1 /* 2 * Freescale i.MX23/i.MX28 common code 3 * 4 * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com> 5 * on behalf of DENX Software Engineering GmbH 6 * 7 * Based on code from LTIB: 8 * Copyright (C) 2010 Freescale Semiconductor, Inc. 9 * 10 * SPDX-License-Identifier: GPL-2.0+ 11 */ 12 13 #include <common.h> 14 #include <asm/errno.h> 15 #include <asm/io.h> 16 #include <asm/arch/clock.h> 17 #include <asm/imx-common/dma.h> 18 #include <asm/arch/gpio.h> 19 #include <asm/arch/iomux.h> 20 #include <asm/arch/imx-regs.h> 21 #include <asm/arch/sys_proto.h> 22 #include <linux/compiler.h> 23 24 DECLARE_GLOBAL_DATA_PTR; 25 26 /* Lowlevel init isn't used on i.MX28, so just have a dummy here */ 27 void lowlevel_init(void) {} 28 29 void reset_cpu(ulong ignored) __attribute__((noreturn)); 30 31 void reset_cpu(ulong ignored) 32 { 33 struct mxs_rtc_regs *rtc_regs = 34 (struct mxs_rtc_regs *)MXS_RTC_BASE; 35 struct mxs_lcdif_regs *lcdif_regs = 36 (struct mxs_lcdif_regs *)MXS_LCDIF_BASE; 37 38 /* 39 * Shut down the LCD controller as it interferes with BootROM boot mode 40 * pads sampling. 41 */ 42 writel(LCDIF_CTRL_RUN, &lcdif_regs->hw_lcdif_ctrl_clr); 43 44 /* Wait 1 uS before doing the actual watchdog reset */ 45 writel(1, &rtc_regs->hw_rtc_watchdog); 46 writel(RTC_CTRL_WATCHDOGEN, &rtc_regs->hw_rtc_ctrl_set); 47 48 /* Endless loop, reset will exit from here */ 49 for (;;) 50 ; 51 } 52 53 void enable_caches(void) 54 { 55 #ifndef CONFIG_SYS_ICACHE_OFF 56 icache_enable(); 57 #endif 58 #ifndef CONFIG_SYS_DCACHE_OFF 59 dcache_enable(); 60 #endif 61 } 62 63 /* 64 * This function will craft a jumptable at 0x0 which will redirect interrupt 65 * vectoring to proper location of U-Boot in RAM. 66 * 67 * The structure of the jumptable will be as follows: 68 * ldr pc, [pc, #0x18] ..... for each vector, thus repeated 8 times 69 * <destination address> ... for each previous ldr, thus also repeated 8 times 70 * 71 * The "ldr pc, [pc, #0x18]" instruction above loads address from memory at 72 * offset 0x18 from current value of PC register. Note that PC is already 73 * incremented by 4 when computing the offset, so the effective offset is 74 * actually 0x20, this the associated <destination address>. Loading the PC 75 * register with an address performs a jump to that address. 76 */ 77 void mx28_fixup_vt(uint32_t start_addr) 78 { 79 /* ldr pc, [pc, #0x18] */ 80 const uint32_t ldr_pc = 0xe59ff018; 81 /* Jumptable location is 0x0 */ 82 uint32_t *vt = (uint32_t *)0x0; 83 int i; 84 85 for (i = 0; i < 8; i++) { 86 /* cppcheck-suppress nullPointer */ 87 vt[i] = ldr_pc; 88 /* cppcheck-suppress nullPointer */ 89 vt[i + 8] = start_addr + (4 * i); 90 } 91 } 92 93 #ifdef CONFIG_ARCH_MISC_INIT 94 int arch_misc_init(void) 95 { 96 mx28_fixup_vt(gd->relocaddr); 97 return 0; 98 } 99 #endif 100 101 int arch_cpu_init(void) 102 { 103 struct mxs_clkctrl_regs *clkctrl_regs = 104 (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; 105 extern uint32_t _start; 106 107 mx28_fixup_vt((uint32_t)&_start); 108 109 /* 110 * Enable NAND clock 111 */ 112 /* Clear bypass bit */ 113 writel(CLKCTRL_CLKSEQ_BYPASS_GPMI, 114 &clkctrl_regs->hw_clkctrl_clkseq_set); 115 116 /* Set GPMI clock to ref_gpmi / 12 */ 117 clrsetbits_le32(&clkctrl_regs->hw_clkctrl_gpmi, 118 CLKCTRL_GPMI_CLKGATE | CLKCTRL_GPMI_DIV_MASK, 1); 119 120 udelay(1000); 121 122 /* 123 * Configure GPIO unit 124 */ 125 mxs_gpio_init(); 126 127 #ifdef CONFIG_APBH_DMA 128 /* Start APBH DMA */ 129 mxs_dma_init(); 130 #endif 131 132 return 0; 133 } 134 135 u32 get_cpu_rev(void) 136 { 137 struct mxs_digctl_regs *digctl_regs = 138 (struct mxs_digctl_regs *)MXS_DIGCTL_BASE; 139 uint8_t rev = readl(&digctl_regs->hw_digctl_chipid) & 0x000000FF; 140 141 switch (readl(&digctl_regs->hw_digctl_chipid) & HW_DIGCTL_CHIPID_MASK) { 142 case HW_DIGCTL_CHIPID_MX23: 143 switch (rev) { 144 case 0x0: 145 case 0x1: 146 case 0x2: 147 case 0x3: 148 case 0x4: 149 return (MXC_CPU_MX23 << 12) | (rev + 0x10); 150 default: 151 return 0; 152 } 153 case HW_DIGCTL_CHIPID_MX28: 154 switch (rev) { 155 case 0x1: 156 return (MXC_CPU_MX28 << 12) | 0x12; 157 default: 158 return 0; 159 } 160 default: 161 return 0; 162 } 163 } 164 165 #if defined(CONFIG_DISPLAY_CPUINFO) 166 const char *get_imx_type(u32 imxtype) 167 { 168 switch (imxtype) { 169 case MXC_CPU_MX23: 170 return "23"; /* Quad-Plus version of the mx6 */ 171 case MXC_CPU_MX28: 172 return "28"; /* Dual-Plus version of the mx6 */ 173 default: 174 return "??"; 175 } 176 } 177 178 int print_cpuinfo(void) 179 { 180 u32 cpurev; 181 struct mxs_spl_data *data = (struct mxs_spl_data *) 182 ((CONFIG_SYS_TEXT_BASE - sizeof(struct mxs_spl_data)) & ~0xf); 183 184 cpurev = get_cpu_rev(); 185 printf("CPU: Freescale i.MX%s rev%d.%d at %d MHz\n", 186 get_imx_type((cpurev & 0xFF000) >> 12), 187 (cpurev & 0x000F0) >> 4, 188 (cpurev & 0x0000F) >> 0, 189 mxc_get_clock(MXC_ARM_CLK) / 1000000); 190 printf("BOOT: %s\n", mxs_boot_modes[data->boot_mode_idx].mode); 191 return 0; 192 } 193 #endif 194 195 int do_mx28_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[]) 196 { 197 printf("CPU: %3d MHz\n", mxc_get_clock(MXC_ARM_CLK) / 1000000); 198 printf("BUS: %3d MHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000000); 199 printf("EMI: %3d MHz\n", mxc_get_clock(MXC_EMI_CLK)); 200 printf("GPMI: %3d MHz\n", mxc_get_clock(MXC_GPMI_CLK) / 1000000); 201 return 0; 202 } 203 204 /* 205 * Initializes on-chip ethernet controllers. 206 */ 207 #if defined(CONFIG_MX28) && defined(CONFIG_CMD_NET) 208 int cpu_eth_init(bd_t *bis) 209 { 210 struct mxs_clkctrl_regs *clkctrl_regs = 211 (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; 212 213 /* Turn on ENET clocks */ 214 clrbits_le32(&clkctrl_regs->hw_clkctrl_enet, 215 CLKCTRL_ENET_SLEEP | CLKCTRL_ENET_DISABLE); 216 217 /* Set up ENET PLL for 50 MHz */ 218 /* Power on ENET PLL */ 219 writel(CLKCTRL_PLL2CTRL0_POWER, 220 &clkctrl_regs->hw_clkctrl_pll2ctrl0_set); 221 222 udelay(10); 223 224 /* Gate on ENET PLL */ 225 writel(CLKCTRL_PLL2CTRL0_CLKGATE, 226 &clkctrl_regs->hw_clkctrl_pll2ctrl0_clr); 227 228 /* Enable pad output */ 229 setbits_le32(&clkctrl_regs->hw_clkctrl_enet, CLKCTRL_ENET_CLK_OUT_EN); 230 231 return 0; 232 } 233 #endif 234 235 __weak void mx28_adjust_mac(int dev_id, unsigned char *mac) 236 { 237 mac[0] = 0x00; 238 mac[1] = 0x04; /* Use FSL vendor MAC address by default */ 239 240 if (dev_id == 1) /* Let MAC1 be MAC0 + 1 by default */ 241 mac[5] += 1; 242 } 243 244 #ifdef CONFIG_MX28_FEC_MAC_IN_OCOTP 245 246 #define MXS_OCOTP_MAX_TIMEOUT 1000000 247 void imx_get_mac_from_fuse(int dev_id, unsigned char *mac) 248 { 249 struct mxs_ocotp_regs *ocotp_regs = 250 (struct mxs_ocotp_regs *)MXS_OCOTP_BASE; 251 uint32_t data; 252 253 memset(mac, 0, 6); 254 255 writel(OCOTP_CTRL_RD_BANK_OPEN, &ocotp_regs->hw_ocotp_ctrl_set); 256 257 if (mxs_wait_mask_clr(&ocotp_regs->hw_ocotp_ctrl_reg, OCOTP_CTRL_BUSY, 258 MXS_OCOTP_MAX_TIMEOUT)) { 259 printf("MXS FEC: Can't get MAC from OCOTP\n"); 260 return; 261 } 262 263 data = readl(&ocotp_regs->hw_ocotp_cust0); 264 265 mac[2] = (data >> 24) & 0xff; 266 mac[3] = (data >> 16) & 0xff; 267 mac[4] = (data >> 8) & 0xff; 268 mac[5] = data & 0xff; 269 mx28_adjust_mac(dev_id, mac); 270 } 271 #else 272 void imx_get_mac_from_fuse(int dev_id, unsigned char *mac) 273 { 274 memset(mac, 0, 6); 275 } 276 #endif 277 278 int mxs_dram_init(void) 279 { 280 struct mxs_spl_data *data = (struct mxs_spl_data *) 281 ((CONFIG_SYS_TEXT_BASE - sizeof(struct mxs_spl_data)) & ~0xf); 282 283 if (data->mem_dram_size == 0) { 284 printf("MXS:\n" 285 "Error, the RAM size passed up from SPL is 0!\n"); 286 hang(); 287 } 288 289 gd->ram_size = data->mem_dram_size; 290 return 0; 291 } 292 293 U_BOOT_CMD( 294 clocks, CONFIG_SYS_MAXARGS, 1, do_mx28_showclocks, 295 "display clocks", 296 "" 297 ); 298