xref: /openbmc/u-boot/arch/arm/cpu/arm926ejs/mxs/spl_power_init.c (revision 0b45a79faa2f61bc095c785cfbfe4aa5206d9d13)
1 /*
2  * Freescale i.MX28 Boot PMIC init
3  *
4  * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
5  * on behalf of DENX Software Engineering GmbH
6  *
7  * SPDX-License-Identifier:	GPL-2.0+
8  */
9 
10 #include <common.h>
11 #include <config.h>
12 #include <asm/io.h>
13 #include <asm/arch/imx-regs.h>
14 
15 #include "mxs_init.h"
16 
17 #ifdef CONFIG_SYS_MXS_VDD5V_ONLY
18 #define DCDC4P2_DROPOUT_CONFIG	POWER_DCDC4P2_DROPOUT_CTRL_100MV | \
19 				POWER_DCDC4P2_DROPOUT_CTRL_SRC_4P2
20 #else
21 #define DCDC4P2_DROPOUT_CONFIG	POWER_DCDC4P2_DROPOUT_CTRL_100MV | \
22 				POWER_DCDC4P2_DROPOUT_CTRL_SRC_SEL
23 #endif
24 /**
25  * mxs_power_clock2xtal() - Switch CPU core clock source to 24MHz XTAL
26  *
27  * This function switches the CPU core clock from PLL to 24MHz XTAL
28  * oscilator. This is necessary if the PLL is being reconfigured to
29  * prevent crash of the CPU core.
30  */
31 static void mxs_power_clock2xtal(void)
32 {
33 	struct mxs_clkctrl_regs *clkctrl_regs =
34 		(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
35 
36 	debug("SPL: Switching CPU clock to 24MHz XTAL\n");
37 
38 	/* Set XTAL as CPU reference clock */
39 	writel(CLKCTRL_CLKSEQ_BYPASS_CPU,
40 		&clkctrl_regs->hw_clkctrl_clkseq_set);
41 }
42 
43 /**
44  * mxs_power_clock2pll() - Switch CPU core clock source to PLL
45  *
46  * This function switches the CPU core clock from 24MHz XTAL oscilator
47  * to PLL. This can only be called once the PLL has re-locked and once
48  * the PLL is stable after reconfiguration.
49  */
50 static void mxs_power_clock2pll(void)
51 {
52 	struct mxs_clkctrl_regs *clkctrl_regs =
53 		(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
54 
55 	debug("SPL: Switching CPU core clock source to PLL\n");
56 
57 	/*
58 	 * TODO: Are we really? It looks like we turn on PLL0, but we then
59 	 * set the CLKCTRL_CLKSEQ_BYPASS_CPU bit of the (which was already
60 	 * set by mxs_power_clock2xtal()). Clearing this bit here seems to
61 	 * introduce some instability (causing the CPU core to hang). Maybe
62 	 * we aren't giving PLL0 enough time to stabilise?
63 	 */
64 	setbits_le32(&clkctrl_regs->hw_clkctrl_pll0ctrl0,
65 			CLKCTRL_PLL0CTRL0_POWER);
66 	early_delay(100);
67 
68 	/*
69 	 * TODO: Should the PLL0 FORCE_LOCK bit be set here followed be a
70 	 * wait on the PLL0 LOCK bit?
71 	 */
72 	setbits_le32(&clkctrl_regs->hw_clkctrl_clkseq,
73 			CLKCTRL_CLKSEQ_BYPASS_CPU);
74 }
75 
76 /**
77  * mxs_power_set_auto_restart() - Set the auto-restart bit
78  *
79  * This function ungates the RTC block and sets the AUTO_RESTART
80  * bit to work around a design bug on MX28EVK Rev. A .
81  */
82 
83 static void mxs_power_set_auto_restart(void)
84 {
85 	struct mxs_rtc_regs *rtc_regs =
86 		(struct mxs_rtc_regs *)MXS_RTC_BASE;
87 
88 	debug("SPL: Setting auto-restart bit\n");
89 
90 	writel(RTC_CTRL_SFTRST, &rtc_regs->hw_rtc_ctrl_clr);
91 	while (readl(&rtc_regs->hw_rtc_ctrl) & RTC_CTRL_SFTRST)
92 		;
93 
94 	writel(RTC_CTRL_CLKGATE, &rtc_regs->hw_rtc_ctrl_clr);
95 	while (readl(&rtc_regs->hw_rtc_ctrl) & RTC_CTRL_CLKGATE)
96 		;
97 
98 	/* Do nothing if flag already set */
99 	if (readl(&rtc_regs->hw_rtc_persistent0) & RTC_PERSISTENT0_AUTO_RESTART)
100 		return;
101 
102 	while (readl(&rtc_regs->hw_rtc_stat) & RTC_STAT_NEW_REGS_MASK)
103 		;
104 
105 	setbits_le32(&rtc_regs->hw_rtc_persistent0,
106 			RTC_PERSISTENT0_AUTO_RESTART);
107 	writel(RTC_CTRL_FORCE_UPDATE, &rtc_regs->hw_rtc_ctrl_set);
108 	writel(RTC_CTRL_FORCE_UPDATE, &rtc_regs->hw_rtc_ctrl_clr);
109 	while (readl(&rtc_regs->hw_rtc_stat) & RTC_STAT_NEW_REGS_MASK)
110 		;
111 	while (readl(&rtc_regs->hw_rtc_stat) & RTC_STAT_STALE_REGS_MASK)
112 		;
113 }
114 
115 /**
116  * mxs_power_set_linreg() - Set linear regulators 25mV below DC-DC converter
117  *
118  * This function configures the VDDIO, VDDA and VDDD linear regulators output
119  * to be 25mV below the VDDIO, VDDA and VDDD output from the DC-DC switching
120  * converter. This is the recommended setting for the case where we use both
121  * linear regulators and DC-DC converter to power the VDDIO rail.
122  */
123 static void mxs_power_set_linreg(void)
124 {
125 	struct mxs_power_regs *power_regs =
126 		(struct mxs_power_regs *)MXS_POWER_BASE;
127 
128 	/* Set linear regulator 25mV below switching converter */
129 	debug("SPL: Setting VDDD 25mV below DC-DC converters\n");
130 	clrsetbits_le32(&power_regs->hw_power_vdddctrl,
131 			POWER_VDDDCTRL_LINREG_OFFSET_MASK,
132 			POWER_VDDDCTRL_LINREG_OFFSET_1STEPS_BELOW);
133 
134 	debug("SPL: Setting VDDA 25mV below DC-DC converters\n");
135 	clrsetbits_le32(&power_regs->hw_power_vddactrl,
136 			POWER_VDDACTRL_LINREG_OFFSET_MASK,
137 			POWER_VDDACTRL_LINREG_OFFSET_1STEPS_BELOW);
138 
139 	debug("SPL: Setting VDDIO 25mV below DC-DC converters\n");
140 	clrsetbits_le32(&power_regs->hw_power_vddioctrl,
141 			POWER_VDDIOCTRL_LINREG_OFFSET_MASK,
142 			POWER_VDDIOCTRL_LINREG_OFFSET_1STEPS_BELOW);
143 }
144 
145 /**
146  * mxs_get_batt_volt() - Measure battery input voltage
147  *
148  * This function retrieves the battery input voltage and returns it.
149  */
150 static int mxs_get_batt_volt(void)
151 {
152 	struct mxs_power_regs *power_regs =
153 		(struct mxs_power_regs *)MXS_POWER_BASE;
154 	uint32_t volt = readl(&power_regs->hw_power_battmonitor);
155 	volt &= POWER_BATTMONITOR_BATT_VAL_MASK;
156 	volt >>= POWER_BATTMONITOR_BATT_VAL_OFFSET;
157 	volt *= 8;
158 
159 	debug("SPL: Battery Voltage = %dmV\n", volt);
160 	return volt;
161 }
162 
163 /**
164  * mxs_is_batt_ready() - Test if the battery provides enough voltage to boot
165  *
166  * This function checks if the battery input voltage is higher than 3.6V and
167  * therefore allows the system to successfully boot using this power source.
168  */
169 static int mxs_is_batt_ready(void)
170 {
171 	return (mxs_get_batt_volt() >= 3600);
172 }
173 
174 /**
175  * mxs_is_batt_good() - Test if battery is operational at all
176  *
177  * This function starts recharging the battery and tests if the input current
178  * provided by the 5V input recharging the battery is also sufficient to power
179  * the DC-DC converter.
180  */
181 static int mxs_is_batt_good(void)
182 {
183 	struct mxs_power_regs *power_regs =
184 		(struct mxs_power_regs *)MXS_POWER_BASE;
185 	uint32_t volt = mxs_get_batt_volt();
186 
187 	if ((volt >= 2400) && (volt <= 4300)) {
188 		debug("SPL: Battery is good\n");
189 		return 1;
190 	}
191 
192 	clrsetbits_le32(&power_regs->hw_power_5vctrl,
193 		POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK,
194 		0x3 << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET);
195 	writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
196 		&power_regs->hw_power_5vctrl_clr);
197 
198 	clrsetbits_le32(&power_regs->hw_power_charge,
199 		POWER_CHARGE_STOP_ILIMIT_MASK | POWER_CHARGE_BATTCHRG_I_MASK,
200 		POWER_CHARGE_STOP_ILIMIT_10MA | 0x3);
201 
202 	writel(POWER_CHARGE_PWD_BATTCHRG, &power_regs->hw_power_charge_clr);
203 	writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
204 		&power_regs->hw_power_5vctrl_clr);
205 
206 	early_delay(500000);
207 
208 	volt = mxs_get_batt_volt();
209 
210 	if (volt >= 3500) {
211 		debug("SPL: Battery Voltage too high\n");
212 		return 0;
213 	}
214 
215 	if (volt >= 2400) {
216 		debug("SPL: Battery is good\n");
217 		return 1;
218 	}
219 
220 	writel(POWER_CHARGE_STOP_ILIMIT_MASK | POWER_CHARGE_BATTCHRG_I_MASK,
221 		&power_regs->hw_power_charge_clr);
222 	writel(POWER_CHARGE_PWD_BATTCHRG, &power_regs->hw_power_charge_set);
223 
224 	debug("SPL: Battery Voltage too low\n");
225 	return 0;
226 }
227 
228 /**
229  * mxs_power_setup_5v_detect() - Start the 5V input detection comparator
230  *
231  * This function enables the 5V detection comparator and sets the 5V valid
232  * threshold to 4.4V . We use 4.4V threshold here to make sure that even
233  * under high load, the voltage drop on the 5V input won't be so critical
234  * to cause undervolt on the 4P2 linear regulator supplying the DC-DC
235  * converter and thus making the system crash.
236  */
237 static void mxs_power_setup_5v_detect(void)
238 {
239 	struct mxs_power_regs *power_regs =
240 		(struct mxs_power_regs *)MXS_POWER_BASE;
241 
242 	/* Start 5V detection */
243 	debug("SPL: Starting 5V input detection comparator\n");
244 	clrsetbits_le32(&power_regs->hw_power_5vctrl,
245 			POWER_5VCTRL_VBUSVALID_TRSH_MASK,
246 			POWER_5VCTRL_VBUSVALID_TRSH_4V4 |
247 			POWER_5VCTRL_PWRUP_VBUS_CMPS);
248 }
249 
250 /**
251  * mxs_power_switch_dcdc_clocksource() - Switch PLL clock for DC-DC converters
252  * @freqsel:	One of the POWER_MISC_FREQSEL_xxx defines to select the clock
253  *
254  * This function configures and then enables an alternative PLL clock source
255  * for the DC-DC converters.
256  */
257 void mxs_power_switch_dcdc_clocksource(uint32_t freqsel)
258 {
259 	struct mxs_power_regs *power_regs =
260 		(struct mxs_power_regs *)MXS_POWER_BASE;
261 
262 	/* Select clocksource for DC-DC converters */
263 	clrsetbits_le32(&power_regs->hw_power_misc,
264 			POWER_MISC_FREQSEL_MASK,
265 			freqsel);
266 	setbits_le32(&power_regs->hw_power_misc,
267 			POWER_MISC_SEL_PLLCLK);
268 }
269 
270 /**
271  * mxs_power_setup_dcdc_clocksource() - Setup PLL clock source for DC-DC converters
272  *
273  * Normally, there is no need to switch DC-DC clocksource. This is the reason,
274  * why this function is a stub and does nothing. However, boards can implement
275  * this function when required and call mxs_power_switch_dcdc_clocksource() to
276  * switch to an alternative clock source.
277  */
278 __weak void mxs_power_setup_dcdc_clocksource(void)
279 {
280 	debug("SPL: Using default DC-DC clocksource\n");
281 }
282 
283 /**
284  * mxs_src_power_init() - Preconfigure the power block
285  *
286  * This function configures reasonable values for the DC-DC control loop
287  * and battery monitor.
288  */
289 static void mxs_src_power_init(void)
290 {
291 	struct mxs_power_regs *power_regs =
292 		(struct mxs_power_regs *)MXS_POWER_BASE;
293 
294 	debug("SPL: Pre-Configuring power block\n");
295 
296 	/* Improve efficieny and reduce transient ripple */
297 	writel(POWER_LOOPCTRL_TOGGLE_DIF | POWER_LOOPCTRL_EN_CM_HYST |
298 		POWER_LOOPCTRL_EN_DF_HYST, &power_regs->hw_power_loopctrl_set);
299 
300 	clrsetbits_le32(&power_regs->hw_power_dclimits,
301 			POWER_DCLIMITS_POSLIMIT_BUCK_MASK,
302 			0x30 << POWER_DCLIMITS_POSLIMIT_BUCK_OFFSET);
303 
304 	setbits_le32(&power_regs->hw_power_battmonitor,
305 			POWER_BATTMONITOR_EN_BATADJ);
306 
307 	/* Increase the RCSCALE level for quick DCDC response to dynamic load */
308 	clrsetbits_le32(&power_regs->hw_power_loopctrl,
309 			POWER_LOOPCTRL_EN_RCSCALE_MASK,
310 			POWER_LOOPCTRL_RCSCALE_THRESH |
311 			POWER_LOOPCTRL_EN_RCSCALE_8X);
312 
313 	clrsetbits_le32(&power_regs->hw_power_minpwr,
314 			POWER_MINPWR_HALFFETS, POWER_MINPWR_DOUBLE_FETS);
315 
316 	/* 5V to battery handoff ... FIXME */
317 	setbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER);
318 	early_delay(30);
319 	clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER);
320 }
321 
322 /**
323  * mxs_power_init_4p2_params() - Configure the parameters of the 4P2 regulator
324  *
325  * This function configures the necessary parameters for the 4P2 linear
326  * regulator to supply the DC-DC converter from 5V input.
327  */
328 static void mxs_power_init_4p2_params(void)
329 {
330 	struct mxs_power_regs *power_regs =
331 		(struct mxs_power_regs *)MXS_POWER_BASE;
332 
333 	debug("SPL: Configuring common 4P2 regulator params\n");
334 
335 	/* Setup 4P2 parameters */
336 	clrsetbits_le32(&power_regs->hw_power_dcdc4p2,
337 		POWER_DCDC4P2_CMPTRIP_MASK | POWER_DCDC4P2_TRG_MASK,
338 		POWER_DCDC4P2_TRG_4V2 | (31 << POWER_DCDC4P2_CMPTRIP_OFFSET));
339 
340 	clrsetbits_le32(&power_regs->hw_power_5vctrl,
341 		POWER_5VCTRL_HEADROOM_ADJ_MASK,
342 		0x4 << POWER_5VCTRL_HEADROOM_ADJ_OFFSET);
343 
344 	clrsetbits_le32(&power_regs->hw_power_dcdc4p2,
345 		POWER_DCDC4P2_DROPOUT_CTRL_MASK,
346 		DCDC4P2_DROPOUT_CONFIG);
347 
348 	clrsetbits_le32(&power_regs->hw_power_5vctrl,
349 		POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK,
350 		0x3f << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET);
351 }
352 
353 /**
354  * mxs_enable_4p2_dcdc_input() - Enable or disable the DCDC input from 4P2
355  * @xfer:	Select if the input shall be enabled or disabled
356  *
357  * This function enables or disables the 4P2 input into the DC-DC converter.
358  */
359 static void mxs_enable_4p2_dcdc_input(int xfer)
360 {
361 	struct mxs_power_regs *power_regs =
362 		(struct mxs_power_regs *)MXS_POWER_BASE;
363 	uint32_t tmp, vbus_thresh, vbus_5vdetect, pwd_bo;
364 	uint32_t prev_5v_brnout, prev_5v_droop;
365 
366 	debug("SPL: %s 4P2 DC-DC Input\n", xfer ? "Enabling" : "Disabling");
367 
368 	if (xfer && (readl(&power_regs->hw_power_5vctrl) &
369 			POWER_5VCTRL_ENABLE_DCDC)) {
370 		return;
371 	}
372 
373 	prev_5v_brnout = readl(&power_regs->hw_power_5vctrl) &
374 				POWER_5VCTRL_PWDN_5VBRNOUT;
375 	prev_5v_droop = readl(&power_regs->hw_power_ctrl) &
376 				POWER_CTRL_ENIRQ_VDD5V_DROOP;
377 
378 	clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_PWDN_5VBRNOUT);
379 	writel(POWER_RESET_UNLOCK_KEY | POWER_RESET_PWD_OFF,
380 		&power_regs->hw_power_reset);
381 
382 	clrbits_le32(&power_regs->hw_power_ctrl, POWER_CTRL_ENIRQ_VDD5V_DROOP);
383 
384 	/*
385 	 * Recording orignal values that will be modified temporarlily
386 	 * to handle a chip bug. See chip errata for CQ ENGR00115837
387 	 */
388 	tmp = readl(&power_regs->hw_power_5vctrl);
389 	vbus_thresh = tmp & POWER_5VCTRL_VBUSVALID_TRSH_MASK;
390 	vbus_5vdetect = tmp & POWER_5VCTRL_VBUSVALID_5VDETECT;
391 
392 	pwd_bo = readl(&power_regs->hw_power_minpwr) & POWER_MINPWR_PWD_BO;
393 
394 	/*
395 	 * Disable mechanisms that get erroneously tripped by when setting
396 	 * the DCDC4P2 EN_DCDC
397 	 */
398 	clrbits_le32(&power_regs->hw_power_5vctrl,
399 		POWER_5VCTRL_VBUSVALID_5VDETECT |
400 		POWER_5VCTRL_VBUSVALID_TRSH_MASK);
401 
402 	writel(POWER_MINPWR_PWD_BO, &power_regs->hw_power_minpwr_set);
403 
404 	if (xfer) {
405 		setbits_le32(&power_regs->hw_power_5vctrl,
406 				POWER_5VCTRL_DCDC_XFER);
407 		early_delay(20);
408 		clrbits_le32(&power_regs->hw_power_5vctrl,
409 				POWER_5VCTRL_DCDC_XFER);
410 
411 		setbits_le32(&power_regs->hw_power_5vctrl,
412 				POWER_5VCTRL_ENABLE_DCDC);
413 	} else {
414 		setbits_le32(&power_regs->hw_power_dcdc4p2,
415 				POWER_DCDC4P2_ENABLE_DCDC);
416 	}
417 
418 	early_delay(25);
419 
420 	clrsetbits_le32(&power_regs->hw_power_5vctrl,
421 			POWER_5VCTRL_VBUSVALID_TRSH_MASK, vbus_thresh);
422 
423 	if (vbus_5vdetect)
424 		writel(vbus_5vdetect, &power_regs->hw_power_5vctrl_set);
425 
426 	if (!pwd_bo)
427 		clrbits_le32(&power_regs->hw_power_minpwr, POWER_MINPWR_PWD_BO);
428 
429 	while (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VBUS_VALID_IRQ)
430 		writel(POWER_CTRL_VBUS_VALID_IRQ,
431 			&power_regs->hw_power_ctrl_clr);
432 
433 	if (prev_5v_brnout) {
434 		writel(POWER_5VCTRL_PWDN_5VBRNOUT,
435 			&power_regs->hw_power_5vctrl_set);
436 		writel(POWER_RESET_UNLOCK_KEY,
437 			&power_regs->hw_power_reset);
438 	} else {
439 		writel(POWER_5VCTRL_PWDN_5VBRNOUT,
440 			&power_regs->hw_power_5vctrl_clr);
441 		writel(POWER_RESET_UNLOCK_KEY | POWER_RESET_PWD_OFF,
442 			&power_regs->hw_power_reset);
443 	}
444 
445 	while (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VDD5V_DROOP_IRQ)
446 		writel(POWER_CTRL_VDD5V_DROOP_IRQ,
447 			&power_regs->hw_power_ctrl_clr);
448 
449 	if (prev_5v_droop)
450 		clrbits_le32(&power_regs->hw_power_ctrl,
451 				POWER_CTRL_ENIRQ_VDD5V_DROOP);
452 	else
453 		setbits_le32(&power_regs->hw_power_ctrl,
454 				POWER_CTRL_ENIRQ_VDD5V_DROOP);
455 }
456 
457 /**
458  * mxs_power_init_4p2_regulator() - Start the 4P2 regulator
459  *
460  * This function enables the 4P2 regulator and switches the DC-DC converter
461  * to use the 4P2 input.
462  */
463 static void mxs_power_init_4p2_regulator(void)
464 {
465 	struct mxs_power_regs *power_regs =
466 		(struct mxs_power_regs *)MXS_POWER_BASE;
467 	uint32_t tmp, tmp2;
468 
469 	debug("SPL: Enabling 4P2 regulator\n");
470 
471 	setbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_ENABLE_4P2);
472 
473 	writel(POWER_CHARGE_ENABLE_LOAD, &power_regs->hw_power_charge_set);
474 
475 	writel(POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK,
476 		&power_regs->hw_power_5vctrl_clr);
477 	clrbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_TRG_MASK);
478 
479 	/* Power up the 4p2 rail and logic/control */
480 	writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
481 		&power_regs->hw_power_5vctrl_clr);
482 
483 	/*
484 	 * Start charging up the 4p2 capacitor. We ramp of this charge
485 	 * gradually to avoid large inrush current from the 5V cable which can
486 	 * cause transients/problems
487 	 */
488 	debug("SPL: Charging 4P2 capacitor\n");
489 	mxs_enable_4p2_dcdc_input(0);
490 
491 	if (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VBUS_VALID_IRQ) {
492 		/*
493 		 * If we arrived here, we were unable to recover from mx23 chip
494 		 * errata 5837. 4P2 is disabled and sufficient battery power is
495 		 * not present. Exiting to not enable DCDC power during 5V
496 		 * connected state.
497 		 */
498 		clrbits_le32(&power_regs->hw_power_dcdc4p2,
499 			POWER_DCDC4P2_ENABLE_DCDC);
500 		writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
501 			&power_regs->hw_power_5vctrl_set);
502 
503 		debug("SPL: Unable to recover from mx23 errata 5837\n");
504 		hang();
505 	}
506 
507 	/*
508 	 * Here we set the 4p2 brownout level to something very close to 4.2V.
509 	 * We then check the brownout status. If the brownout status is false,
510 	 * the voltage is already close to the target voltage of 4.2V so we
511 	 * can go ahead and set the 4P2 current limit to our max target limit.
512 	 * If the brownout status is true, we need to ramp us the current limit
513 	 * so that we don't cause large inrush current issues. We step up the
514 	 * current limit until the brownout status is false or until we've
515 	 * reached our maximum defined 4p2 current limit.
516 	 */
517 	debug("SPL: Setting 4P2 brownout level\n");
518 	clrsetbits_le32(&power_regs->hw_power_dcdc4p2,
519 			POWER_DCDC4P2_BO_MASK,
520 			22 << POWER_DCDC4P2_BO_OFFSET);	/* 4.15V */
521 
522 	if (!(readl(&power_regs->hw_power_sts) & POWER_STS_DCDC_4P2_BO)) {
523 		setbits_le32(&power_regs->hw_power_5vctrl,
524 			0x3f << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET);
525 	} else {
526 		tmp = (readl(&power_regs->hw_power_5vctrl) &
527 			POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK) >>
528 			POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET;
529 		while (tmp < 0x3f) {
530 			if (!(readl(&power_regs->hw_power_sts) &
531 					POWER_STS_DCDC_4P2_BO)) {
532 				tmp = readl(&power_regs->hw_power_5vctrl);
533 				tmp |= POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK;
534 				early_delay(100);
535 				writel(tmp, &power_regs->hw_power_5vctrl);
536 				break;
537 			} else {
538 				tmp++;
539 				tmp2 = readl(&power_regs->hw_power_5vctrl);
540 				tmp2 &= ~POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK;
541 				tmp2 |= tmp <<
542 					POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET;
543 				writel(tmp2, &power_regs->hw_power_5vctrl);
544 				early_delay(100);
545 			}
546 		}
547 	}
548 
549 	clrbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_BO_MASK);
550 	writel(POWER_CTRL_DCDC4P2_BO_IRQ, &power_regs->hw_power_ctrl_clr);
551 }
552 
553 /**
554  * mxs_power_init_dcdc_4p2_source() - Switch DC-DC converter to 4P2 source
555  *
556  * This function configures the DC-DC converter to be supplied from the 4P2
557  * linear regulator.
558  */
559 static void mxs_power_init_dcdc_4p2_source(void)
560 {
561 	struct mxs_power_regs *power_regs =
562 		(struct mxs_power_regs *)MXS_POWER_BASE;
563 
564 	debug("SPL: Switching DC-DC converters to 4P2\n");
565 
566 	if (!(readl(&power_regs->hw_power_dcdc4p2) &
567 		POWER_DCDC4P2_ENABLE_DCDC)) {
568 		debug("SPL: Already switched - aborting\n");
569 		hang();
570 	}
571 
572 	mxs_enable_4p2_dcdc_input(1);
573 
574 	if (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VBUS_VALID_IRQ) {
575 		clrbits_le32(&power_regs->hw_power_dcdc4p2,
576 			POWER_DCDC4P2_ENABLE_DCDC);
577 		writel(POWER_5VCTRL_ENABLE_DCDC,
578 			&power_regs->hw_power_5vctrl_clr);
579 		writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
580 			&power_regs->hw_power_5vctrl_set);
581 	}
582 }
583 
584 /**
585  * mxs_power_enable_4p2() - Power up the 4P2 regulator
586  *
587  * This function drives the process of powering up the 4P2 linear regulator
588  * and switching the DC-DC converter input over to the 4P2 linear regulator.
589  */
590 static void mxs_power_enable_4p2(void)
591 {
592 	struct mxs_power_regs *power_regs =
593 		(struct mxs_power_regs *)MXS_POWER_BASE;
594 	uint32_t vdddctrl, vddactrl, vddioctrl;
595 	uint32_t tmp;
596 
597 	debug("SPL: Powering up 4P2 regulator\n");
598 
599 	vdddctrl = readl(&power_regs->hw_power_vdddctrl);
600 	vddactrl = readl(&power_regs->hw_power_vddactrl);
601 	vddioctrl = readl(&power_regs->hw_power_vddioctrl);
602 
603 	setbits_le32(&power_regs->hw_power_vdddctrl,
604 		POWER_VDDDCTRL_DISABLE_FET | POWER_VDDDCTRL_ENABLE_LINREG |
605 		POWER_VDDDCTRL_PWDN_BRNOUT);
606 
607 	setbits_le32(&power_regs->hw_power_vddactrl,
608 		POWER_VDDACTRL_DISABLE_FET | POWER_VDDACTRL_ENABLE_LINREG |
609 		POWER_VDDACTRL_PWDN_BRNOUT);
610 
611 	setbits_le32(&power_regs->hw_power_vddioctrl,
612 		POWER_VDDIOCTRL_DISABLE_FET | POWER_VDDIOCTRL_PWDN_BRNOUT);
613 
614 	mxs_power_init_4p2_params();
615 	mxs_power_init_4p2_regulator();
616 
617 	/* Shutdown battery (none present) */
618 	if (!mxs_is_batt_ready()) {
619 		clrbits_le32(&power_regs->hw_power_dcdc4p2,
620 				POWER_DCDC4P2_BO_MASK);
621 		writel(POWER_CTRL_DCDC4P2_BO_IRQ,
622 				&power_regs->hw_power_ctrl_clr);
623 		writel(POWER_CTRL_ENIRQ_DCDC4P2_BO,
624 				&power_regs->hw_power_ctrl_clr);
625 	}
626 
627 	mxs_power_init_dcdc_4p2_source();
628 
629 	writel(vdddctrl, &power_regs->hw_power_vdddctrl);
630 	early_delay(20);
631 	writel(vddactrl, &power_regs->hw_power_vddactrl);
632 	early_delay(20);
633 	writel(vddioctrl, &power_regs->hw_power_vddioctrl);
634 
635 	/*
636 	 * Check if FET is enabled on either powerout and if so,
637 	 * disable load.
638 	 */
639 	tmp = 0;
640 	tmp |= !(readl(&power_regs->hw_power_vdddctrl) &
641 			POWER_VDDDCTRL_DISABLE_FET);
642 	tmp |= !(readl(&power_regs->hw_power_vddactrl) &
643 			POWER_VDDACTRL_DISABLE_FET);
644 	tmp |= !(readl(&power_regs->hw_power_vddioctrl) &
645 			POWER_VDDIOCTRL_DISABLE_FET);
646 	if (tmp)
647 		writel(POWER_CHARGE_ENABLE_LOAD,
648 			&power_regs->hw_power_charge_clr);
649 
650 	debug("SPL: 4P2 regulator powered-up\n");
651 }
652 
653 /**
654  * mxs_boot_valid_5v() - Boot from 5V supply
655  *
656  * This function configures the power block to boot from valid 5V input.
657  * This is called only if the 5V is reliable and can properly supply the
658  * CPU. This function proceeds to configure the 4P2 converter to be supplied
659  * from the 5V input.
660  */
661 static void mxs_boot_valid_5v(void)
662 {
663 	struct mxs_power_regs *power_regs =
664 		(struct mxs_power_regs *)MXS_POWER_BASE;
665 
666 	debug("SPL: Booting from 5V supply\n");
667 
668 	/*
669 	 * Use VBUSVALID level instead of VDD5V_GT_VDDIO level to trigger a 5V
670 	 * disconnect event. FIXME
671 	 */
672 	writel(POWER_5VCTRL_VBUSVALID_5VDETECT,
673 		&power_regs->hw_power_5vctrl_set);
674 
675 	/* Configure polarity to check for 5V disconnection. */
676 	writel(POWER_CTRL_POLARITY_VBUSVALID |
677 		POWER_CTRL_POLARITY_VDD5V_GT_VDDIO,
678 		&power_regs->hw_power_ctrl_clr);
679 
680 	writel(POWER_CTRL_VBUS_VALID_IRQ | POWER_CTRL_VDD5V_GT_VDDIO_IRQ,
681 		&power_regs->hw_power_ctrl_clr);
682 
683 	mxs_power_enable_4p2();
684 }
685 
686 /**
687  * mxs_powerdown() - Shut down the system
688  *
689  * This function powers down the CPU completely.
690  */
691 static void mxs_powerdown(void)
692 {
693 	struct mxs_power_regs *power_regs =
694 		(struct mxs_power_regs *)MXS_POWER_BASE;
695 
696 	debug("Powering Down\n");
697 
698 	writel(POWER_RESET_UNLOCK_KEY, &power_regs->hw_power_reset);
699 	writel(POWER_RESET_UNLOCK_KEY | POWER_RESET_PWD_OFF,
700 		&power_regs->hw_power_reset);
701 }
702 
703 /**
704  * mxs_batt_boot() - Configure the power block to boot from battery input
705  *
706  * This function configures the power block to boot from the battery voltage
707  * supply.
708  */
709 static void mxs_batt_boot(void)
710 {
711 	struct mxs_power_regs *power_regs =
712 		(struct mxs_power_regs *)MXS_POWER_BASE;
713 
714 	debug("SPL: Configuring power block to boot from battery\n");
715 
716 	clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_PWDN_5VBRNOUT);
717 	clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_ENABLE_DCDC);
718 
719 	clrbits_le32(&power_regs->hw_power_dcdc4p2,
720 			POWER_DCDC4P2_ENABLE_DCDC | POWER_DCDC4P2_ENABLE_4P2);
721 	writel(POWER_CHARGE_ENABLE_LOAD, &power_regs->hw_power_charge_clr);
722 
723 	/* 5V to battery handoff. */
724 	setbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER);
725 	early_delay(30);
726 	clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER);
727 
728 	writel(POWER_CTRL_ENIRQ_DCDC4P2_BO, &power_regs->hw_power_ctrl_clr);
729 
730 	clrsetbits_le32(&power_regs->hw_power_minpwr,
731 			POWER_MINPWR_HALFFETS, POWER_MINPWR_DOUBLE_FETS);
732 
733 	mxs_power_set_linreg();
734 
735 	clrbits_le32(&power_regs->hw_power_vdddctrl,
736 		POWER_VDDDCTRL_DISABLE_FET | POWER_VDDDCTRL_ENABLE_LINREG);
737 
738 	clrbits_le32(&power_regs->hw_power_vddactrl,
739 		POWER_VDDACTRL_DISABLE_FET | POWER_VDDACTRL_ENABLE_LINREG);
740 
741 	clrbits_le32(&power_regs->hw_power_vddioctrl,
742 		POWER_VDDIOCTRL_DISABLE_FET);
743 
744 	setbits_le32(&power_regs->hw_power_5vctrl,
745 		POWER_5VCTRL_PWD_CHARGE_4P2_MASK);
746 
747 	setbits_le32(&power_regs->hw_power_5vctrl,
748 		POWER_5VCTRL_ENABLE_DCDC);
749 
750 	clrsetbits_le32(&power_regs->hw_power_5vctrl,
751 		POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK,
752 		0x8 << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET);
753 
754 	mxs_power_enable_4p2();
755 }
756 
757 /**
758  * mxs_handle_5v_conflict() - Test if the 5V input is reliable
759  *
760  * This function tests if the 5V input can reliably supply the system. If it
761  * can, then proceed to configuring the system to boot from 5V source, otherwise
762  * try booting from battery supply. If we can not boot from battery supply
763  * either, shut down the system.
764  */
765 static void mxs_handle_5v_conflict(void)
766 {
767 	struct mxs_power_regs *power_regs =
768 		(struct mxs_power_regs *)MXS_POWER_BASE;
769 	uint32_t tmp;
770 
771 	debug("SPL: Resolving 5V conflict\n");
772 
773 	setbits_le32(&power_regs->hw_power_vddioctrl,
774 			POWER_VDDIOCTRL_BO_OFFSET_MASK);
775 
776 	for (;;) {
777 		tmp = readl(&power_regs->hw_power_sts);
778 
779 		if (tmp & POWER_STS_VDDIO_BO) {
780 			/*
781 			 * VDDIO has a brownout, then the VDD5V_GT_VDDIO becomes
782 			 * unreliable
783 			 */
784 			debug("SPL: VDDIO has a brownout\n");
785 			mxs_powerdown();
786 			break;
787 		}
788 
789 		if (tmp & POWER_STS_VDD5V_GT_VDDIO) {
790 			debug("SPL: POWER_STS_VDD5V_GT_VDDIO is set\n");
791 			mxs_boot_valid_5v();
792 			break;
793 		} else {
794 			debug("SPL: POWER_STS_VDD5V_GT_VDDIO is not set\n");
795 			mxs_powerdown();
796 			break;
797 		}
798 
799 		/*
800 		 * TODO: I can't see this being reached. We'll either
801 		 * powerdown or boot from a stable 5V supply.
802 		 */
803 		if (tmp & POWER_STS_PSWITCH_MASK) {
804 			debug("SPL: POWER_STS_PSWITCH_MASK is set\n");
805 			mxs_batt_boot();
806 			break;
807 		}
808 	}
809 }
810 
811 /**
812  * mxs_5v_boot() - Configure the power block to boot from 5V input
813  *
814  * This function handles configuration of the power block when supplied by
815  * a 5V input.
816  */
817 static void mxs_5v_boot(void)
818 {
819 	struct mxs_power_regs *power_regs =
820 		(struct mxs_power_regs *)MXS_POWER_BASE;
821 
822 	debug("SPL: Configuring power block to boot from 5V input\n");
823 
824 	/*
825 	 * NOTE: In original IMX-Bootlets, this also checks for VBUSVALID,
826 	 * but their implementation always returns 1 so we omit it here.
827 	 */
828 	if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
829 		debug("SPL: 5V VDD good\n");
830 		mxs_boot_valid_5v();
831 		return;
832 	}
833 
834 	early_delay(1000);
835 	if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
836 		debug("SPL: 5V VDD good (after delay)\n");
837 		mxs_boot_valid_5v();
838 		return;
839 	}
840 
841 	debug("SPL: 5V VDD not good\n");
842 	mxs_handle_5v_conflict();
843 }
844 
845 /**
846  * mxs_init_batt_bo() - Configure battery brownout threshold
847  *
848  * This function configures the battery input brownout threshold. The value
849  * at which the battery brownout happens is configured to 3.0V in the code.
850  */
851 static void mxs_init_batt_bo(void)
852 {
853 	struct mxs_power_regs *power_regs =
854 		(struct mxs_power_regs *)MXS_POWER_BASE;
855 
856 	debug("SPL: Initialising battery brown-out level to 3.0V\n");
857 
858 	/* Brownout at 3V */
859 	clrsetbits_le32(&power_regs->hw_power_battmonitor,
860 		POWER_BATTMONITOR_BRWNOUT_LVL_MASK,
861 		15 << POWER_BATTMONITOR_BRWNOUT_LVL_OFFSET);
862 
863 	writel(POWER_CTRL_BATT_BO_IRQ, &power_regs->hw_power_ctrl_clr);
864 	writel(POWER_CTRL_ENIRQ_BATT_BO, &power_regs->hw_power_ctrl_clr);
865 }
866 
867 /**
868  * mxs_switch_vddd_to_dcdc_source() - Switch VDDD rail to DC-DC converter
869  *
870  * This function turns off the VDDD linear regulator and therefore makes
871  * the VDDD rail be supplied only by the DC-DC converter.
872  */
873 static void mxs_switch_vddd_to_dcdc_source(void)
874 {
875 	struct mxs_power_regs *power_regs =
876 		(struct mxs_power_regs *)MXS_POWER_BASE;
877 
878 	debug("SPL: Switching VDDD to DC-DC converters\n");
879 
880 	clrsetbits_le32(&power_regs->hw_power_vdddctrl,
881 		POWER_VDDDCTRL_LINREG_OFFSET_MASK,
882 		POWER_VDDDCTRL_LINREG_OFFSET_1STEPS_BELOW);
883 
884 	clrbits_le32(&power_regs->hw_power_vdddctrl,
885 		POWER_VDDDCTRL_DISABLE_FET | POWER_VDDDCTRL_ENABLE_LINREG |
886 		POWER_VDDDCTRL_DISABLE_STEPPING);
887 }
888 
889 /**
890  * mxs_power_configure_power_source() - Configure power block source
891  *
892  * This function is the core of the power configuration logic. The function
893  * selects the power block input source and configures the whole power block
894  * accordingly. After the configuration is complete and the system is stable
895  * again, the function switches the CPU clock source back to PLL. Finally,
896  * the function switches the voltage rails to DC-DC converter.
897  */
898 static void mxs_power_configure_power_source(void)
899 {
900 	int batt_ready, batt_good;
901 	struct mxs_power_regs *power_regs =
902 		(struct mxs_power_regs *)MXS_POWER_BASE;
903 	struct mxs_lradc_regs *lradc_regs =
904 		(struct mxs_lradc_regs *)MXS_LRADC_BASE;
905 
906 	debug("SPL: Configuring power source\n");
907 
908 	mxs_power_setup_dcdc_clocksource();
909 	mxs_src_power_init();
910 
911 	if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
912 		batt_ready = mxs_is_batt_ready();
913 		if (batt_ready) {
914 			/* 5V source detected, good battery detected. */
915 			mxs_batt_boot();
916 		} else {
917 			batt_good = mxs_is_batt_good();
918 			if (!batt_good) {
919 				/* 5V source detected, bad battery detected. */
920 				writel(LRADC_CONVERSION_AUTOMATIC,
921 					&lradc_regs->hw_lradc_conversion_clr);
922 				clrbits_le32(&power_regs->hw_power_battmonitor,
923 					POWER_BATTMONITOR_BATT_VAL_MASK);
924 			}
925 			mxs_5v_boot();
926 		}
927 	} else {
928 		/* 5V not detected, booting from battery. */
929 		mxs_batt_boot();
930 	}
931 
932 	/*
933 	 * TODO: Do not switch CPU clock to PLL if we are VDD5V is sourced
934 	 * from USB VBUS
935 	 */
936 	mxs_power_clock2pll();
937 
938 	mxs_init_batt_bo();
939 
940 	mxs_switch_vddd_to_dcdc_source();
941 
942 #ifdef CONFIG_MX23
943 	/* Fire up the VDDMEM LinReg now that we're all set. */
944 	debug("SPL: Enabling mx23 VDDMEM linear regulator\n");
945 	writel(POWER_VDDMEMCTRL_ENABLE_LINREG | POWER_VDDMEMCTRL_ENABLE_ILIMIT,
946 		&power_regs->hw_power_vddmemctrl);
947 #endif
948 }
949 
950 /**
951  * mxs_enable_output_rail_protection() - Enable power rail protection
952  *
953  * This function enables overload protection on the power rails. This is
954  * triggered if the power rails' voltage drops rapidly due to overload and
955  * in such case, the supply to the powerrail is cut-off, protecting the
956  * CPU from damage. Note that under such condition, the system will likely
957  * crash or misbehave.
958  */
959 static void mxs_enable_output_rail_protection(void)
960 {
961 	struct mxs_power_regs *power_regs =
962 		(struct mxs_power_regs *)MXS_POWER_BASE;
963 
964 	debug("SPL: Enabling output rail protection\n");
965 
966 	writel(POWER_CTRL_VDDD_BO_IRQ | POWER_CTRL_VDDA_BO_IRQ |
967 		POWER_CTRL_VDDIO_BO_IRQ, &power_regs->hw_power_ctrl_clr);
968 
969 	setbits_le32(&power_regs->hw_power_vdddctrl,
970 			POWER_VDDDCTRL_PWDN_BRNOUT);
971 
972 	setbits_le32(&power_regs->hw_power_vddactrl,
973 			POWER_VDDACTRL_PWDN_BRNOUT);
974 
975 	setbits_le32(&power_regs->hw_power_vddioctrl,
976 			POWER_VDDIOCTRL_PWDN_BRNOUT);
977 }
978 
979 /**
980  * mxs_get_vddio_power_source_off() - Get VDDIO rail power source
981  *
982  * This function tests if the VDDIO rail is supplied by linear regulator
983  * or by the DC-DC converter. Returns 1 if powered by linear regulator,
984  * returns 0 if powered by the DC-DC converter.
985  */
986 static int mxs_get_vddio_power_source_off(void)
987 {
988 	struct mxs_power_regs *power_regs =
989 		(struct mxs_power_regs *)MXS_POWER_BASE;
990 	uint32_t tmp;
991 
992 	if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
993 		tmp = readl(&power_regs->hw_power_vddioctrl);
994 		if (tmp & POWER_VDDIOCTRL_DISABLE_FET) {
995 			if ((tmp & POWER_VDDIOCTRL_LINREG_OFFSET_MASK) ==
996 				POWER_VDDIOCTRL_LINREG_OFFSET_0STEPS) {
997 				return 1;
998 			}
999 		}
1000 
1001 		if (!(readl(&power_regs->hw_power_5vctrl) &
1002 			POWER_5VCTRL_ENABLE_DCDC)) {
1003 			if ((tmp & POWER_VDDIOCTRL_LINREG_OFFSET_MASK) ==
1004 				POWER_VDDIOCTRL_LINREG_OFFSET_0STEPS) {
1005 				return 1;
1006 			}
1007 		}
1008 	}
1009 
1010 	return 0;
1011 
1012 }
1013 
1014 /**
1015  * mxs_get_vddd_power_source_off() - Get VDDD rail power source
1016  *
1017  * This function tests if the VDDD rail is supplied by linear regulator
1018  * or by the DC-DC converter. Returns 1 if powered by linear regulator,
1019  * returns 0 if powered by the DC-DC converter.
1020  */
1021 static int mxs_get_vddd_power_source_off(void)
1022 {
1023 	struct mxs_power_regs *power_regs =
1024 		(struct mxs_power_regs *)MXS_POWER_BASE;
1025 	uint32_t tmp;
1026 
1027 	tmp = readl(&power_regs->hw_power_vdddctrl);
1028 	if (tmp & POWER_VDDDCTRL_DISABLE_FET) {
1029 		if ((tmp & POWER_VDDDCTRL_LINREG_OFFSET_MASK) ==
1030 			POWER_VDDDCTRL_LINREG_OFFSET_0STEPS) {
1031 			return 1;
1032 		}
1033 	}
1034 
1035 	if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
1036 		if (!(readl(&power_regs->hw_power_5vctrl) &
1037 			POWER_5VCTRL_ENABLE_DCDC)) {
1038 			return 1;
1039 		}
1040 	}
1041 
1042 	if (!(tmp & POWER_VDDDCTRL_ENABLE_LINREG)) {
1043 		if ((tmp & POWER_VDDDCTRL_LINREG_OFFSET_MASK) ==
1044 			POWER_VDDDCTRL_LINREG_OFFSET_1STEPS_BELOW) {
1045 			return 1;
1046 		}
1047 	}
1048 
1049 	return 0;
1050 }
1051 
1052 struct mxs_vddx_cfg {
1053 	uint32_t		*reg;
1054 	uint8_t			step_mV;
1055 	uint16_t		lowest_mV;
1056 	int			(*powered_by_linreg)(void);
1057 	uint32_t		trg_mask;
1058 	uint32_t		bo_irq;
1059 	uint32_t		bo_enirq;
1060 	uint32_t		bo_offset_mask;
1061 	uint32_t		bo_offset_offset;
1062 };
1063 
1064 static const struct mxs_vddx_cfg mxs_vddio_cfg = {
1065 	.reg			= &(((struct mxs_power_regs *)MXS_POWER_BASE)->
1066 					hw_power_vddioctrl),
1067 #if defined(CONFIG_MX23)
1068 	.step_mV		= 25,
1069 #else
1070 	.step_mV		= 50,
1071 #endif
1072 	.lowest_mV		= 2800,
1073 	.powered_by_linreg	= mxs_get_vddio_power_source_off,
1074 	.trg_mask		= POWER_VDDIOCTRL_TRG_MASK,
1075 	.bo_irq			= POWER_CTRL_VDDIO_BO_IRQ,
1076 	.bo_enirq		= POWER_CTRL_ENIRQ_VDDIO_BO,
1077 	.bo_offset_mask		= POWER_VDDIOCTRL_BO_OFFSET_MASK,
1078 	.bo_offset_offset	= POWER_VDDIOCTRL_BO_OFFSET_OFFSET,
1079 };
1080 
1081 static const struct mxs_vddx_cfg mxs_vddd_cfg = {
1082 	.reg			= &(((struct mxs_power_regs *)MXS_POWER_BASE)->
1083 					hw_power_vdddctrl),
1084 	.step_mV		= 25,
1085 	.lowest_mV		= 800,
1086 	.powered_by_linreg	= mxs_get_vddd_power_source_off,
1087 	.trg_mask		= POWER_VDDDCTRL_TRG_MASK,
1088 	.bo_irq			= POWER_CTRL_VDDD_BO_IRQ,
1089 	.bo_enirq		= POWER_CTRL_ENIRQ_VDDD_BO,
1090 	.bo_offset_mask		= POWER_VDDDCTRL_BO_OFFSET_MASK,
1091 	.bo_offset_offset	= POWER_VDDDCTRL_BO_OFFSET_OFFSET,
1092 };
1093 
1094 #ifdef CONFIG_MX23
1095 static const struct mxs_vddx_cfg mxs_vddmem_cfg = {
1096 	.reg			= &(((struct mxs_power_regs *)MXS_POWER_BASE)->
1097 					hw_power_vddmemctrl),
1098 	.step_mV		= 50,
1099 	.lowest_mV		= 1700,
1100 	.powered_by_linreg	= NULL,
1101 	.trg_mask		= POWER_VDDMEMCTRL_TRG_MASK,
1102 	.bo_irq			= 0,
1103 	.bo_enirq		= 0,
1104 	.bo_offset_mask		= 0,
1105 	.bo_offset_offset	= 0,
1106 };
1107 #endif
1108 
1109 /**
1110  * mxs_power_set_vddx() - Configure voltage on DC-DC converter rail
1111  * @cfg:		Configuration data of the DC-DC converter rail
1112  * @new_target:		New target voltage of the DC-DC converter rail
1113  * @new_brownout:	New brownout trigger voltage
1114  *
1115  * This function configures the output voltage on the DC-DC converter rail.
1116  * The rail is selected by the @cfg argument. The new voltage target is
1117  * selected by the @new_target and the voltage is specified in mV. The
1118  * new brownout value is selected by the @new_brownout argument and the
1119  * value is also in mV.
1120  */
1121 static void mxs_power_set_vddx(const struct mxs_vddx_cfg *cfg,
1122 				uint32_t new_target, uint32_t new_brownout)
1123 {
1124 	struct mxs_power_regs *power_regs =
1125 		(struct mxs_power_regs *)MXS_POWER_BASE;
1126 	uint32_t cur_target, diff, bo_int = 0;
1127 	uint32_t powered_by_linreg = 0;
1128 	int adjust_up, tmp;
1129 
1130 	new_brownout = DIV_ROUND_CLOSEST(new_target - new_brownout,
1131 					 cfg->step_mV);
1132 
1133 	cur_target = readl(cfg->reg);
1134 	cur_target &= cfg->trg_mask;
1135 	cur_target *= cfg->step_mV;
1136 	cur_target += cfg->lowest_mV;
1137 
1138 	adjust_up = new_target > cur_target;
1139 	if (cfg->powered_by_linreg)
1140 		powered_by_linreg = cfg->powered_by_linreg();
1141 
1142 	if (adjust_up && cfg->bo_irq) {
1143 		if (powered_by_linreg) {
1144 			bo_int = readl(cfg->reg);
1145 			clrbits_le32(cfg->reg, cfg->bo_enirq);
1146 		}
1147 		setbits_le32(cfg->reg, cfg->bo_offset_mask);
1148 	}
1149 
1150 	do {
1151 		if (abs(new_target - cur_target) > 100) {
1152 			if (adjust_up)
1153 				diff = cur_target + 100;
1154 			else
1155 				diff = cur_target - 100;
1156 		} else {
1157 			diff = new_target;
1158 		}
1159 
1160 		diff -= cfg->lowest_mV;
1161 		diff /= cfg->step_mV;
1162 
1163 		clrsetbits_le32(cfg->reg, cfg->trg_mask, diff);
1164 
1165 		if (powered_by_linreg ||
1166 			(readl(&power_regs->hw_power_sts) &
1167 				POWER_STS_VDD5V_GT_VDDIO))
1168 			early_delay(500);
1169 		else {
1170 			for (;;) {
1171 				tmp = readl(&power_regs->hw_power_sts);
1172 				if (tmp & POWER_STS_DC_OK)
1173 					break;
1174 			}
1175 		}
1176 
1177 		cur_target = readl(cfg->reg);
1178 		cur_target &= cfg->trg_mask;
1179 		cur_target *= cfg->step_mV;
1180 		cur_target += cfg->lowest_mV;
1181 	} while (new_target > cur_target);
1182 
1183 	if (cfg->bo_irq) {
1184 		if (adjust_up && powered_by_linreg) {
1185 			writel(cfg->bo_irq, &power_regs->hw_power_ctrl_clr);
1186 			if (bo_int & cfg->bo_enirq)
1187 				setbits_le32(cfg->reg, cfg->bo_enirq);
1188 		}
1189 
1190 		clrsetbits_le32(cfg->reg, cfg->bo_offset_mask,
1191 				new_brownout << cfg->bo_offset_offset);
1192 	}
1193 }
1194 
1195 /**
1196  * mxs_setup_batt_detect() - Start the battery voltage measurement logic
1197  *
1198  * This function starts and configures the LRADC block. This allows the
1199  * power initialization code to measure battery voltage and based on this
1200  * knowledge, decide whether to boot at all, boot from battery or boot
1201  * from 5V input.
1202  */
1203 static void mxs_setup_batt_detect(void)
1204 {
1205 	debug("SPL: Starting battery voltage measurement logic\n");
1206 
1207 	mxs_lradc_init();
1208 	mxs_lradc_enable_batt_measurement();
1209 	early_delay(10);
1210 }
1211 
1212 /**
1213  * mxs_ungate_power() - Ungate the POWER block
1214  *
1215  * This function ungates clock to the power block. In case the power block
1216  * was still gated at this point, it will not be possible to configure the
1217  * block and therefore the power initialization would fail. This function
1218  * is only needed on i.MX233, on i.MX28 the power block is always ungated.
1219  */
1220 static void mxs_ungate_power(void)
1221 {
1222 #ifdef CONFIG_MX23
1223 	struct mxs_power_regs *power_regs =
1224 		(struct mxs_power_regs *)MXS_POWER_BASE;
1225 
1226 	writel(POWER_CTRL_CLKGATE, &power_regs->hw_power_ctrl_clr);
1227 #endif
1228 }
1229 
1230 /**
1231  * mxs_power_init() - The power block init main function
1232  *
1233  * This function calls all the power block initialization functions in
1234  * proper sequence to start the power block.
1235  */
1236 void mxs_power_init(void)
1237 {
1238 	struct mxs_power_regs *power_regs =
1239 		(struct mxs_power_regs *)MXS_POWER_BASE;
1240 
1241 	debug("SPL: Initialising Power Block\n");
1242 
1243 	mxs_ungate_power();
1244 
1245 	mxs_power_clock2xtal();
1246 	mxs_power_set_auto_restart();
1247 	mxs_power_set_linreg();
1248 	mxs_power_setup_5v_detect();
1249 
1250 	mxs_setup_batt_detect();
1251 
1252 	mxs_power_configure_power_source();
1253 	mxs_enable_output_rail_protection();
1254 
1255 	debug("SPL: Setting VDDIO to 3V3 (brownout @ 3v15)\n");
1256 	mxs_power_set_vddx(&mxs_vddio_cfg, 3300, 3150);
1257 
1258 	debug("SPL: Setting VDDD to 1V5 (brownout @ 1v315)\n");
1259 	mxs_power_set_vddx(&mxs_vddd_cfg, 1500, 1315);
1260 #ifdef CONFIG_MX23
1261 	debug("SPL: Setting mx23 VDDMEM to 2V5 (brownout @ 1v7)\n");
1262 	mxs_power_set_vddx(&mxs_vddmem_cfg, 2500, 1700);
1263 #endif
1264 	writel(POWER_CTRL_VDDD_BO_IRQ | POWER_CTRL_VDDA_BO_IRQ |
1265 		POWER_CTRL_VDDIO_BO_IRQ | POWER_CTRL_VDD5V_DROOP_IRQ |
1266 		POWER_CTRL_VBUS_VALID_IRQ | POWER_CTRL_BATT_BO_IRQ |
1267 		POWER_CTRL_DCDC4P2_BO_IRQ, &power_regs->hw_power_ctrl_clr);
1268 
1269 	writel(POWER_5VCTRL_PWDN_5VBRNOUT, &power_regs->hw_power_5vctrl_set);
1270 
1271 	early_delay(1000);
1272 }
1273 
1274 #ifdef	CONFIG_SPL_MXS_PSWITCH_WAIT
1275 /**
1276  * mxs_power_wait_pswitch() - Wait for power switch to be pressed
1277  *
1278  * This function waits until the power-switch was pressed to start booting
1279  * the board.
1280  */
1281 void mxs_power_wait_pswitch(void)
1282 {
1283 	struct mxs_power_regs *power_regs =
1284 		(struct mxs_power_regs *)MXS_POWER_BASE;
1285 
1286 	debug("SPL: Waiting for power switch input\n");
1287 	while (!(readl(&power_regs->hw_power_sts) & POWER_STS_PSWITCH_MASK))
1288 		;
1289 }
1290 #endif
1291