xref: /openbmc/u-boot/arch/arm/cpu/arm926ejs/mxs/clock.c (revision 25b26ec6)
1 /*
2  * Freescale i.MX28 clock setup code
3  *
4  * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
5  * on behalf of DENX Software Engineering GmbH
6  *
7  * Based on code from LTIB:
8  * Copyright (C) 2010 Freescale Semiconductor, Inc.
9  *
10  * See file CREDITS for list of people who contributed to this
11  * project.
12  *
13  * This program is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU General Public License as
15  * published by the Free Software Foundation; either version 2 of
16  * the License, or (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
26  * MA 02111-1307 USA
27  */
28 
29 #include <common.h>
30 #include <asm/errno.h>
31 #include <asm/io.h>
32 #include <asm/arch/clock.h>
33 #include <asm/arch/imx-regs.h>
34 
35 /* The PLL frequency is always 480MHz, see section 10.2 in iMX28 datasheet. */
36 #define	PLL_FREQ_KHZ	480000
37 #define	PLL_FREQ_COEF	18
38 /* The XTAL frequency is always 24MHz, see section 10.2 in iMX28 datasheet. */
39 #define	XTAL_FREQ_KHZ	24000
40 
41 #define	PLL_FREQ_MHZ	(PLL_FREQ_KHZ / 1000)
42 #define	XTAL_FREQ_MHZ	(XTAL_FREQ_KHZ / 1000)
43 
44 static uint32_t mx28_get_pclk(void)
45 {
46 	struct mxs_clkctrl_regs *clkctrl_regs =
47 		(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
48 
49 	uint32_t clkctrl, clkseq, div;
50 	uint8_t clkfrac, frac;
51 
52 	clkctrl = readl(&clkctrl_regs->hw_clkctrl_cpu);
53 
54 	/* No support of fractional divider calculation */
55 	if (clkctrl &
56 		(CLKCTRL_CPU_DIV_XTAL_FRAC_EN | CLKCTRL_CPU_DIV_CPU_FRAC_EN)) {
57 		return 0;
58 	}
59 
60 	clkseq = readl(&clkctrl_regs->hw_clkctrl_clkseq);
61 
62 	/* XTAL Path */
63 	if (clkseq & CLKCTRL_CLKSEQ_BYPASS_CPU) {
64 		div = (clkctrl & CLKCTRL_CPU_DIV_XTAL_MASK) >>
65 			CLKCTRL_CPU_DIV_XTAL_OFFSET;
66 		return XTAL_FREQ_MHZ / div;
67 	}
68 
69 	/* REF Path */
70 	clkfrac = readb(&clkctrl_regs->hw_clkctrl_frac0[CLKCTRL_FRAC0_CPU]);
71 	frac = clkfrac & CLKCTRL_FRAC_FRAC_MASK;
72 	div = clkctrl & CLKCTRL_CPU_DIV_CPU_MASK;
73 	return (PLL_FREQ_MHZ * PLL_FREQ_COEF / frac) / div;
74 }
75 
76 static uint32_t mx28_get_hclk(void)
77 {
78 	struct mxs_clkctrl_regs *clkctrl_regs =
79 		(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
80 
81 	uint32_t div;
82 	uint32_t clkctrl;
83 
84 	clkctrl = readl(&clkctrl_regs->hw_clkctrl_hbus);
85 
86 	/* No support of fractional divider calculation */
87 	if (clkctrl & CLKCTRL_HBUS_DIV_FRAC_EN)
88 		return 0;
89 
90 	div = clkctrl & CLKCTRL_HBUS_DIV_MASK;
91 	return mx28_get_pclk() / div;
92 }
93 
94 static uint32_t mx28_get_emiclk(void)
95 {
96 	struct mxs_clkctrl_regs *clkctrl_regs =
97 		(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
98 
99 	uint32_t clkctrl, clkseq, div;
100 	uint8_t clkfrac, frac;
101 
102 	clkseq = readl(&clkctrl_regs->hw_clkctrl_clkseq);
103 	clkctrl = readl(&clkctrl_regs->hw_clkctrl_emi);
104 
105 	/* XTAL Path */
106 	if (clkseq & CLKCTRL_CLKSEQ_BYPASS_EMI) {
107 		div = (clkctrl & CLKCTRL_EMI_DIV_XTAL_MASK) >>
108 			CLKCTRL_EMI_DIV_XTAL_OFFSET;
109 		return XTAL_FREQ_MHZ / div;
110 	}
111 
112 	/* REF Path */
113 	clkfrac = readb(&clkctrl_regs->hw_clkctrl_frac0[CLKCTRL_FRAC0_EMI]);
114 	frac = clkfrac & CLKCTRL_FRAC_FRAC_MASK;
115 	div = clkctrl & CLKCTRL_EMI_DIV_EMI_MASK;
116 	return (PLL_FREQ_MHZ * PLL_FREQ_COEF / frac) / div;
117 }
118 
119 static uint32_t mx28_get_gpmiclk(void)
120 {
121 	struct mxs_clkctrl_regs *clkctrl_regs =
122 		(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
123 
124 	uint32_t clkctrl, clkseq, div;
125 	uint8_t clkfrac, frac;
126 
127 	clkseq = readl(&clkctrl_regs->hw_clkctrl_clkseq);
128 	clkctrl = readl(&clkctrl_regs->hw_clkctrl_gpmi);
129 
130 	/* XTAL Path */
131 	if (clkseq & CLKCTRL_CLKSEQ_BYPASS_GPMI) {
132 		div = clkctrl & CLKCTRL_GPMI_DIV_MASK;
133 		return XTAL_FREQ_MHZ / div;
134 	}
135 
136 	/* REF Path */
137 	clkfrac = readb(&clkctrl_regs->hw_clkctrl_frac1[CLKCTRL_FRAC1_GPMI]);
138 	frac = clkfrac & CLKCTRL_FRAC_FRAC_MASK;
139 	div = clkctrl & CLKCTRL_GPMI_DIV_MASK;
140 	return (PLL_FREQ_MHZ * PLL_FREQ_COEF / frac) / div;
141 }
142 
143 /*
144  * Set IO clock frequency, in kHz
145  */
146 void mx28_set_ioclk(enum mxs_ioclock io, uint32_t freq)
147 {
148 	struct mxs_clkctrl_regs *clkctrl_regs =
149 		(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
150 	uint32_t div;
151 	int io_reg;
152 
153 	if (freq == 0)
154 		return;
155 
156 	if ((io < MXC_IOCLK0) || (io > MXC_IOCLK1))
157 		return;
158 
159 	div = (PLL_FREQ_KHZ * PLL_FREQ_COEF) / freq;
160 
161 	if (div < 18)
162 		div = 18;
163 
164 	if (div > 35)
165 		div = 35;
166 
167 	io_reg = CLKCTRL_FRAC0_IO0 - io;	/* Register order is reversed */
168 	writeb(CLKCTRL_FRAC_CLKGATE,
169 		&clkctrl_regs->hw_clkctrl_frac0_set[io_reg]);
170 	writeb(CLKCTRL_FRAC_CLKGATE | (div & CLKCTRL_FRAC_FRAC_MASK),
171 		&clkctrl_regs->hw_clkctrl_frac0[io_reg]);
172 	writeb(CLKCTRL_FRAC_CLKGATE,
173 		&clkctrl_regs->hw_clkctrl_frac0_clr[io_reg]);
174 }
175 
176 /*
177  * Get IO clock, returns IO clock in kHz
178  */
179 static uint32_t mx28_get_ioclk(enum mxs_ioclock io)
180 {
181 	struct mxs_clkctrl_regs *clkctrl_regs =
182 		(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
183 	uint8_t ret;
184 	int io_reg;
185 
186 	if ((io < MXC_IOCLK0) || (io > MXC_IOCLK1))
187 		return 0;
188 
189 	io_reg = CLKCTRL_FRAC0_IO0 - io;	/* Register order is reversed */
190 
191 	ret = readb(&clkctrl_regs->hw_clkctrl_frac0[io_reg]) &
192 		CLKCTRL_FRAC_FRAC_MASK;
193 
194 	return (PLL_FREQ_KHZ * PLL_FREQ_COEF) / ret;
195 }
196 
197 /*
198  * Configure SSP clock frequency, in kHz
199  */
200 void mx28_set_sspclk(enum mxs_sspclock ssp, uint32_t freq, int xtal)
201 {
202 	struct mxs_clkctrl_regs *clkctrl_regs =
203 		(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
204 	uint32_t clk, clkreg;
205 
206 	if (ssp > MXC_SSPCLK3)
207 		return;
208 
209 	clkreg = (uint32_t)(&clkctrl_regs->hw_clkctrl_ssp0) +
210 			(ssp * sizeof(struct mxs_register_32));
211 
212 	clrbits_le32(clkreg, CLKCTRL_SSP_CLKGATE);
213 	while (readl(clkreg) & CLKCTRL_SSP_CLKGATE)
214 		;
215 
216 	if (xtal)
217 		clk = XTAL_FREQ_KHZ;
218 	else
219 		clk = mx28_get_ioclk(ssp >> 1);
220 
221 	if (freq > clk)
222 		return;
223 
224 	/* Calculate the divider and cap it if necessary */
225 	clk /= freq;
226 	if (clk > CLKCTRL_SSP_DIV_MASK)
227 		clk = CLKCTRL_SSP_DIV_MASK;
228 
229 	clrsetbits_le32(clkreg, CLKCTRL_SSP_DIV_MASK, clk);
230 	while (readl(clkreg) & CLKCTRL_SSP_BUSY)
231 		;
232 
233 	if (xtal)
234 		writel(CLKCTRL_CLKSEQ_BYPASS_SSP0 << ssp,
235 			&clkctrl_regs->hw_clkctrl_clkseq_set);
236 	else
237 		writel(CLKCTRL_CLKSEQ_BYPASS_SSP0 << ssp,
238 			&clkctrl_regs->hw_clkctrl_clkseq_clr);
239 }
240 
241 /*
242  * Return SSP frequency, in kHz
243  */
244 static uint32_t mx28_get_sspclk(enum mxs_sspclock ssp)
245 {
246 	struct mxs_clkctrl_regs *clkctrl_regs =
247 		(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
248 	uint32_t clkreg;
249 	uint32_t clk, tmp;
250 
251 	if (ssp > MXC_SSPCLK3)
252 		return 0;
253 
254 	tmp = readl(&clkctrl_regs->hw_clkctrl_clkseq);
255 	if (tmp & (CLKCTRL_CLKSEQ_BYPASS_SSP0 << ssp))
256 		return XTAL_FREQ_KHZ;
257 
258 	clkreg = (uint32_t)(&clkctrl_regs->hw_clkctrl_ssp0) +
259 			(ssp * sizeof(struct mxs_register_32));
260 
261 	tmp = readl(clkreg) & CLKCTRL_SSP_DIV_MASK;
262 
263 	if (tmp == 0)
264 		return 0;
265 
266 	clk = mx28_get_ioclk(ssp >> 1);
267 
268 	return clk / tmp;
269 }
270 
271 /*
272  * Set SSP/MMC bus frequency, in kHz)
273  */
274 void mx28_set_ssp_busclock(unsigned int bus, uint32_t freq)
275 {
276 	struct mxs_ssp_regs *ssp_regs;
277 	const uint32_t sspclk = mx28_get_sspclk(bus);
278 	uint32_t reg;
279 	uint32_t divide, rate, tgtclk;
280 
281 	ssp_regs = (struct mxs_ssp_regs *)(MXS_SSP0_BASE + (bus * 0x2000));
282 
283 	/*
284 	 * SSP bit rate = SSPCLK / (CLOCK_DIVIDE * (1 + CLOCK_RATE)),
285 	 * CLOCK_DIVIDE has to be an even value from 2 to 254, and
286 	 * CLOCK_RATE could be any integer from 0 to 255.
287 	 */
288 	for (divide = 2; divide < 254; divide += 2) {
289 		rate = sspclk / freq / divide;
290 		if (rate <= 256)
291 			break;
292 	}
293 
294 	tgtclk = sspclk / divide / rate;
295 	while (tgtclk > freq) {
296 		rate++;
297 		tgtclk = sspclk / divide / rate;
298 	}
299 	if (rate > 256)
300 		rate = 256;
301 
302 	/* Always set timeout the maximum */
303 	reg = SSP_TIMING_TIMEOUT_MASK |
304 		(divide << SSP_TIMING_CLOCK_DIVIDE_OFFSET) |
305 		((rate - 1) << SSP_TIMING_CLOCK_RATE_OFFSET);
306 	writel(reg, &ssp_regs->hw_ssp_timing);
307 
308 	debug("SPI%d: Set freq rate to %d KHz (requested %d KHz)\n",
309 		bus, tgtclk, freq);
310 }
311 
312 uint32_t mxc_get_clock(enum mxc_clock clk)
313 {
314 	switch (clk) {
315 	case MXC_ARM_CLK:
316 		return mx28_get_pclk() * 1000000;
317 	case MXC_GPMI_CLK:
318 		return mx28_get_gpmiclk() * 1000000;
319 	case MXC_AHB_CLK:
320 	case MXC_IPG_CLK:
321 		return mx28_get_hclk() * 1000000;
322 	case MXC_EMI_CLK:
323 		return mx28_get_emiclk();
324 	case MXC_IO0_CLK:
325 		return mx28_get_ioclk(MXC_IOCLK0);
326 	case MXC_IO1_CLK:
327 		return mx28_get_ioclk(MXC_IOCLK1);
328 	case MXC_SSP0_CLK:
329 		return mx28_get_sspclk(MXC_SSPCLK0);
330 	case MXC_SSP1_CLK:
331 		return mx28_get_sspclk(MXC_SSPCLK1);
332 	case MXC_SSP2_CLK:
333 		return mx28_get_sspclk(MXC_SSPCLK2);
334 	case MXC_SSP3_CLK:
335 		return mx28_get_sspclk(MXC_SSPCLK3);
336 	}
337 
338 	return 0;
339 }
340