, it 248 * affects the bits above the fractional part only. (Often in this 249 * code a divider field value is distinguished from the value it 250 * represents by referring to the latter as a "divisor".) 251 * 252 * In order to avoid dealing with fractions, divider arithmetic is 253 * performed using "scaled" values. A scaled value is one that's 254 * been left-shifted by the fractional width of a divider. Dividing 255 * a scaled value by a scaled divisor produces the desired quotient 256 * without loss of precision and without any other special handling 257 * for fractions. 258 * 259 * The recorded value of a variable divider can be modified. To 260 * modify either divider (or both), a clock must be enabled (i.e., 261 * using its gate). In addition, a trigger register (described 262 * below) must be used to commit the change, and polled to verify 263 * the change is complete. 264 */ 265 struct bcm_clk_div { 266 union { 267 struct { /* variable divider */ 268 u32 offset; /* divider register offset */ 269 u32 shift; /* field shift */ 270 u32 width; /* field width */ 271 u32 frac_width; /* field fraction width */ 272 273 u64 scaled_div; /* scaled divider value */ 274 }; 275 u32 fixed; /* non-zero fixed divider value */ 276 }; 277 u32 flags; /* BCM_CLK_DIV_FLAGS_* below */ 278 }; 279 280 /* 281 * Divider flags: 282 * EXISTS means this divider exists 283 * FIXED means it is a fixed-rate divider 284 */ 285 #define BCM_CLK_DIV_FLAGS_EXISTS ((u32)1 << 0) /* Divider is valid */ 286 #define BCM_CLK_DIV_FLAGS_FIXED ((u32)1 << 1) /* Fixed-value */ 287 288 /* Divider initialization macros */ 289 290 /* A fixed (non-zero) divider */ 291 #define FIXED_DIVIDER(_value) \ 292 { \ 293 .fixed = (_value), \ 294 .flags = FLAG(DIV, EXISTS)|FLAG(DIV, FIXED), \ 295 } 296 297 /* A divider with an integral divisor */ 298 #define DIVIDER(_offset, _shift, _width) \ 299 { \ 300 .offset = (_offset), \ 301 .shift = (_shift), \ 302 .width = (_width), \ 303 .scaled_div = BAD_SCALED_DIV_VALUE, \ 304 .flags = FLAG(DIV, EXISTS), \ 305 } 306 307 /* A divider whose divisor has an integer and fractional part */ 308 #define FRAC_DIVIDER(_offset, _shift, _width, _frac_width) \ 309 { \ 310 .offset = (_offset), \ 311 .shift = (_shift), \ 312 .width = (_width), \ 313 .frac_width = (_frac_width), \ 314 .scaled_div = BAD_SCALED_DIV_VALUE, \ 315 .flags = FLAG(DIV, EXISTS), \ 316 } 317 318 /* 319 * Clocks may have multiple "parent" clocks. If there is more than 320 * one, a selector must be specified to define which of the parent 321 * clocks is currently in use. The selected clock is indicated in a 322 * sub-field of a 32-bit selector register. The range of 323 * representable selector values typically exceeds the number of 324 * available parent clocks. Occasionally the reset value of a 325 * selector field is explicitly set to a (specific) value that does 326 * not correspond to a defined input clock. 327 * 328 * We register all known parent clocks with the common clock code 329 * using a packed array (i.e., no empty slots) of (parent) clock 330 * names, and refer to them later using indexes into that array. 331 * We maintain an array of selector values indexed by common clock 332 * index values in order to map between these common clock indexes 333 * and the selector values used by the hardware. 334 * 335 * Like dividers, a selector can be modified, but to do so a clock 336 * must be enabled, and a trigger must be used to commit the change. 337 */ 338 struct bcm_clk_sel { 339 u32 offset; /* selector register offset */ 340 u32 shift; /* field shift */ 341 u32 width; /* field width */ 342 343 u32 parent_count; /* number of entries in parent_sel[] */ 344 u32 *parent_sel; /* array of parent selector values */ 345 u8 clk_index; /* current selected index in parent_sel[] */ 346 }; 347 348 /* Selector initialization macro */ 349 #define SELECTOR(_offset, _shift, _width) \ 350 { \ 351 .offset = (_offset), \ 352 .shift = (_shift), \ 353 .width = (_width), \ 354 .clk_index = BAD_CLK_INDEX, \ 355 } 356 357 /* 358 * Making changes to a variable divider or a selector for a clock 359 * requires the use of a trigger. A trigger is defined by a single 360 * bit within a register. To signal a change, a 1 is written into 361 * that bit. To determine when the change has been completed, that 362 * trigger bit is polled; the read value will be 1 while the change 363 * is in progress, and 0 when it is complete. 364 * 365 * Occasionally a clock will have more than one trigger. In this 366 * case, the "pre-trigger" will be used when changing a clock's 367 * selector and/or its pre-divider. 368 */ 369 struct bcm_clk_trig { 370 u32 offset; /* trigger register offset */ 371 u32 bit; /* trigger bit */ 372 u32 flags; /* BCM_CLK_TRIG_FLAGS_* below */ 373 }; 374 375 /* 376 * Trigger flags: 377 * EXISTS means this trigger exists 378 */ 379 #define BCM_CLK_TRIG_FLAGS_EXISTS ((u32)1 << 0) /* Trigger is valid */ 380 381 /* Trigger initialization macro */ 382 #define TRIGGER(_offset, _bit) \ 383 { \ 384 .offset = (_offset), \ 385 .bit = (_bit), \ 386 .flags = FLAG(TRIG, EXISTS), \ 387 } 388 389 struct bus_clk_data { 390 struct bcm_clk_gate gate; 391 }; 392 393 struct core_clk_data { 394 struct bcm_clk_gate gate; 395 }; 396 397 struct peri_clk_data { 398 struct bcm_clk_gate gate; 399 struct bcm_clk_trig pre_trig; 400 struct bcm_clk_div pre_div; 401 struct bcm_clk_trig trig; 402 struct bcm_clk_div div; 403 struct bcm_clk_sel sel; 404 const char *clocks[]; /* must be last; use CLOCKS() to declare */ 405 }; 406 #define CLOCKS(...) { __VA_ARGS__, NULL, } 407 #define NO_CLOCKS { NULL, } /* Must use of no parent clocks */ 408 409 struct refclk { 410 struct clk clk; 411 }; 412 413 struct peri_clock { 414 struct clk clk; 415 struct peri_clk_data *data; 416 }; 417 418 struct ccu_clock { 419 struct clk clk; 420 421 int num_policy_masks; 422 unsigned long policy_freq_offset; 423 int freq_bit_shift; /* 8 for most CCUs */ 424 unsigned long policy_ctl_offset; 425 unsigned long policy0_mask_offset; 426 unsigned long policy1_mask_offset; 427 unsigned long policy2_mask_offset; 428 unsigned long policy3_mask_offset; 429 unsigned long policy0_mask2_offset; 430 unsigned long policy1_mask2_offset; 431 unsigned long policy2_mask2_offset; 432 unsigned long policy3_mask2_offset; 433 unsigned long lvm_en_offset; 434 435 int freq_id; 436 unsigned long *freq_tbl; 437 }; 438 439 struct bus_clock { 440 struct clk clk; 441 struct bus_clk_data *data; 442 unsigned long *freq_tbl; 443 }; 444 445 struct ref_clock { 446 struct clk clk; 447 }; 448 449 static inline int is_same_clock(struct clk *a, struct clk *b) 450 { 451 return a == b; 452 } 453 454 #define to_clk(p) (&((p)->clk)) 455 #define name_to_clk(name) (&((name##_clk).clk)) 456 /* declare a struct clk_lookup */ 457 #define CLK_LK(name) \ 458 {.con_id = __stringify(name##_clk), .clk = name_to_clk(name),} 459 460 static inline struct refclk *to_refclk(struct clk *clock) 461 { 462 return container_of(clock, struct refclk, clk); 463 } 464 465 static inline struct peri_clock *to_peri_clk(struct clk *clock) 466 { 467 return container_of(clock, struct peri_clock, clk); 468 } 469 470 static inline struct ccu_clock *to_ccu_clk(struct clk *clock) 471 { 472 return container_of(clock, struct ccu_clock, clk); 473 } 474 475 static inline struct bus_clock *to_bus_clk(struct clk *clock) 476 { 477 return container_of(clock, struct bus_clock, clk); 478 } 479 480 static inline struct ref_clock *to_ref_clk(struct clk *clock) 481 { 482 return container_of(clock, struct ref_clock, clk); 483 } 484 485 extern struct clk_ops peri_clk_ops; 486 extern struct clk_ops ccu_clk_ops; 487 extern struct clk_ops bus_clk_ops; 488 extern struct clk_ops ref_clk_ops; 489 490 int clk_get_and_enable(char *clkstr); 491