1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Copyright 2013 Broadcom Corporation.
4  */
5 
6 #include <linux/stddef.h>
7 
8 #ifdef CONFIG_CLK_DEBUG
9 #undef writel
10 #undef readl
11 static inline void writel(u32 val, void *addr)
12 {
13 	printf("Write [0x%p] = 0x%08x\n", addr, val);
14 	*(u32 *)addr = val;
15 }
16 
17 static inline u32 readl(void *addr)
18 {
19 	u32 val = *(u32 *)addr;
20 	printf("Read  [0x%p] = 0x%08x\n", addr, val);
21 	return val;
22 }
23 #endif
24 
25 struct clk;
26 
27 struct clk_lookup {
28 	const char *dev_id;
29 	const char *con_id;
30 	struct clk *clk;
31 };
32 
33 extern struct clk_lookup arch_clk_tbl[];
34 extern unsigned int arch_clk_tbl_array_size;
35 
36 /**
37  * struct clk_ops - standard clock operations
38  * @enable: enable/disable clock, see clk_enable() and clk_disable()
39  * @set_rate: set the clock rate, see clk_set_rate().
40  * @get_rate: get the clock rate, see clk_get_rate().
41  * @round_rate: round a given clock rate, see clk_round_rate().
42  * @set_parent: set the clock's parent, see clk_set_parent().
43  *
44  * Group the common clock implementations together so that we
45  * don't have to keep setting the same fiels again. We leave
46  * enable in struct clk.
47  *
48  */
49 struct clk_ops {
50 	int (*enable)(struct clk *c, int enable);
51 	int (*set_rate)(struct clk *c, unsigned long rate);
52 	unsigned long (*get_rate)(struct clk *c);
53 	unsigned long (*round_rate)(struct clk *c, unsigned long rate);
54 	int (*set_parent)(struct clk *c, struct clk *parent);
55 };
56 
57 struct clk {
58 	struct clk *parent;
59 	const char *name;
60 	int use_cnt;
61 	unsigned long rate;	/* in HZ */
62 
63 	/* programmable divider. 0 means fixed ratio to parent clock */
64 	unsigned long div;
65 
66 	struct clk_src *src;
67 	struct clk_ops *ops;
68 
69 	unsigned long ccu_clk_mgr_base;
70 	int sel;
71 };
72 
73 struct refclk *refclk_str_to_clk(const char *name);
74 
75 /* The common clock framework uses u8 to represent a parent index */
76 #define PARENT_COUNT_MAX	((u32)U8_MAX)
77 
78 #define BAD_CLK_INDEX		U8_MAX	/* Can't ever be valid */
79 #define BAD_CLK_NAME		((const char *)-1)
80 
81 #define BAD_SCALED_DIV_VALUE	U64_MAX
82 
83 /*
84  * Utility macros for object flag management. If possible, flags
85  * should be defined such that 0 is the desired default value.
86  */
87 #define FLAG(type, flag)		BCM_CLK_ ## type ## _FLAGS_ ## flag
88 #define FLAG_SET(obj, type, flag)	((obj)->flags |= FLAG(type, flag))
89 #define FLAG_CLEAR(obj, type, flag)	((obj)->flags &= ~(FLAG(type, flag)))
90 #define FLAG_FLIP(obj, type, flag)	((obj)->flags ^= FLAG(type, flag))
91 #define FLAG_TEST(obj, type, flag)	(!!((obj)->flags & FLAG(type, flag)))
92 
93 /* Clock field state tests */
94 
95 #define gate_exists(gate)		FLAG_TEST(gate, GATE, EXISTS)
96 #define gate_is_enabled(gate)		FLAG_TEST(gate, GATE, ENABLED)
97 #define gate_is_hw_controllable(gate)	FLAG_TEST(gate, GATE, HW)
98 #define gate_is_sw_controllable(gate)	FLAG_TEST(gate, GATE, SW)
99 #define gate_is_sw_managed(gate)	FLAG_TEST(gate, GATE, SW_MANAGED)
100 #define gate_is_no_disable(gate)	FLAG_TEST(gate, GATE, NO_DISABLE)
101 
102 #define gate_flip_enabled(gate)		FLAG_FLIP(gate, GATE, ENABLED)
103 
104 #define divider_exists(div)		FLAG_TEST(div, DIV, EXISTS)
105 #define divider_is_fixed(div)		FLAG_TEST(div, DIV, FIXED)
106 #define divider_has_fraction(div)	(!divider_is_fixed(div) && \
107 						(div)->frac_width > 0)
108 
109 #define selector_exists(sel)		((sel)->width != 0)
110 #define trigger_exists(trig)		FLAG_TEST(trig, TRIG, EXISTS)
111 
112 /* Clock type, used to tell common block what it's part of */
113 enum bcm_clk_type {
114 	bcm_clk_none,		/* undefined clock type */
115 	bcm_clk_bus,
116 	bcm_clk_core,
117 	bcm_clk_peri
118 };
119 
120 /*
121  * Gating control and status is managed by a 32-bit gate register.
122  *
123  * There are several types of gating available:
124  * - (no gate)
125  *     A clock with no gate is assumed to be always enabled.
126  * - hardware-only gating (auto-gating)
127  *     Enabling or disabling clocks with this type of gate is
128  *     managed automatically by the hardware. Such clocks can be
129  *     considered by the software to be enabled. The current status
130  *     of auto-gated clocks can be read from the gate status bit.
131  * - software-only gating
132  *     Auto-gating is not available for this type of clock.
133  *     Instead, software manages whether it's enabled by setting or
134  *     clearing the enable bit. The current gate status of a gate
135  *     under software control can be read from the gate status bit.
136  *     To ensure a change to the gating status is complete, the
137  *     status bit can be polled to verify that the gate has entered
138  *     the desired state.
139  * - selectable hardware or software gating
140  *     Gating for this type of clock can be configured to be either
141  *     under software or hardware control. Which type is in use is
142  *     determined by the hw_sw_sel bit of the gate register.
143  */
144 struct bcm_clk_gate {
145 	u32 offset;		/* gate register offset */
146 	u32 status_bit;		/* 0: gate is disabled; 0: gatge is enabled */
147 	u32 en_bit;		/* 0: disable; 1: enable */
148 	u32 hw_sw_sel_bit;	/* 0: hardware gating; 1: software gating */
149 	u32 flags;		/* BCM_CLK_GATE_FLAGS_* below */
150 };
151 
152 /*
153  * Gate flags:
154  *   HW         means this gate can be auto-gated
155  *   SW         means the state of this gate can be software controlled
156  *   NO_DISABLE means this gate is (only) enabled if under software control
157  *   SW_MANAGED means the status of this gate is under software control
158  *   ENABLED    means this software-managed gate is *supposed* to be enabled
159  */
160 #define BCM_CLK_GATE_FLAGS_EXISTS	((u32)1 << 0)	/* Gate is valid */
161 #define BCM_CLK_GATE_FLAGS_HW		((u32)1 << 1)	/* Can auto-gate */
162 #define BCM_CLK_GATE_FLAGS_SW		((u32)1 << 2)	/* Software control */
163 #define BCM_CLK_GATE_FLAGS_NO_DISABLE	((u32)1 << 3)	/* HW or enabled */
164 #define BCM_CLK_GATE_FLAGS_SW_MANAGED	((u32)1 << 4)	/* SW now in control */
165 #define BCM_CLK_GATE_FLAGS_ENABLED	((u32)1 << 5)	/* If SW_MANAGED */
166 
167 /*
168  * Gate initialization macros.
169  *
170  * Any gate initially under software control will be enabled.
171  */
172 
173 /* A hardware/software gate initially under software control */
174 #define HW_SW_GATE(_offset, _status_bit, _en_bit, _hw_sw_sel_bit)	\
175 	{								\
176 		.offset = (_offset),					\
177 		.status_bit = (_status_bit),				\
178 		.en_bit = (_en_bit),					\
179 		.hw_sw_sel_bit = (_hw_sw_sel_bit),			\
180 		.flags = FLAG(GATE, HW)|FLAG(GATE, SW)|			\
181 			FLAG(GATE, SW_MANAGED)|FLAG(GATE, ENABLED)|	\
182 			FLAG(GATE, EXISTS),				\
183 	}
184 
185 /* A hardware/software gate initially under hardware control */
186 #define HW_SW_GATE_AUTO(_offset, _status_bit, _en_bit, _hw_sw_sel_bit)	\
187 	{								\
188 		.offset = (_offset),					\
189 		.status_bit = (_status_bit),				\
190 		.en_bit = (_en_bit),					\
191 		.hw_sw_sel_bit = (_hw_sw_sel_bit),			\
192 		.flags = FLAG(GATE, HW)|FLAG(GATE, SW)|			\
193 			FLAG(GATE, EXISTS),				\
194 	}
195 
196 /* A hardware-or-enabled gate (enabled if not under hardware control) */
197 #define HW_ENABLE_GATE(_offset, _status_bit, _en_bit, _hw_sw_sel_bit)	\
198 	{								\
199 		.offset = (_offset),					\
200 		.status_bit = (_status_bit),				\
201 		.en_bit = (_en_bit),					\
202 		.hw_sw_sel_bit = (_hw_sw_sel_bit),			\
203 		.flags = FLAG(GATE, HW)|FLAG(GATE, SW)|			\
204 			FLAG(GATE, NO_DISABLE)|FLAG(GATE, EXISTS),	\
205 	}
206 
207 /* A software-only gate */
208 #define SW_ONLY_GATE(_offset, _status_bit, _en_bit)			\
209 	{								\
210 		.offset = (_offset),					\
211 		.status_bit = (_status_bit),				\
212 		.en_bit = (_en_bit),					\
213 		.flags = FLAG(GATE, SW)|FLAG(GATE, SW_MANAGED)|		\
214 			FLAG(GATE, ENABLED)|FLAG(GATE, EXISTS),		\
215 	}
216 
217 /* A hardware-only gate */
218 #define HW_ONLY_GATE(_offset, _status_bit)				\
219 	{								\
220 		.offset = (_offset),					\
221 		.status_bit = (_status_bit),				\
222 		.flags = FLAG(GATE, HW)|FLAG(GATE, EXISTS),		\
223 	}
224 
225 /*
226  * Each clock can have zero, one, or two dividers which change the
227  * output rate of the clock. Each divider can be either fixed or
228  * variable. If there are two dividers, they are the "pre-divider"
229  * and the "regular" or "downstream" divider. If there is only one,
230  * there is no pre-divider.
231  *
232  * A fixed divider is any non-zero (positive) value, and it
233  * indicates how the input rate is affected by the divider.
234  *
235  * The value of a variable divider is maintained in a sub-field of a
236  * 32-bit divider register. The position of the field in the
237  * register is defined by its offset and width. The value recorded
238  * in this field is always 1 less than the value it represents.
239  *
240  * In addition, a variable divider can indicate that some subset
241  * of its bits represent a "fractional" part of the divider. Such
242  * bits comprise the low-order portion of the divider field, and can
243  * be viewed as representing the portion of the divider that lies to
244  * the right of the decimal point. Most variable dividers have zero
245  * fractional bits. Variable dividers with non-zero fraction width
246  * still record a value 1 less than the value they represent; the
247  * added 1 does *not* affect the low-order bit in this case, it
248  * affects the bits above the fractional part only. (Often in this
249  * code a divider field value is distinguished from the value it
250  * represents by referring to the latter as a "divisor".)
251  *
252  * In order to avoid dealing with fractions, divider arithmetic is
253  * performed using "scaled" values. A scaled value is one that's
254  * been left-shifted by the fractional width of a divider. Dividing
255  * a scaled value by a scaled divisor produces the desired quotient
256  * without loss of precision and without any other special handling
257  * for fractions.
258  *
259  * The recorded value of a variable divider can be modified. To
260  * modify either divider (or both), a clock must be enabled (i.e.,
261  * using its gate). In addition, a trigger register (described
262  * below) must be used to commit the change, and polled to verify
263  * the change is complete.
264  */
265 struct bcm_clk_div {
266 	union {
267 		struct {	/* variable divider */
268 			u32 offset;	/* divider register offset */
269 			u32 shift;	/* field shift */
270 			u32 width;	/* field width */
271 			u32 frac_width;	/* field fraction width */
272 
273 			u64 scaled_div;	/* scaled divider value */
274 		};
275 		u32 fixed;	/* non-zero fixed divider value */
276 	};
277 	u32 flags;		/* BCM_CLK_DIV_FLAGS_* below */
278 };
279 
280 /*
281  * Divider flags:
282  *   EXISTS means this divider exists
283  *   FIXED means it is a fixed-rate divider
284  */
285 #define BCM_CLK_DIV_FLAGS_EXISTS	((u32)1 << 0)	/* Divider is valid */
286 #define BCM_CLK_DIV_FLAGS_FIXED		((u32)1 << 1)	/* Fixed-value */
287 
288 /* Divider initialization macros */
289 
290 /* A fixed (non-zero) divider */
291 #define FIXED_DIVIDER(_value)						\
292 	{								\
293 		.fixed = (_value),					\
294 		.flags = FLAG(DIV, EXISTS)|FLAG(DIV, FIXED),		\
295 	}
296 
297 /* A divider with an integral divisor */
298 #define DIVIDER(_offset, _shift, _width)				\
299 	{								\
300 		.offset = (_offset),					\
301 		.shift = (_shift),					\
302 		.width = (_width),					\
303 		.scaled_div = BAD_SCALED_DIV_VALUE,			\
304 		.flags = FLAG(DIV, EXISTS),				\
305 	}
306 
307 /* A divider whose divisor has an integer and fractional part */
308 #define FRAC_DIVIDER(_offset, _shift, _width, _frac_width)		\
309 	{								\
310 		.offset = (_offset),					\
311 		.shift = (_shift),					\
312 		.width = (_width),					\
313 		.frac_width = (_frac_width),				\
314 		.scaled_div = BAD_SCALED_DIV_VALUE,			\
315 		.flags = FLAG(DIV, EXISTS),				\
316 	}
317 
318 /*
319  * Clocks may have multiple "parent" clocks. If there is more than
320  * one, a selector must be specified to define which of the parent
321  * clocks is currently in use. The selected clock is indicated in a
322  * sub-field of a 32-bit selector register. The range of
323  * representable selector values typically exceeds the number of
324  * available parent clocks. Occasionally the reset value of a
325  * selector field is explicitly set to a (specific) value that does
326  * not correspond to a defined input clock.
327  *
328  * We register all known parent clocks with the common clock code
329  * using a packed array (i.e., no empty slots) of (parent) clock
330  * names, and refer to them later using indexes into that array.
331  * We maintain an array of selector values indexed by common clock
332  * index values in order to map between these common clock indexes
333  * and the selector values used by the hardware.
334  *
335  * Like dividers, a selector can be modified, but to do so a clock
336  * must be enabled, and a trigger must be used to commit the change.
337  */
338 struct bcm_clk_sel {
339 	u32 offset;		/* selector register offset */
340 	u32 shift;		/* field shift */
341 	u32 width;		/* field width */
342 
343 	u32 parent_count;	/* number of entries in parent_sel[] */
344 	u32 *parent_sel;	/* array of parent selector values */
345 	u8 clk_index;		/* current selected index in parent_sel[] */
346 };
347 
348 /* Selector initialization macro */
349 #define SELECTOR(_offset, _shift, _width)				\
350 	{								\
351 		.offset = (_offset),					\
352 		.shift = (_shift),					\
353 		.width = (_width),					\
354 		.clk_index = BAD_CLK_INDEX,				\
355 	}
356 
357 /*
358  * Making changes to a variable divider or a selector for a clock
359  * requires the use of a trigger. A trigger is defined by a single
360  * bit within a register. To signal a change, a 1 is written into
361  * that bit. To determine when the change has been completed, that
362  * trigger bit is polled; the read value will be 1 while the change
363  * is in progress, and 0 when it is complete.
364  *
365  * Occasionally a clock will have more than one trigger. In this
366  * case, the "pre-trigger" will be used when changing a clock's
367  * selector and/or its pre-divider.
368  */
369 struct bcm_clk_trig {
370 	u32 offset;		/* trigger register offset */
371 	u32 bit;		/* trigger bit */
372 	u32 flags;		/* BCM_CLK_TRIG_FLAGS_* below */
373 };
374 
375 /*
376  * Trigger flags:
377  *   EXISTS means this trigger exists
378  */
379 #define BCM_CLK_TRIG_FLAGS_EXISTS	((u32)1 << 0)	/* Trigger is valid */
380 
381 /* Trigger initialization macro */
382 #define TRIGGER(_offset, _bit)						\
383 	{								\
384 		.offset = (_offset),					\
385 		.bit = (_bit),						\
386 		.flags = FLAG(TRIG, EXISTS),				\
387 	}
388 
389 struct bus_clk_data {
390 	struct bcm_clk_gate gate;
391 };
392 
393 struct core_clk_data {
394 	struct bcm_clk_gate gate;
395 };
396 
397 struct peri_clk_data {
398 	struct bcm_clk_gate gate;
399 	struct bcm_clk_trig pre_trig;
400 	struct bcm_clk_div pre_div;
401 	struct bcm_clk_trig trig;
402 	struct bcm_clk_div div;
403 	struct bcm_clk_sel sel;
404 	const char *clocks[];	/* must be last; use CLOCKS() to declare */
405 };
406 #define CLOCKS(...)	{ __VA_ARGS__, NULL, }
407 #define NO_CLOCKS	{ NULL, }	/* Must use of no parent clocks */
408 
409 struct refclk {
410 	struct clk clk;
411 };
412 
413 struct peri_clock {
414 	struct clk clk;
415 	struct peri_clk_data *data;
416 };
417 
418 struct ccu_clock {
419 	struct clk clk;
420 
421 	int num_policy_masks;
422 	unsigned long policy_freq_offset;
423 	int freq_bit_shift;	/* 8 for most CCUs */
424 	unsigned long policy_ctl_offset;
425 	unsigned long policy0_mask_offset;
426 	unsigned long policy1_mask_offset;
427 	unsigned long policy2_mask_offset;
428 	unsigned long policy3_mask_offset;
429 	unsigned long policy0_mask2_offset;
430 	unsigned long policy1_mask2_offset;
431 	unsigned long policy2_mask2_offset;
432 	unsigned long policy3_mask2_offset;
433 	unsigned long lvm_en_offset;
434 
435 	int freq_id;
436 	unsigned long *freq_tbl;
437 };
438 
439 struct bus_clock {
440 	struct clk clk;
441 	struct bus_clk_data *data;
442 	unsigned long *freq_tbl;
443 };
444 
445 struct ref_clock {
446 	struct clk clk;
447 };
448 
449 static inline int is_same_clock(struct clk *a, struct clk *b)
450 {
451 	return a == b;
452 }
453 
454 #define to_clk(p) (&((p)->clk))
455 #define name_to_clk(name) (&((name##_clk).clk))
456 /* declare a struct clk_lookup */
457 #define CLK_LK(name) \
458 {.con_id = __stringify(name##_clk), .clk = name_to_clk(name),}
459 
460 static inline struct refclk *to_refclk(struct clk *clock)
461 {
462 	return container_of(clock, struct refclk, clk);
463 }
464 
465 static inline struct peri_clock *to_peri_clk(struct clk *clock)
466 {
467 	return container_of(clock, struct peri_clock, clk);
468 }
469 
470 static inline struct ccu_clock *to_ccu_clk(struct clk *clock)
471 {
472 	return container_of(clock, struct ccu_clock, clk);
473 }
474 
475 static inline struct bus_clock *to_bus_clk(struct clk *clock)
476 {
477 	return container_of(clock, struct bus_clock, clk);
478 }
479 
480 static inline struct ref_clock *to_ref_clk(struct clk *clock)
481 {
482 	return container_of(clock, struct ref_clock, clk);
483 }
484 
485 extern struct clk_ops peri_clk_ops;
486 extern struct clk_ops ccu_clk_ops;
487 extern struct clk_ops bus_clk_ops;
488 extern struct clk_ops ref_clk_ops;
489 
490 int clk_get_and_enable(char *clkstr);
491