xref: /openbmc/u-boot/arch/arm/cpu/arm926ejs/mxs/spl_power_init.c (revision a0452346c4e5223ed30b70e4be1bb4a0620f496a)
1 /*
2  * Freescale i.MX28 Boot PMIC init
3  *
4  * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
5  * on behalf of DENX Software Engineering GmbH
6  *
7  * See file CREDITS for list of people who contributed to this
8  * project.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of
13  * the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
23  * MA 02111-1307 USA
24  */
25 
26 #include <common.h>
27 #include <config.h>
28 #include <asm/io.h>
29 #include <asm/arch/imx-regs.h>
30 
31 #include "mxs_init.h"
32 
33 void mxs_power_clock2xtal(void)
34 {
35 	struct mxs_clkctrl_regs *clkctrl_regs =
36 		(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
37 
38 	/* Set XTAL as CPU reference clock */
39 	writel(CLKCTRL_CLKSEQ_BYPASS_CPU,
40 		&clkctrl_regs->hw_clkctrl_clkseq_set);
41 }
42 
43 void mxs_power_clock2pll(void)
44 {
45 	struct mxs_clkctrl_regs *clkctrl_regs =
46 		(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
47 
48 	setbits_le32(&clkctrl_regs->hw_clkctrl_pll0ctrl0,
49 			CLKCTRL_PLL0CTRL0_POWER);
50 	early_delay(100);
51 	setbits_le32(&clkctrl_regs->hw_clkctrl_clkseq,
52 			CLKCTRL_CLKSEQ_BYPASS_CPU);
53 }
54 
55 void mxs_power_clear_auto_restart(void)
56 {
57 	struct mxs_rtc_regs *rtc_regs =
58 		(struct mxs_rtc_regs *)MXS_RTC_BASE;
59 
60 	writel(RTC_CTRL_SFTRST, &rtc_regs->hw_rtc_ctrl_clr);
61 	while (readl(&rtc_regs->hw_rtc_ctrl) & RTC_CTRL_SFTRST)
62 		;
63 
64 	writel(RTC_CTRL_CLKGATE, &rtc_regs->hw_rtc_ctrl_clr);
65 	while (readl(&rtc_regs->hw_rtc_ctrl) & RTC_CTRL_CLKGATE)
66 		;
67 
68 	/*
69 	 * Due to the hardware design bug of mx28 EVK-A
70 	 * we need to set the AUTO_RESTART bit.
71 	 */
72 	if (readl(&rtc_regs->hw_rtc_persistent0) & RTC_PERSISTENT0_AUTO_RESTART)
73 		return;
74 
75 	while (readl(&rtc_regs->hw_rtc_stat) & RTC_STAT_NEW_REGS_MASK)
76 		;
77 
78 	setbits_le32(&rtc_regs->hw_rtc_persistent0,
79 			RTC_PERSISTENT0_AUTO_RESTART);
80 	writel(RTC_CTRL_FORCE_UPDATE, &rtc_regs->hw_rtc_ctrl_set);
81 	writel(RTC_CTRL_FORCE_UPDATE, &rtc_regs->hw_rtc_ctrl_clr);
82 	while (readl(&rtc_regs->hw_rtc_stat) & RTC_STAT_NEW_REGS_MASK)
83 		;
84 	while (readl(&rtc_regs->hw_rtc_stat) & RTC_STAT_STALE_REGS_MASK)
85 		;
86 }
87 
88 void mxs_power_set_linreg(void)
89 {
90 	struct mxs_power_regs *power_regs =
91 		(struct mxs_power_regs *)MXS_POWER_BASE;
92 
93 	/* Set linear regulator 25mV below switching converter */
94 	clrsetbits_le32(&power_regs->hw_power_vdddctrl,
95 			POWER_VDDDCTRL_LINREG_OFFSET_MASK,
96 			POWER_VDDDCTRL_LINREG_OFFSET_1STEPS_BELOW);
97 
98 	clrsetbits_le32(&power_regs->hw_power_vddactrl,
99 			POWER_VDDACTRL_LINREG_OFFSET_MASK,
100 			POWER_VDDACTRL_LINREG_OFFSET_1STEPS_BELOW);
101 
102 	clrsetbits_le32(&power_regs->hw_power_vddioctrl,
103 			POWER_VDDIOCTRL_LINREG_OFFSET_MASK,
104 			POWER_VDDIOCTRL_LINREG_OFFSET_1STEPS_BELOW);
105 }
106 
107 int mxs_get_batt_volt(void)
108 {
109 	struct mxs_power_regs *power_regs =
110 		(struct mxs_power_regs *)MXS_POWER_BASE;
111 	uint32_t volt = readl(&power_regs->hw_power_battmonitor);
112 	volt &= POWER_BATTMONITOR_BATT_VAL_MASK;
113 	volt >>= POWER_BATTMONITOR_BATT_VAL_OFFSET;
114 	volt *= 8;
115 	return volt;
116 }
117 
118 int mxs_is_batt_ready(void)
119 {
120 	return (mxs_get_batt_volt() >= 3600);
121 }
122 
123 int mxs_is_batt_good(void)
124 {
125 	struct mxs_power_regs *power_regs =
126 		(struct mxs_power_regs *)MXS_POWER_BASE;
127 	uint32_t volt = mxs_get_batt_volt();
128 
129 	if ((volt >= 2400) && (volt <= 4300))
130 		return 1;
131 
132 	clrsetbits_le32(&power_regs->hw_power_5vctrl,
133 		POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK,
134 		0x3 << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET);
135 	writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
136 		&power_regs->hw_power_5vctrl_clr);
137 
138 	clrsetbits_le32(&power_regs->hw_power_charge,
139 		POWER_CHARGE_STOP_ILIMIT_MASK | POWER_CHARGE_BATTCHRG_I_MASK,
140 		POWER_CHARGE_STOP_ILIMIT_10MA | 0x3);
141 
142 	writel(POWER_CHARGE_PWD_BATTCHRG, &power_regs->hw_power_charge_clr);
143 	writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
144 		&power_regs->hw_power_5vctrl_clr);
145 
146 	early_delay(500000);
147 
148 	volt = mxs_get_batt_volt();
149 
150 	if (volt >= 3500)
151 		return 0;
152 
153 	if (volt >= 2400)
154 		return 1;
155 
156 	writel(POWER_CHARGE_STOP_ILIMIT_MASK | POWER_CHARGE_BATTCHRG_I_MASK,
157 		&power_regs->hw_power_charge_clr);
158 	writel(POWER_CHARGE_PWD_BATTCHRG, &power_regs->hw_power_charge_set);
159 
160 	return 0;
161 }
162 
163 void mxs_power_setup_5v_detect(void)
164 {
165 	struct mxs_power_regs *power_regs =
166 		(struct mxs_power_regs *)MXS_POWER_BASE;
167 
168 	/* Start 5V detection */
169 	clrsetbits_le32(&power_regs->hw_power_5vctrl,
170 			POWER_5VCTRL_VBUSVALID_TRSH_MASK,
171 			POWER_5VCTRL_VBUSVALID_TRSH_4V4 |
172 			POWER_5VCTRL_PWRUP_VBUS_CMPS);
173 }
174 
175 void mxs_src_power_init(void)
176 {
177 	struct mxs_power_regs *power_regs =
178 		(struct mxs_power_regs *)MXS_POWER_BASE;
179 
180 	/* Improve efficieny and reduce transient ripple */
181 	writel(POWER_LOOPCTRL_TOGGLE_DIF | POWER_LOOPCTRL_EN_CM_HYST |
182 		POWER_LOOPCTRL_EN_DF_HYST, &power_regs->hw_power_loopctrl_set);
183 
184 	clrsetbits_le32(&power_regs->hw_power_dclimits,
185 			POWER_DCLIMITS_POSLIMIT_BUCK_MASK,
186 			0x30 << POWER_DCLIMITS_POSLIMIT_BUCK_OFFSET);
187 
188 	setbits_le32(&power_regs->hw_power_battmonitor,
189 			POWER_BATTMONITOR_EN_BATADJ);
190 
191 	/* Increase the RCSCALE level for quick DCDC response to dynamic load */
192 	clrsetbits_le32(&power_regs->hw_power_loopctrl,
193 			POWER_LOOPCTRL_EN_RCSCALE_MASK,
194 			POWER_LOOPCTRL_RCSCALE_THRESH |
195 			POWER_LOOPCTRL_EN_RCSCALE_8X);
196 
197 	clrsetbits_le32(&power_regs->hw_power_minpwr,
198 			POWER_MINPWR_HALFFETS, POWER_MINPWR_DOUBLE_FETS);
199 
200 	/* 5V to battery handoff ... FIXME */
201 	setbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER);
202 	early_delay(30);
203 	clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER);
204 }
205 
206 void mxs_power_init_4p2_params(void)
207 {
208 	struct mxs_power_regs *power_regs =
209 		(struct mxs_power_regs *)MXS_POWER_BASE;
210 
211 	/* Setup 4P2 parameters */
212 	clrsetbits_le32(&power_regs->hw_power_dcdc4p2,
213 		POWER_DCDC4P2_CMPTRIP_MASK | POWER_DCDC4P2_TRG_MASK,
214 		POWER_DCDC4P2_TRG_4V2 | (31 << POWER_DCDC4P2_CMPTRIP_OFFSET));
215 
216 	clrsetbits_le32(&power_regs->hw_power_5vctrl,
217 		POWER_5VCTRL_HEADROOM_ADJ_MASK,
218 		0x4 << POWER_5VCTRL_HEADROOM_ADJ_OFFSET);
219 
220 	clrsetbits_le32(&power_regs->hw_power_dcdc4p2,
221 		POWER_DCDC4P2_DROPOUT_CTRL_MASK,
222 		POWER_DCDC4P2_DROPOUT_CTRL_100MV |
223 		POWER_DCDC4P2_DROPOUT_CTRL_SRC_SEL);
224 
225 	clrsetbits_le32(&power_regs->hw_power_5vctrl,
226 		POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK,
227 		0x3f << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET);
228 }
229 
230 void mxs_enable_4p2_dcdc_input(int xfer)
231 {
232 	struct mxs_power_regs *power_regs =
233 		(struct mxs_power_regs *)MXS_POWER_BASE;
234 	uint32_t tmp, vbus_thresh, vbus_5vdetect, pwd_bo;
235 	uint32_t prev_5v_brnout, prev_5v_droop;
236 
237 	prev_5v_brnout = readl(&power_regs->hw_power_5vctrl) &
238 				POWER_5VCTRL_PWDN_5VBRNOUT;
239 	prev_5v_droop = readl(&power_regs->hw_power_ctrl) &
240 				POWER_CTRL_ENIRQ_VDD5V_DROOP;
241 
242 	clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_PWDN_5VBRNOUT);
243 	writel(POWER_RESET_UNLOCK_KEY | POWER_RESET_PWD_OFF,
244 		&power_regs->hw_power_reset);
245 
246 	clrbits_le32(&power_regs->hw_power_ctrl, POWER_CTRL_ENIRQ_VDD5V_DROOP);
247 
248 	if (xfer && (readl(&power_regs->hw_power_5vctrl) &
249 			POWER_5VCTRL_ENABLE_DCDC)) {
250 		return;
251 	}
252 
253 	/*
254 	 * Recording orignal values that will be modified temporarlily
255 	 * to handle a chip bug. See chip errata for CQ ENGR00115837
256 	 */
257 	tmp = readl(&power_regs->hw_power_5vctrl);
258 	vbus_thresh = tmp & POWER_5VCTRL_VBUSVALID_TRSH_MASK;
259 	vbus_5vdetect = tmp & POWER_5VCTRL_VBUSVALID_5VDETECT;
260 
261 	pwd_bo = readl(&power_regs->hw_power_minpwr) & POWER_MINPWR_PWD_BO;
262 
263 	/*
264 	 * Disable mechanisms that get erroneously tripped by when setting
265 	 * the DCDC4P2 EN_DCDC
266 	 */
267 	clrbits_le32(&power_regs->hw_power_5vctrl,
268 		POWER_5VCTRL_VBUSVALID_5VDETECT |
269 		POWER_5VCTRL_VBUSVALID_TRSH_MASK);
270 
271 	writel(POWER_MINPWR_PWD_BO, &power_regs->hw_power_minpwr_set);
272 
273 	if (xfer) {
274 		setbits_le32(&power_regs->hw_power_5vctrl,
275 				POWER_5VCTRL_DCDC_XFER);
276 		early_delay(20);
277 		clrbits_le32(&power_regs->hw_power_5vctrl,
278 				POWER_5VCTRL_DCDC_XFER);
279 
280 		setbits_le32(&power_regs->hw_power_5vctrl,
281 				POWER_5VCTRL_ENABLE_DCDC);
282 	} else {
283 		setbits_le32(&power_regs->hw_power_dcdc4p2,
284 				POWER_DCDC4P2_ENABLE_DCDC);
285 	}
286 
287 	early_delay(25);
288 
289 	clrsetbits_le32(&power_regs->hw_power_5vctrl,
290 			POWER_5VCTRL_VBUSVALID_TRSH_MASK, vbus_thresh);
291 
292 	if (vbus_5vdetect)
293 		writel(vbus_5vdetect, &power_regs->hw_power_5vctrl_set);
294 
295 	if (!pwd_bo)
296 		clrbits_le32(&power_regs->hw_power_minpwr, POWER_MINPWR_PWD_BO);
297 
298 	while (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VBUS_VALID_IRQ)
299 		writel(POWER_CTRL_VBUS_VALID_IRQ,
300 			&power_regs->hw_power_ctrl_clr);
301 
302 	if (prev_5v_brnout) {
303 		writel(POWER_5VCTRL_PWDN_5VBRNOUT,
304 			&power_regs->hw_power_5vctrl_set);
305 		writel(POWER_RESET_UNLOCK_KEY,
306 			&power_regs->hw_power_reset);
307 	} else {
308 		writel(POWER_5VCTRL_PWDN_5VBRNOUT,
309 			&power_regs->hw_power_5vctrl_clr);
310 		writel(POWER_RESET_UNLOCK_KEY | POWER_RESET_PWD_OFF,
311 			&power_regs->hw_power_reset);
312 	}
313 
314 	while (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VDD5V_DROOP_IRQ)
315 		writel(POWER_CTRL_VDD5V_DROOP_IRQ,
316 			&power_regs->hw_power_ctrl_clr);
317 
318 	if (prev_5v_droop)
319 		clrbits_le32(&power_regs->hw_power_ctrl,
320 				POWER_CTRL_ENIRQ_VDD5V_DROOP);
321 	else
322 		setbits_le32(&power_regs->hw_power_ctrl,
323 				POWER_CTRL_ENIRQ_VDD5V_DROOP);
324 }
325 
326 void mxs_power_init_4p2_regulator(void)
327 {
328 	struct mxs_power_regs *power_regs =
329 		(struct mxs_power_regs *)MXS_POWER_BASE;
330 	uint32_t tmp, tmp2;
331 
332 	setbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_ENABLE_4P2);
333 
334 	writel(POWER_CHARGE_ENABLE_LOAD, &power_regs->hw_power_charge_set);
335 
336 	writel(POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK,
337 		&power_regs->hw_power_5vctrl_clr);
338 	clrbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_TRG_MASK);
339 
340 	/* Power up the 4p2 rail and logic/control */
341 	writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
342 		&power_regs->hw_power_5vctrl_clr);
343 
344 	/*
345 	 * Start charging up the 4p2 capacitor. We ramp of this charge
346 	 * gradually to avoid large inrush current from the 5V cable which can
347 	 * cause transients/problems
348 	 */
349 	mxs_enable_4p2_dcdc_input(0);
350 
351 	if (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VBUS_VALID_IRQ) {
352 		/*
353 		 * If we arrived here, we were unable to recover from mx23 chip
354 		 * errata 5837. 4P2 is disabled and sufficient battery power is
355 		 * not present. Exiting to not enable DCDC power during 5V
356 		 * connected state.
357 		 */
358 		clrbits_le32(&power_regs->hw_power_dcdc4p2,
359 			POWER_DCDC4P2_ENABLE_DCDC);
360 		writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
361 			&power_regs->hw_power_5vctrl_set);
362 		hang();
363 	}
364 
365 	/*
366 	 * Here we set the 4p2 brownout level to something very close to 4.2V.
367 	 * We then check the brownout status. If the brownout status is false,
368 	 * the voltage is already close to the target voltage of 4.2V so we
369 	 * can go ahead and set the 4P2 current limit to our max target limit.
370 	 * If the brownout status is true, we need to ramp us the current limit
371 	 * so that we don't cause large inrush current issues. We step up the
372 	 * current limit until the brownout status is false or until we've
373 	 * reached our maximum defined 4p2 current limit.
374 	 */
375 	clrsetbits_le32(&power_regs->hw_power_dcdc4p2,
376 			POWER_DCDC4P2_BO_MASK,
377 			22 << POWER_DCDC4P2_BO_OFFSET);	/* 4.15V */
378 
379 	if (!(readl(&power_regs->hw_power_sts) & POWER_STS_DCDC_4P2_BO)) {
380 		setbits_le32(&power_regs->hw_power_5vctrl,
381 			0x3f << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET);
382 	} else {
383 		tmp = (readl(&power_regs->hw_power_5vctrl) &
384 			POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK) >>
385 			POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET;
386 		while (tmp < 0x3f) {
387 			if (!(readl(&power_regs->hw_power_sts) &
388 					POWER_STS_DCDC_4P2_BO)) {
389 				tmp = readl(&power_regs->hw_power_5vctrl);
390 				tmp |= POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK;
391 				early_delay(100);
392 				writel(tmp, &power_regs->hw_power_5vctrl);
393 				break;
394 			} else {
395 				tmp++;
396 				tmp2 = readl(&power_regs->hw_power_5vctrl);
397 				tmp2 &= ~POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK;
398 				tmp2 |= tmp <<
399 					POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET;
400 				writel(tmp2, &power_regs->hw_power_5vctrl);
401 				early_delay(100);
402 			}
403 		}
404 	}
405 
406 	clrbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_BO_MASK);
407 	writel(POWER_CTRL_DCDC4P2_BO_IRQ, &power_regs->hw_power_ctrl_clr);
408 }
409 
410 void mxs_power_init_dcdc_4p2_source(void)
411 {
412 	struct mxs_power_regs *power_regs =
413 		(struct mxs_power_regs *)MXS_POWER_BASE;
414 
415 	if (!(readl(&power_regs->hw_power_dcdc4p2) &
416 		POWER_DCDC4P2_ENABLE_DCDC)) {
417 		hang();
418 	}
419 
420 	mxs_enable_4p2_dcdc_input(1);
421 
422 	if (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VBUS_VALID_IRQ) {
423 		clrbits_le32(&power_regs->hw_power_dcdc4p2,
424 			POWER_DCDC4P2_ENABLE_DCDC);
425 		writel(POWER_5VCTRL_ENABLE_DCDC,
426 			&power_regs->hw_power_5vctrl_clr);
427 		writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
428 			&power_regs->hw_power_5vctrl_set);
429 	}
430 }
431 
432 void mxs_power_enable_4p2(void)
433 {
434 	struct mxs_power_regs *power_regs =
435 		(struct mxs_power_regs *)MXS_POWER_BASE;
436 	uint32_t vdddctrl, vddactrl, vddioctrl;
437 	uint32_t tmp;
438 
439 	vdddctrl = readl(&power_regs->hw_power_vdddctrl);
440 	vddactrl = readl(&power_regs->hw_power_vddactrl);
441 	vddioctrl = readl(&power_regs->hw_power_vddioctrl);
442 
443 	setbits_le32(&power_regs->hw_power_vdddctrl,
444 		POWER_VDDDCTRL_DISABLE_FET | POWER_VDDDCTRL_ENABLE_LINREG |
445 		POWER_VDDDCTRL_PWDN_BRNOUT);
446 
447 	setbits_le32(&power_regs->hw_power_vddactrl,
448 		POWER_VDDACTRL_DISABLE_FET | POWER_VDDACTRL_ENABLE_LINREG |
449 		POWER_VDDACTRL_PWDN_BRNOUT);
450 
451 	setbits_le32(&power_regs->hw_power_vddioctrl,
452 		POWER_VDDIOCTRL_DISABLE_FET | POWER_VDDIOCTRL_PWDN_BRNOUT);
453 
454 	mxs_power_init_4p2_params();
455 	mxs_power_init_4p2_regulator();
456 
457 	/* Shutdown battery (none present) */
458 	if (!mxs_is_batt_ready()) {
459 		clrbits_le32(&power_regs->hw_power_dcdc4p2,
460 				POWER_DCDC4P2_BO_MASK);
461 		writel(POWER_CTRL_DCDC4P2_BO_IRQ,
462 				&power_regs->hw_power_ctrl_clr);
463 		writel(POWER_CTRL_ENIRQ_DCDC4P2_BO,
464 				&power_regs->hw_power_ctrl_clr);
465 	}
466 
467 	mxs_power_init_dcdc_4p2_source();
468 
469 	writel(vdddctrl, &power_regs->hw_power_vdddctrl);
470 	early_delay(20);
471 	writel(vddactrl, &power_regs->hw_power_vddactrl);
472 	early_delay(20);
473 	writel(vddioctrl, &power_regs->hw_power_vddioctrl);
474 
475 	/*
476 	 * Check if FET is enabled on either powerout and if so,
477 	 * disable load.
478 	 */
479 	tmp = 0;
480 	tmp |= !(readl(&power_regs->hw_power_vdddctrl) &
481 			POWER_VDDDCTRL_DISABLE_FET);
482 	tmp |= !(readl(&power_regs->hw_power_vddactrl) &
483 			POWER_VDDACTRL_DISABLE_FET);
484 	tmp |= !(readl(&power_regs->hw_power_vddioctrl) &
485 			POWER_VDDIOCTRL_DISABLE_FET);
486 	if (tmp)
487 		writel(POWER_CHARGE_ENABLE_LOAD,
488 			&power_regs->hw_power_charge_clr);
489 }
490 
491 void mxs_boot_valid_5v(void)
492 {
493 	struct mxs_power_regs *power_regs =
494 		(struct mxs_power_regs *)MXS_POWER_BASE;
495 
496 	/*
497 	 * Use VBUSVALID level instead of VDD5V_GT_VDDIO level to trigger a 5V
498 	 * disconnect event. FIXME
499 	 */
500 	writel(POWER_5VCTRL_VBUSVALID_5VDETECT,
501 		&power_regs->hw_power_5vctrl_set);
502 
503 	/* Configure polarity to check for 5V disconnection. */
504 	writel(POWER_CTRL_POLARITY_VBUSVALID |
505 		POWER_CTRL_POLARITY_VDD5V_GT_VDDIO,
506 		&power_regs->hw_power_ctrl_clr);
507 
508 	writel(POWER_CTRL_VBUS_VALID_IRQ | POWER_CTRL_VDD5V_GT_VDDIO_IRQ,
509 		&power_regs->hw_power_ctrl_clr);
510 
511 	mxs_power_enable_4p2();
512 }
513 
514 void mxs_powerdown(void)
515 {
516 	struct mxs_power_regs *power_regs =
517 		(struct mxs_power_regs *)MXS_POWER_BASE;
518 	writel(POWER_RESET_UNLOCK_KEY, &power_regs->hw_power_reset);
519 	writel(POWER_RESET_UNLOCK_KEY | POWER_RESET_PWD_OFF,
520 		&power_regs->hw_power_reset);
521 }
522 
523 void mxs_batt_boot(void)
524 {
525 	struct mxs_power_regs *power_regs =
526 		(struct mxs_power_regs *)MXS_POWER_BASE;
527 
528 	clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_PWDN_5VBRNOUT);
529 	clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_ENABLE_DCDC);
530 
531 	clrbits_le32(&power_regs->hw_power_dcdc4p2,
532 			POWER_DCDC4P2_ENABLE_DCDC | POWER_DCDC4P2_ENABLE_4P2);
533 	writel(POWER_CHARGE_ENABLE_LOAD, &power_regs->hw_power_charge_clr);
534 
535 	/* 5V to battery handoff. */
536 	setbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER);
537 	early_delay(30);
538 	clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER);
539 
540 	writel(POWER_CTRL_ENIRQ_DCDC4P2_BO, &power_regs->hw_power_ctrl_clr);
541 
542 	clrsetbits_le32(&power_regs->hw_power_minpwr,
543 			POWER_MINPWR_HALFFETS, POWER_MINPWR_DOUBLE_FETS);
544 
545 	mxs_power_set_linreg();
546 
547 	clrbits_le32(&power_regs->hw_power_vdddctrl,
548 		POWER_VDDDCTRL_DISABLE_FET | POWER_VDDDCTRL_ENABLE_LINREG);
549 
550 	clrbits_le32(&power_regs->hw_power_vddactrl,
551 		POWER_VDDACTRL_DISABLE_FET | POWER_VDDACTRL_ENABLE_LINREG);
552 
553 	clrbits_le32(&power_regs->hw_power_vddioctrl,
554 		POWER_VDDIOCTRL_DISABLE_FET);
555 
556 	setbits_le32(&power_regs->hw_power_5vctrl,
557 		POWER_5VCTRL_PWD_CHARGE_4P2_MASK);
558 
559 	setbits_le32(&power_regs->hw_power_5vctrl,
560 		POWER_5VCTRL_ENABLE_DCDC);
561 
562 	clrsetbits_le32(&power_regs->hw_power_5vctrl,
563 		POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK,
564 		0x8 << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET);
565 }
566 
567 void mxs_handle_5v_conflict(void)
568 {
569 	struct mxs_power_regs *power_regs =
570 		(struct mxs_power_regs *)MXS_POWER_BASE;
571 	uint32_t tmp;
572 
573 	setbits_le32(&power_regs->hw_power_vddioctrl,
574 			POWER_VDDIOCTRL_BO_OFFSET_MASK);
575 
576 	for (;;) {
577 		tmp = readl(&power_regs->hw_power_sts);
578 
579 		if (tmp & POWER_STS_VDDIO_BO) {
580 			/*
581 			 * VDDIO has a brownout, then the VDD5V_GT_VDDIO becomes
582 			 * unreliable
583 			 */
584 			mxs_powerdown();
585 			break;
586 		}
587 
588 		if (tmp & POWER_STS_VDD5V_GT_VDDIO) {
589 			mxs_boot_valid_5v();
590 			break;
591 		} else {
592 			mxs_powerdown();
593 			break;
594 		}
595 
596 		if (tmp & POWER_STS_PSWITCH_MASK) {
597 			mxs_batt_boot();
598 			break;
599 		}
600 	}
601 }
602 
603 void mxs_5v_boot(void)
604 {
605 	struct mxs_power_regs *power_regs =
606 		(struct mxs_power_regs *)MXS_POWER_BASE;
607 
608 	/*
609 	 * NOTE: In original IMX-Bootlets, this also checks for VBUSVALID,
610 	 * but their implementation always returns 1 so we omit it here.
611 	 */
612 	if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
613 		mxs_boot_valid_5v();
614 		return;
615 	}
616 
617 	early_delay(1000);
618 	if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
619 		mxs_boot_valid_5v();
620 		return;
621 	}
622 
623 	mxs_handle_5v_conflict();
624 }
625 
626 void mxs_init_batt_bo(void)
627 {
628 	struct mxs_power_regs *power_regs =
629 		(struct mxs_power_regs *)MXS_POWER_BASE;
630 
631 	/* Brownout at 3V */
632 	clrsetbits_le32(&power_regs->hw_power_battmonitor,
633 		POWER_BATTMONITOR_BRWNOUT_LVL_MASK,
634 		15 << POWER_BATTMONITOR_BRWNOUT_LVL_OFFSET);
635 
636 	writel(POWER_CTRL_BATT_BO_IRQ, &power_regs->hw_power_ctrl_clr);
637 	writel(POWER_CTRL_ENIRQ_BATT_BO, &power_regs->hw_power_ctrl_clr);
638 }
639 
640 void mxs_switch_vddd_to_dcdc_source(void)
641 {
642 	struct mxs_power_regs *power_regs =
643 		(struct mxs_power_regs *)MXS_POWER_BASE;
644 
645 	clrsetbits_le32(&power_regs->hw_power_vdddctrl,
646 		POWER_VDDDCTRL_LINREG_OFFSET_MASK,
647 		POWER_VDDDCTRL_LINREG_OFFSET_1STEPS_BELOW);
648 
649 	clrbits_le32(&power_regs->hw_power_vdddctrl,
650 		POWER_VDDDCTRL_DISABLE_FET | POWER_VDDDCTRL_ENABLE_LINREG |
651 		POWER_VDDDCTRL_DISABLE_STEPPING);
652 }
653 
654 void mxs_power_configure_power_source(void)
655 {
656 	int batt_ready, batt_good;
657 	struct mxs_power_regs *power_regs =
658 		(struct mxs_power_regs *)MXS_POWER_BASE;
659 	struct mxs_lradc_regs *lradc_regs =
660 		(struct mxs_lradc_regs *)MXS_LRADC_BASE;
661 
662 	mxs_src_power_init();
663 
664 	if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
665 		batt_ready = mxs_is_batt_ready();
666 		if (batt_ready) {
667 			/* 5V source detected, good battery detected. */
668 			mxs_batt_boot();
669 		} else {
670 			batt_good = mxs_is_batt_good();
671 			if (!batt_good) {
672 				/* 5V source detected, bad battery detected. */
673 				writel(LRADC_CONVERSION_AUTOMATIC,
674 					&lradc_regs->hw_lradc_conversion_clr);
675 				clrbits_le32(&power_regs->hw_power_battmonitor,
676 					POWER_BATTMONITOR_BATT_VAL_MASK);
677 			}
678 			mxs_5v_boot();
679 		}
680 	} else {
681 		/* 5V not detected, booting from battery. */
682 		mxs_batt_boot();
683 	}
684 
685 	mxs_power_clock2pll();
686 
687 	mxs_init_batt_bo();
688 
689 	mxs_switch_vddd_to_dcdc_source();
690 }
691 
692 void mxs_enable_output_rail_protection(void)
693 {
694 	struct mxs_power_regs *power_regs =
695 		(struct mxs_power_regs *)MXS_POWER_BASE;
696 
697 	writel(POWER_CTRL_VDDD_BO_IRQ | POWER_CTRL_VDDA_BO_IRQ |
698 		POWER_CTRL_VDDIO_BO_IRQ, &power_regs->hw_power_ctrl_clr);
699 
700 	setbits_le32(&power_regs->hw_power_vdddctrl,
701 			POWER_VDDDCTRL_PWDN_BRNOUT);
702 
703 	setbits_le32(&power_regs->hw_power_vddactrl,
704 			POWER_VDDACTRL_PWDN_BRNOUT);
705 
706 	setbits_le32(&power_regs->hw_power_vddioctrl,
707 			POWER_VDDIOCTRL_PWDN_BRNOUT);
708 }
709 
710 int mxs_get_vddio_power_source_off(void)
711 {
712 	struct mxs_power_regs *power_regs =
713 		(struct mxs_power_regs *)MXS_POWER_BASE;
714 	uint32_t tmp;
715 
716 	if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
717 		tmp = readl(&power_regs->hw_power_vddioctrl);
718 		if (tmp & POWER_VDDIOCTRL_DISABLE_FET) {
719 			if ((tmp & POWER_VDDIOCTRL_LINREG_OFFSET_MASK) ==
720 				POWER_VDDIOCTRL_LINREG_OFFSET_0STEPS) {
721 				return 1;
722 			}
723 		}
724 
725 		if (!(readl(&power_regs->hw_power_5vctrl) &
726 			POWER_5VCTRL_ENABLE_DCDC)) {
727 			if ((tmp & POWER_VDDIOCTRL_LINREG_OFFSET_MASK) ==
728 				POWER_VDDIOCTRL_LINREG_OFFSET_0STEPS) {
729 				return 1;
730 			}
731 		}
732 	}
733 
734 	return 0;
735 
736 }
737 
738 int mxs_get_vddd_power_source_off(void)
739 {
740 	struct mxs_power_regs *power_regs =
741 		(struct mxs_power_regs *)MXS_POWER_BASE;
742 	uint32_t tmp;
743 
744 	tmp = readl(&power_regs->hw_power_vdddctrl);
745 	if (tmp & POWER_VDDDCTRL_DISABLE_FET) {
746 		if ((tmp & POWER_VDDDCTRL_LINREG_OFFSET_MASK) ==
747 			POWER_VDDDCTRL_LINREG_OFFSET_0STEPS) {
748 			return 1;
749 		}
750 	}
751 
752 	if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
753 		if (!(readl(&power_regs->hw_power_5vctrl) &
754 			POWER_5VCTRL_ENABLE_DCDC)) {
755 			return 1;
756 		}
757 	}
758 
759 	if (!(tmp & POWER_VDDDCTRL_ENABLE_LINREG)) {
760 		if ((tmp & POWER_VDDDCTRL_LINREG_OFFSET_MASK) ==
761 			POWER_VDDDCTRL_LINREG_OFFSET_1STEPS_BELOW) {
762 			return 1;
763 		}
764 	}
765 
766 	return 0;
767 }
768 
769 void mxs_power_set_vddio(uint32_t new_target, uint32_t new_brownout)
770 {
771 	struct mxs_power_regs *power_regs =
772 		(struct mxs_power_regs *)MXS_POWER_BASE;
773 	uint32_t cur_target, diff, bo_int = 0;
774 	uint32_t powered_by_linreg = 0;
775 
776 	new_brownout = (new_target - new_brownout + 25) / 50;
777 
778 	cur_target = readl(&power_regs->hw_power_vddioctrl);
779 	cur_target &= POWER_VDDIOCTRL_TRG_MASK;
780 	cur_target *= 50;	/* 50 mV step*/
781 	cur_target += 2800;	/* 2800 mV lowest */
782 
783 	powered_by_linreg = mxs_get_vddio_power_source_off();
784 	if (new_target > cur_target) {
785 
786 		if (powered_by_linreg) {
787 			bo_int = readl(&power_regs->hw_power_vddioctrl);
788 			clrbits_le32(&power_regs->hw_power_vddioctrl,
789 					POWER_CTRL_ENIRQ_VDDIO_BO);
790 		}
791 
792 		setbits_le32(&power_regs->hw_power_vddioctrl,
793 				POWER_VDDIOCTRL_BO_OFFSET_MASK);
794 		do {
795 			if (new_target - cur_target > 100)
796 				diff = cur_target + 100;
797 			else
798 				diff = new_target;
799 
800 			diff -= 2800;
801 			diff /= 50;
802 
803 			clrsetbits_le32(&power_regs->hw_power_vddioctrl,
804 				POWER_VDDIOCTRL_TRG_MASK, diff);
805 
806 			if (powered_by_linreg ||
807 				(readl(&power_regs->hw_power_sts) &
808 					POWER_STS_VDD5V_GT_VDDIO))
809 				early_delay(500);
810 			else {
811 				while (!(readl(&power_regs->hw_power_sts) &
812 					POWER_STS_DC_OK))
813 					;
814 
815 			}
816 
817 			cur_target = readl(&power_regs->hw_power_vddioctrl);
818 			cur_target &= POWER_VDDIOCTRL_TRG_MASK;
819 			cur_target *= 50;	/* 50 mV step*/
820 			cur_target += 2800;	/* 2800 mV lowest */
821 		} while (new_target > cur_target);
822 
823 		if (powered_by_linreg) {
824 			writel(POWER_CTRL_VDDIO_BO_IRQ,
825 				&power_regs->hw_power_ctrl_clr);
826 			if (bo_int & POWER_CTRL_ENIRQ_VDDIO_BO)
827 				setbits_le32(&power_regs->hw_power_vddioctrl,
828 						POWER_CTRL_ENIRQ_VDDIO_BO);
829 		}
830 	} else {
831 		do {
832 			if (cur_target - new_target > 100)
833 				diff = cur_target - 100;
834 			else
835 				diff = new_target;
836 
837 			diff -= 2800;
838 			diff /= 50;
839 
840 			clrsetbits_le32(&power_regs->hw_power_vddioctrl,
841 				POWER_VDDIOCTRL_TRG_MASK, diff);
842 
843 			if (powered_by_linreg ||
844 				(readl(&power_regs->hw_power_sts) &
845 					POWER_STS_VDD5V_GT_VDDIO))
846 				early_delay(500);
847 			else {
848 				while (!(readl(&power_regs->hw_power_sts) &
849 					POWER_STS_DC_OK))
850 					;
851 
852 			}
853 
854 			cur_target = readl(&power_regs->hw_power_vddioctrl);
855 			cur_target &= POWER_VDDIOCTRL_TRG_MASK;
856 			cur_target *= 50;	/* 50 mV step*/
857 			cur_target += 2800;	/* 2800 mV lowest */
858 		} while (new_target < cur_target);
859 	}
860 
861 	clrsetbits_le32(&power_regs->hw_power_vddioctrl,
862 			POWER_VDDIOCTRL_BO_OFFSET_MASK,
863 			new_brownout << POWER_VDDIOCTRL_BO_OFFSET_OFFSET);
864 }
865 
866 void mxs_power_set_vddd(uint32_t new_target, uint32_t new_brownout)
867 {
868 	struct mxs_power_regs *power_regs =
869 		(struct mxs_power_regs *)MXS_POWER_BASE;
870 	uint32_t cur_target, diff, bo_int = 0;
871 	uint32_t powered_by_linreg = 0;
872 
873 	new_brownout = (new_target - new_brownout + 12) / 25;
874 
875 	cur_target = readl(&power_regs->hw_power_vdddctrl);
876 	cur_target &= POWER_VDDDCTRL_TRG_MASK;
877 	cur_target *= 25;	/* 25 mV step*/
878 	cur_target += 800;	/* 800 mV lowest */
879 
880 	powered_by_linreg = mxs_get_vddd_power_source_off();
881 	if (new_target > cur_target) {
882 		if (powered_by_linreg) {
883 			bo_int = readl(&power_regs->hw_power_vdddctrl);
884 			clrbits_le32(&power_regs->hw_power_vdddctrl,
885 					POWER_CTRL_ENIRQ_VDDD_BO);
886 		}
887 
888 		setbits_le32(&power_regs->hw_power_vdddctrl,
889 				POWER_VDDDCTRL_BO_OFFSET_MASK);
890 
891 		do {
892 			if (new_target - cur_target > 100)
893 				diff = cur_target + 100;
894 			else
895 				diff = new_target;
896 
897 			diff -= 800;
898 			diff /= 25;
899 
900 			clrsetbits_le32(&power_regs->hw_power_vdddctrl,
901 				POWER_VDDDCTRL_TRG_MASK, diff);
902 
903 			if (powered_by_linreg ||
904 				(readl(&power_regs->hw_power_sts) &
905 					POWER_STS_VDD5V_GT_VDDIO))
906 				early_delay(500);
907 			else {
908 				while (!(readl(&power_regs->hw_power_sts) &
909 					POWER_STS_DC_OK))
910 					;
911 
912 			}
913 
914 			cur_target = readl(&power_regs->hw_power_vdddctrl);
915 			cur_target &= POWER_VDDDCTRL_TRG_MASK;
916 			cur_target *= 25;	/* 25 mV step*/
917 			cur_target += 800;	/* 800 mV lowest */
918 		} while (new_target > cur_target);
919 
920 		if (powered_by_linreg) {
921 			writel(POWER_CTRL_VDDD_BO_IRQ,
922 				&power_regs->hw_power_ctrl_clr);
923 			if (bo_int & POWER_CTRL_ENIRQ_VDDD_BO)
924 				setbits_le32(&power_regs->hw_power_vdddctrl,
925 						POWER_CTRL_ENIRQ_VDDD_BO);
926 		}
927 	} else {
928 		do {
929 			if (cur_target - new_target > 100)
930 				diff = cur_target - 100;
931 			else
932 				diff = new_target;
933 
934 			diff -= 800;
935 			diff /= 25;
936 
937 			clrsetbits_le32(&power_regs->hw_power_vdddctrl,
938 					POWER_VDDDCTRL_TRG_MASK, diff);
939 
940 			if (powered_by_linreg ||
941 				(readl(&power_regs->hw_power_sts) &
942 					POWER_STS_VDD5V_GT_VDDIO))
943 				early_delay(500);
944 			else {
945 				while (!(readl(&power_regs->hw_power_sts) &
946 					POWER_STS_DC_OK))
947 					;
948 
949 			}
950 
951 			cur_target = readl(&power_regs->hw_power_vdddctrl);
952 			cur_target &= POWER_VDDDCTRL_TRG_MASK;
953 			cur_target *= 25;	/* 25 mV step*/
954 			cur_target += 800;	/* 800 mV lowest */
955 		} while (new_target < cur_target);
956 	}
957 
958 	clrsetbits_le32(&power_regs->hw_power_vdddctrl,
959 			POWER_VDDDCTRL_BO_OFFSET_MASK,
960 			new_brownout << POWER_VDDDCTRL_BO_OFFSET_OFFSET);
961 }
962 
963 void mxs_setup_batt_detect(void)
964 {
965 	mxs_lradc_init();
966 	mxs_lradc_enable_batt_measurement();
967 	early_delay(10);
968 }
969 
970 void mxs_power_init(void)
971 {
972 	struct mxs_power_regs *power_regs =
973 		(struct mxs_power_regs *)MXS_POWER_BASE;
974 
975 	mxs_power_clock2xtal();
976 	mxs_power_clear_auto_restart();
977 	mxs_power_set_linreg();
978 	mxs_power_setup_5v_detect();
979 
980 	mxs_setup_batt_detect();
981 
982 	mxs_power_configure_power_source();
983 	mxs_enable_output_rail_protection();
984 
985 	mxs_power_set_vddio(3300, 3150);
986 
987 	mxs_power_set_vddd(1350, 1200);
988 
989 	writel(POWER_CTRL_VDDD_BO_IRQ | POWER_CTRL_VDDA_BO_IRQ |
990 		POWER_CTRL_VDDIO_BO_IRQ | POWER_CTRL_VDD5V_DROOP_IRQ |
991 		POWER_CTRL_VBUS_VALID_IRQ | POWER_CTRL_BATT_BO_IRQ |
992 		POWER_CTRL_DCDC4P2_BO_IRQ, &power_regs->hw_power_ctrl_clr);
993 
994 	writel(POWER_5VCTRL_PWDN_5VBRNOUT, &power_regs->hw_power_5vctrl_set);
995 
996 	early_delay(1000);
997 }
998 
999 #ifdef	CONFIG_SPL_MX28_PSWITCH_WAIT
1000 void mxs_power_wait_pswitch(void)
1001 {
1002 	struct mxs_power_regs *power_regs =
1003 		(struct mxs_power_regs *)MXS_POWER_BASE;
1004 
1005 	while (!(readl(&power_regs->hw_power_sts) & POWER_STS_PSWITCH_MASK))
1006 		;
1007 }
1008 #endif
1009