xref: /openbmc/u-boot/arch/arm/cpu/armv7/bcm235xx/clk-core.h (revision 3335786a982578abf9a25e4d6ce67d3416ebe15e)
1 /*
2  * Copyright 2013 Broadcom Corporation.
3  *
4  * SPDX-License-Identifier:	GPL-2.0+
5  */
6 
7 #include <linux/stddef.h>
8 
9 #ifdef CONFIG_CLK_DEBUG
10 #undef writel
11 #undef readl
12 static inline void writel(u32 val, void *addr)
13 {
14 	printf("Write [0x%p] = 0x%08x\n", addr, val);
15 	*(u32 *)addr = val;
16 }
17 
18 static inline u32 readl(void *addr)
19 {
20 	u32 val = *(u32 *)addr;
21 	printf("Read  [0x%p] = 0x%08x\n", addr, val);
22 	return val;
23 }
24 #endif
25 
26 struct clk;
27 
28 struct clk_lookup {
29 	const char *dev_id;
30 	const char *con_id;
31 	struct clk *clk;
32 };
33 
34 extern struct clk_lookup arch_clk_tbl[];
35 extern unsigned int arch_clk_tbl_array_size;
36 
37 /**
38  * struct clk_ops - standard clock operations
39  * @enable: enable/disable clock, see clk_enable() and clk_disable()
40  * @set_rate: set the clock rate, see clk_set_rate().
41  * @get_rate: get the clock rate, see clk_get_rate().
42  * @round_rate: round a given clock rate, see clk_round_rate().
43  * @set_parent: set the clock's parent, see clk_set_parent().
44  *
45  * Group the common clock implementations together so that we
46  * don't have to keep setting the same fiels again. We leave
47  * enable in struct clk.
48  *
49  */
50 struct clk_ops {
51 	int (*enable)(struct clk *c, int enable);
52 	int (*set_rate)(struct clk *c, unsigned long rate);
53 	unsigned long (*get_rate)(struct clk *c);
54 	unsigned long (*round_rate)(struct clk *c, unsigned long rate);
55 	int (*set_parent)(struct clk *c, struct clk *parent);
56 };
57 
58 struct clk {
59 	struct clk *parent;
60 	const char *name;
61 	int use_cnt;
62 	unsigned long rate;	/* in HZ */
63 
64 	/* programmable divider. 0 means fixed ratio to parent clock */
65 	unsigned long div;
66 
67 	struct clk_src *src;
68 	struct clk_ops *ops;
69 
70 	unsigned long ccu_clk_mgr_base;
71 	int sel;
72 };
73 
74 struct refclk *refclk_str_to_clk(const char *name);
75 
76 /* The common clock framework uses u8 to represent a parent index */
77 #define PARENT_COUNT_MAX	((u32)U8_MAX)
78 
79 #define BAD_CLK_INDEX		U8_MAX	/* Can't ever be valid */
80 #define BAD_CLK_NAME		((const char *)-1)
81 
82 #define BAD_SCALED_DIV_VALUE	U64_MAX
83 
84 /*
85  * Utility macros for object flag management. If possible, flags
86  * should be defined such that 0 is the desired default value.
87  */
88 #define FLAG(type, flag)		BCM_CLK_ ## type ## _FLAGS_ ## flag
89 #define FLAG_SET(obj, type, flag)	((obj)->flags |= FLAG(type, flag))
90 #define FLAG_CLEAR(obj, type, flag)	((obj)->flags &= ~(FLAG(type, flag)))
91 #define FLAG_FLIP(obj, type, flag)	((obj)->flags ^= FLAG(type, flag))
92 #define FLAG_TEST(obj, type, flag)	(!!((obj)->flags & FLAG(type, flag)))
93 
94 /* Clock field state tests */
95 
96 #define gate_exists(gate)		FLAG_TEST(gate, GATE, EXISTS)
97 #define gate_is_enabled(gate)		FLAG_TEST(gate, GATE, ENABLED)
98 #define gate_is_hw_controllable(gate)	FLAG_TEST(gate, GATE, HW)
99 #define gate_is_sw_controllable(gate)	FLAG_TEST(gate, GATE, SW)
100 #define gate_is_sw_managed(gate)	FLAG_TEST(gate, GATE, SW_MANAGED)
101 #define gate_is_no_disable(gate)	FLAG_TEST(gate, GATE, NO_DISABLE)
102 
103 #define gate_flip_enabled(gate)		FLAG_FLIP(gate, GATE, ENABLED)
104 
105 #define divider_exists(div)		FLAG_TEST(div, DIV, EXISTS)
106 #define divider_is_fixed(div)		FLAG_TEST(div, DIV, FIXED)
107 #define divider_has_fraction(div)	(!divider_is_fixed(div) && \
108 						(div)->frac_width > 0)
109 
110 #define selector_exists(sel)		((sel)->width != 0)
111 #define trigger_exists(trig)		FLAG_TEST(trig, TRIG, EXISTS)
112 
113 /* Clock type, used to tell common block what it's part of */
114 enum bcm_clk_type {
115 	bcm_clk_none,		/* undefined clock type */
116 	bcm_clk_bus,
117 	bcm_clk_core,
118 	bcm_clk_peri
119 };
120 
121 /*
122  * Gating control and status is managed by a 32-bit gate register.
123  *
124  * There are several types of gating available:
125  * - (no gate)
126  *     A clock with no gate is assumed to be always enabled.
127  * - hardware-only gating (auto-gating)
128  *     Enabling or disabling clocks with this type of gate is
129  *     managed automatically by the hardware. Such clocks can be
130  *     considered by the software to be enabled. The current status
131  *     of auto-gated clocks can be read from the gate status bit.
132  * - software-only gating
133  *     Auto-gating is not available for this type of clock.
134  *     Instead, software manages whether it's enabled by setting or
135  *     clearing the enable bit. The current gate status of a gate
136  *     under software control can be read from the gate status bit.
137  *     To ensure a change to the gating status is complete, the
138  *     status bit can be polled to verify that the gate has entered
139  *     the desired state.
140  * - selectable hardware or software gating
141  *     Gating for this type of clock can be configured to be either
142  *     under software or hardware control. Which type is in use is
143  *     determined by the hw_sw_sel bit of the gate register.
144  */
145 struct bcm_clk_gate {
146 	u32 offset;		/* gate register offset */
147 	u32 status_bit;		/* 0: gate is disabled; 0: gatge is enabled */
148 	u32 en_bit;		/* 0: disable; 1: enable */
149 	u32 hw_sw_sel_bit;	/* 0: hardware gating; 1: software gating */
150 	u32 flags;		/* BCM_CLK_GATE_FLAGS_* below */
151 };
152 
153 /*
154  * Gate flags:
155  *   HW         means this gate can be auto-gated
156  *   SW         means the state of this gate can be software controlled
157  *   NO_DISABLE means this gate is (only) enabled if under software control
158  *   SW_MANAGED means the status of this gate is under software control
159  *   ENABLED    means this software-managed gate is *supposed* to be enabled
160  */
161 #define BCM_CLK_GATE_FLAGS_EXISTS	((u32)1 << 0)	/* Gate is valid */
162 #define BCM_CLK_GATE_FLAGS_HW		((u32)1 << 1)	/* Can auto-gate */
163 #define BCM_CLK_GATE_FLAGS_SW		((u32)1 << 2)	/* Software control */
164 #define BCM_CLK_GATE_FLAGS_NO_DISABLE	((u32)1 << 3)	/* HW or enabled */
165 #define BCM_CLK_GATE_FLAGS_SW_MANAGED	((u32)1 << 4)	/* SW now in control */
166 #define BCM_CLK_GATE_FLAGS_ENABLED	((u32)1 << 5)	/* If SW_MANAGED */
167 
168 /*
169  * Gate initialization macros.
170  *
171  * Any gate initially under software control will be enabled.
172  */
173 
174 /* A hardware/software gate initially under software control */
175 #define HW_SW_GATE(_offset, _status_bit, _en_bit, _hw_sw_sel_bit)	\
176 	{								\
177 		.offset = (_offset),					\
178 		.status_bit = (_status_bit),				\
179 		.en_bit = (_en_bit),					\
180 		.hw_sw_sel_bit = (_hw_sw_sel_bit),			\
181 		.flags = FLAG(GATE, HW)|FLAG(GATE, SW)|			\
182 			FLAG(GATE, SW_MANAGED)|FLAG(GATE, ENABLED)|	\
183 			FLAG(GATE, EXISTS),				\
184 	}
185 
186 /* A hardware/software gate initially under hardware control */
187 #define HW_SW_GATE_AUTO(_offset, _status_bit, _en_bit, _hw_sw_sel_bit)	\
188 	{								\
189 		.offset = (_offset),					\
190 		.status_bit = (_status_bit),				\
191 		.en_bit = (_en_bit),					\
192 		.hw_sw_sel_bit = (_hw_sw_sel_bit),			\
193 		.flags = FLAG(GATE, HW)|FLAG(GATE, SW)|			\
194 			FLAG(GATE, EXISTS),				\
195 	}
196 
197 /* A hardware-or-enabled gate (enabled if not under hardware control) */
198 #define HW_ENABLE_GATE(_offset, _status_bit, _en_bit, _hw_sw_sel_bit)	\
199 	{								\
200 		.offset = (_offset),					\
201 		.status_bit = (_status_bit),				\
202 		.en_bit = (_en_bit),					\
203 		.hw_sw_sel_bit = (_hw_sw_sel_bit),			\
204 		.flags = FLAG(GATE, HW)|FLAG(GATE, SW)|			\
205 			FLAG(GATE, NO_DISABLE)|FLAG(GATE, EXISTS),	\
206 	}
207 
208 /* A software-only gate */
209 #define SW_ONLY_GATE(_offset, _status_bit, _en_bit)			\
210 	{								\
211 		.offset = (_offset),					\
212 		.status_bit = (_status_bit),				\
213 		.en_bit = (_en_bit),					\
214 		.flags = FLAG(GATE, SW)|FLAG(GATE, SW_MANAGED)|		\
215 			FLAG(GATE, ENABLED)|FLAG(GATE, EXISTS),		\
216 	}
217 
218 /* A hardware-only gate */
219 #define HW_ONLY_GATE(_offset, _status_bit)				\
220 	{								\
221 		.offset = (_offset),					\
222 		.status_bit = (_status_bit),				\
223 		.flags = FLAG(GATE, HW)|FLAG(GATE, EXISTS),		\
224 	}
225 
226 /*
227  * Each clock can have zero, one, or two dividers which change the
228  * output rate of the clock. Each divider can be either fixed or
229  * variable. If there are two dividers, they are the "pre-divider"
230  * and the "regular" or "downstream" divider. If there is only one,
231  * there is no pre-divider.
232  *
233  * A fixed divider is any non-zero (positive) value, and it
234  * indicates how the input rate is affected by the divider.
235  *
236  * The value of a variable divider is maintained in a sub-field of a
237  * 32-bit divider register. The position of the field in the
238  * register is defined by its offset and width. The value recorded
239  * in this field is always 1 less than the value it represents.
240  *
241  * In addition, a variable divider can indicate that some subset
242  * of its bits represent a "fractional" part of the divider. Such
243  * bits comprise the low-order portion of the divider field, and can
244  * be viewed as representing the portion of the divider that lies to
245  * the right of the decimal point. Most variable dividers have zero
246  * fractional bits. Variable dividers with non-zero fraction width
247  * still record a value 1 less than the value they represent; the
248  * added 1 does *not* affect the low-order bit in this case, it
249  * affects the bits above the fractional part only. (Often in this
250  * code a divider field value is distinguished from the value it
251  * represents by referring to the latter as a "divisor".)
252  *
253  * In order to avoid dealing with fractions, divider arithmetic is
254  * performed using "scaled" values. A scaled value is one that's
255  * been left-shifted by the fractional width of a divider. Dividing
256  * a scaled value by a scaled divisor produces the desired quotient
257  * without loss of precision and without any other special handling
258  * for fractions.
259  *
260  * The recorded value of a variable divider can be modified. To
261  * modify either divider (or both), a clock must be enabled (i.e.,
262  * using its gate). In addition, a trigger register (described
263  * below) must be used to commit the change, and polled to verify
264  * the change is complete.
265  */
266 struct bcm_clk_div {
267 	union {
268 		struct {	/* variable divider */
269 			u32 offset;	/* divider register offset */
270 			u32 shift;	/* field shift */
271 			u32 width;	/* field width */
272 			u32 frac_width;	/* field fraction width */
273 
274 			u64 scaled_div;	/* scaled divider value */
275 		};
276 		u32 fixed;	/* non-zero fixed divider value */
277 	};
278 	u32 flags;		/* BCM_CLK_DIV_FLAGS_* below */
279 };
280 
281 /*
282  * Divider flags:
283  *   EXISTS means this divider exists
284  *   FIXED means it is a fixed-rate divider
285  */
286 #define BCM_CLK_DIV_FLAGS_EXISTS	((u32)1 << 0)	/* Divider is valid */
287 #define BCM_CLK_DIV_FLAGS_FIXED		((u32)1 << 1)	/* Fixed-value */
288 
289 /* Divider initialization macros */
290 
291 /* A fixed (non-zero) divider */
292 #define FIXED_DIVIDER(_value)						\
293 	{								\
294 		.fixed = (_value),					\
295 		.flags = FLAG(DIV, EXISTS)|FLAG(DIV, FIXED),		\
296 	}
297 
298 /* A divider with an integral divisor */
299 #define DIVIDER(_offset, _shift, _width)				\
300 	{								\
301 		.offset = (_offset),					\
302 		.shift = (_shift),					\
303 		.width = (_width),					\
304 		.scaled_div = BAD_SCALED_DIV_VALUE,			\
305 		.flags = FLAG(DIV, EXISTS),				\
306 	}
307 
308 /* A divider whose divisor has an integer and fractional part */
309 #define FRAC_DIVIDER(_offset, _shift, _width, _frac_width)		\
310 	{								\
311 		.offset = (_offset),					\
312 		.shift = (_shift),					\
313 		.width = (_width),					\
314 		.frac_width = (_frac_width),				\
315 		.scaled_div = BAD_SCALED_DIV_VALUE,			\
316 		.flags = FLAG(DIV, EXISTS),				\
317 	}
318 
319 /*
320  * Clocks may have multiple "parent" clocks. If there is more than
321  * one, a selector must be specified to define which of the parent
322  * clocks is currently in use. The selected clock is indicated in a
323  * sub-field of a 32-bit selector register. The range of
324  * representable selector values typically exceeds the number of
325  * available parent clocks. Occasionally the reset value of a
326  * selector field is explicitly set to a (specific) value that does
327  * not correspond to a defined input clock.
328  *
329  * We register all known parent clocks with the common clock code
330  * using a packed array (i.e., no empty slots) of (parent) clock
331  * names, and refer to them later using indexes into that array.
332  * We maintain an array of selector values indexed by common clock
333  * index values in order to map between these common clock indexes
334  * and the selector values used by the hardware.
335  *
336  * Like dividers, a selector can be modified, but to do so a clock
337  * must be enabled, and a trigger must be used to commit the change.
338  */
339 struct bcm_clk_sel {
340 	u32 offset;		/* selector register offset */
341 	u32 shift;		/* field shift */
342 	u32 width;		/* field width */
343 
344 	u32 parent_count;	/* number of entries in parent_sel[] */
345 	u32 *parent_sel;	/* array of parent selector values */
346 	u8 clk_index;		/* current selected index in parent_sel[] */
347 };
348 
349 /* Selector initialization macro */
350 #define SELECTOR(_offset, _shift, _width)				\
351 	{								\
352 		.offset = (_offset),					\
353 		.shift = (_shift),					\
354 		.width = (_width),					\
355 		.clk_index = BAD_CLK_INDEX,				\
356 	}
357 
358 /*
359  * Making changes to a variable divider or a selector for a clock
360  * requires the use of a trigger. A trigger is defined by a single
361  * bit within a register. To signal a change, a 1 is written into
362  * that bit. To determine when the change has been completed, that
363  * trigger bit is polled; the read value will be 1 while the change
364  * is in progress, and 0 when it is complete.
365  *
366  * Occasionally a clock will have more than one trigger. In this
367  * case, the "pre-trigger" will be used when changing a clock's
368  * selector and/or its pre-divider.
369  */
370 struct bcm_clk_trig {
371 	u32 offset;		/* trigger register offset */
372 	u32 bit;		/* trigger bit */
373 	u32 flags;		/* BCM_CLK_TRIG_FLAGS_* below */
374 };
375 
376 /*
377  * Trigger flags:
378  *   EXISTS means this trigger exists
379  */
380 #define BCM_CLK_TRIG_FLAGS_EXISTS	((u32)1 << 0)	/* Trigger is valid */
381 
382 /* Trigger initialization macro */
383 #define TRIGGER(_offset, _bit)						\
384 	{								\
385 		.offset = (_offset),					\
386 		.bit = (_bit),						\
387 		.flags = FLAG(TRIG, EXISTS),				\
388 	}
389 
390 struct bus_clk_data {
391 	struct bcm_clk_gate gate;
392 };
393 
394 struct core_clk_data {
395 	struct bcm_clk_gate gate;
396 };
397 
398 struct peri_clk_data {
399 	struct bcm_clk_gate gate;
400 	struct bcm_clk_trig pre_trig;
401 	struct bcm_clk_div pre_div;
402 	struct bcm_clk_trig trig;
403 	struct bcm_clk_div div;
404 	struct bcm_clk_sel sel;
405 	const char *clocks[];	/* must be last; use CLOCKS() to declare */
406 };
407 #define CLOCKS(...)	{ __VA_ARGS__, NULL, }
408 #define NO_CLOCKS	{ NULL, }	/* Must use of no parent clocks */
409 
410 struct refclk {
411 	struct clk clk;
412 };
413 
414 struct peri_clock {
415 	struct clk clk;
416 	struct peri_clk_data *data;
417 };
418 
419 struct ccu_clock {
420 	struct clk clk;
421 
422 	int num_policy_masks;
423 	unsigned long policy_freq_offset;
424 	int freq_bit_shift;	/* 8 for most CCUs */
425 	unsigned long policy_ctl_offset;
426 	unsigned long policy0_mask_offset;
427 	unsigned long policy1_mask_offset;
428 	unsigned long policy2_mask_offset;
429 	unsigned long policy3_mask_offset;
430 	unsigned long policy0_mask2_offset;
431 	unsigned long policy1_mask2_offset;
432 	unsigned long policy2_mask2_offset;
433 	unsigned long policy3_mask2_offset;
434 	unsigned long lvm_en_offset;
435 
436 	int freq_id;
437 	unsigned long *freq_tbl;
438 };
439 
440 struct bus_clock {
441 	struct clk clk;
442 	struct bus_clk_data *data;
443 	unsigned long *freq_tbl;
444 };
445 
446 struct ref_clock {
447 	struct clk clk;
448 };
449 
450 static inline int is_same_clock(struct clk *a, struct clk *b)
451 {
452 	return a == b;
453 }
454 
455 #define to_clk(p) (&((p)->clk))
456 #define name_to_clk(name) (&((name##_clk).clk))
457 /* declare a struct clk_lookup */
458 #define CLK_LK(name) \
459 {.con_id = __stringify(name##_clk), .clk = name_to_clk(name),}
460 
461 static inline struct refclk *to_refclk(struct clk *clock)
462 {
463 	return container_of(clock, struct refclk, clk);
464 }
465 
466 static inline struct peri_clock *to_peri_clk(struct clk *clock)
467 {
468 	return container_of(clock, struct peri_clock, clk);
469 }
470 
471 static inline struct ccu_clock *to_ccu_clk(struct clk *clock)
472 {
473 	return container_of(clock, struct ccu_clock, clk);
474 }
475 
476 static inline struct bus_clock *to_bus_clk(struct clk *clock)
477 {
478 	return container_of(clock, struct bus_clock, clk);
479 }
480 
481 static inline struct ref_clock *to_ref_clk(struct clk *clock)
482 {
483 	return container_of(clock, struct ref_clock, clk);
484 }
485 
486 extern struct clk_ops peri_clk_ops;
487 extern struct clk_ops ccu_clk_ops;
488 extern struct clk_ops bus_clk_ops;
489 extern struct clk_ops ref_clk_ops;
490 
491 int clk_get_and_enable(char *clkstr);
492