xref: /openbmc/u-boot/arch/arc/include/asm/io.h (revision b1ad6c696631f07b5fe109378516abcb79ded1f9)
1 /*
2  * Copyright (C) 2013-2014 Synopsys, Inc. All rights reserved.
3  *
4  * SPDX-License-Identifier:	GPL-2.0+
5  */
6 
7 #ifndef __ASM_ARC_IO_H
8 #define __ASM_ARC_IO_H
9 
10 #include <linux/types.h>
11 #include <asm/byteorder.h>
12 
13 #ifdef CONFIG_ISA_ARCV2
14 
15 /*
16  * ARCv2 based HS38 cores are in-order issue, but still weakly ordered
17  * due to micro-arch buffering/queuing of load/store, cache hit vs. miss ...
18  *
19  * Explicit barrier provided by DMB instruction
20  *  - Operand supports fine grained load/store/load+store semantics
21  *  - Ensures that selected memory operation issued before it will complete
22  *    before any subsequent memory operation of same type
23  *  - DMB guarantees SMP as well as local barrier semantics
24  *    (asm-generic/barrier.h ensures sane smp_*mb if not defined here, i.e.
25  *    UP: barrier(), SMP: smp_*mb == *mb)
26  *  - DSYNC provides DMB+completion_of_cache_bpu_maintenance_ops hence not needed
27  *    in the general case. Plus it only provides full barrier.
28  */
29 
30 #define mb()	asm volatile("dmb 3\n" : : : "memory")
31 #define rmb()	asm volatile("dmb 1\n" : : : "memory")
32 #define wmb()	asm volatile("dmb 2\n" : : : "memory")
33 
34 #else
35 
36 /*
37  * ARCompact based cores (ARC700) only have SYNC instruction which is super
38  * heavy weight as it flushes the pipeline as well.
39  * There are no real SMP implementations of such cores.
40  */
41 
42 #define mb()	asm volatile("sync\n" : : : "memory")
43 #endif
44 
45 #ifdef CONFIG_ISA_ARCV2
46 #define __iormb()		rmb()
47 #define __iowmb()		wmb()
48 #else
49 #define __iormb()		do { } while (0)
50 #define __iowmb()		do { } while (0)
51 #endif
52 
53 /*
54  * Given a physical address and a length, return a virtual address
55  * that can be used to access the memory range with the caching
56  * properties specified by "flags".
57  */
58 #define MAP_NOCACHE	(0)
59 #define MAP_WRCOMBINE	(0)
60 #define MAP_WRBACK	(0)
61 #define MAP_WRTHROUGH	(0)
62 
63 static inline void *
64 map_physmem(phys_addr_t paddr, unsigned long len, unsigned long flags)
65 {
66 	return (void *)((unsigned long)paddr);
67 }
68 
69 /*
70  * Take down a mapping set up by map_physmem().
71  */
72 static inline void unmap_physmem(void *vaddr, unsigned long flags)
73 {
74 
75 }
76 
77 static inline void sync(void)
78 {
79 	/* Not yet implemented */
80 }
81 
82 static inline u8 __raw_readb(const volatile void __iomem *addr)
83 {
84 	u8 b;
85 
86 	__asm__ __volatile__("ldb%U1	%0, %1\n"
87 			     : "=r" (b)
88 			     : "m" (*(volatile u8 __force *)addr)
89 			     : "memory");
90 	return b;
91 }
92 
93 static inline u16 __raw_readw(const volatile void __iomem *addr)
94 {
95 	u16 s;
96 
97 	__asm__ __volatile__("ldw%U1	%0, %1\n"
98 			     : "=r" (s)
99 			     : "m" (*(volatile u16 __force *)addr)
100 			     : "memory");
101 	return s;
102 }
103 
104 static inline u32 __raw_readl(const volatile void __iomem *addr)
105 {
106 	u32 w;
107 
108 	__asm__ __volatile__("ld%U1	%0, %1\n"
109 			     : "=r" (w)
110 			     : "m" (*(volatile u32 __force *)addr)
111 			     : "memory");
112 	return w;
113 }
114 
115 static inline void __raw_writeb(u8 b, volatile void __iomem *addr)
116 {
117 	__asm__ __volatile__("stb%U1	%0, %1\n"
118 			     :
119 			     : "r" (b), "m" (*(volatile u8 __force *)addr)
120 			     : "memory");
121 }
122 
123 static inline void __raw_writew(u16 s, volatile void __iomem *addr)
124 {
125 	__asm__ __volatile__("stw%U1	%0, %1\n"
126 			     :
127 			     : "r" (s), "m" (*(volatile u16 __force *)addr)
128 			     : "memory");
129 }
130 
131 static inline void __raw_writel(u32 w, volatile void __iomem *addr)
132 {
133 	__asm__ __volatile__("st%U1	%0, %1\n"
134 			     :
135 			     : "r" (w), "m" (*(volatile u32 __force *)addr)
136 			     : "memory");
137 }
138 
139 static inline int __raw_readsb(unsigned int addr, void *data, int bytelen)
140 {
141 	__asm__ __volatile__ ("1:ld.di	r8, [r0]\n"
142 			      "sub.f	r2, r2, 1\n"
143 			      "bnz.d	1b\n"
144 			      "stb.ab	r8, [r1, 1]\n"
145 			      :
146 			      : "r" (addr), "r" (data), "r" (bytelen)
147 			      : "r8");
148 	return bytelen;
149 }
150 
151 static inline int __raw_readsw(unsigned int addr, void *data, int wordlen)
152 {
153 	__asm__ __volatile__ ("1:ld.di	r8, [r0]\n"
154 			      "sub.f	r2, r2, 1\n"
155 			      "bnz.d	1b\n"
156 			      "stw.ab	r8, [r1, 2]\n"
157 			      :
158 			      : "r" (addr), "r" (data), "r" (wordlen)
159 			      : "r8");
160 	return wordlen;
161 }
162 
163 static inline int __raw_readsl(unsigned int addr, void *data, int longlen)
164 {
165 	__asm__ __volatile__ ("1:ld.di	r8, [r0]\n"
166 			      "sub.f	r2, r2, 1\n"
167 			      "bnz.d	1b\n"
168 			      "st.ab	r8, [r1, 4]\n"
169 			      :
170 			      : "r" (addr), "r" (data), "r" (longlen)
171 			      : "r8");
172 	return longlen;
173 }
174 
175 static inline int __raw_writesb(unsigned int addr, void *data, int bytelen)
176 {
177 	__asm__ __volatile__ ("1:ldb.ab	r8, [r1, 1]\n"
178 			      "sub.f	r2, r2, 1\n"
179 			      "bnz.d	1b\n"
180 			      "st.di	r8, [r0, 0]\n"
181 			      :
182 			      : "r" (addr), "r" (data), "r" (bytelen)
183 			      : "r8");
184 	return bytelen;
185 }
186 
187 static inline int __raw_writesw(unsigned int addr, void *data, int wordlen)
188 {
189 	__asm__ __volatile__ ("1:ldw.ab	r8, [r1, 2]\n"
190 			      "sub.f	r2, r2, 1\n"
191 			      "bnz.d	1b\n"
192 			      "st.ab.di	r8, [r0, 0]\n"
193 			      :
194 			      : "r" (addr), "r" (data), "r" (wordlen)
195 			      : "r8");
196 	return wordlen;
197 }
198 
199 static inline int __raw_writesl(unsigned int addr, void *data, int longlen)
200 {
201 	__asm__ __volatile__ ("1:ld.ab	r8, [r1, 4]\n"
202 			      "sub.f	r2, r2, 1\n"
203 			      "bnz.d	1b\n"
204 			      "st.ab.di	r8, [r0, 0]\n"
205 			      :
206 			      : "r" (addr), "r" (data), "r" (longlen)
207 			      : "r8");
208 	return longlen;
209 }
210 
211 /*
212  * MMIO can also get buffered/optimized in micro-arch, so barriers needed
213  * Based on ARM model for the typical use case
214  *
215  *	<ST [DMA buffer]>
216  *	<writel MMIO "go" reg>
217  *  or:
218  *	<readl MMIO "status" reg>
219  *	<LD [DMA buffer]>
220  *
221  * http://lkml.kernel.org/r/20150622133656.GG1583@arm.com
222  */
223 #define readb(c)		({ u8  __v = readb_relaxed(c); __iormb(); __v; })
224 #define readw(c)		({ u16 __v = readw_relaxed(c); __iormb(); __v; })
225 #define readl(c)		({ u32 __v = readl_relaxed(c); __iormb(); __v; })
226 
227 #define writeb(v,c)		({ __iowmb(); writeb_relaxed(v,c); })
228 #define writew(v,c)		({ __iowmb(); writew_relaxed(v,c); })
229 #define writel(v,c)		({ __iowmb(); writel_relaxed(v,c); })
230 
231 /*
232  * Relaxed API for drivers which can handle barrier ordering themselves
233  *
234  * Also these are defined to perform little endian accesses.
235  * To provide the typical device register semantics of fixed endian,
236  * swap the byte order for Big Endian
237  *
238  * http://lkml.kernel.org/r/201603100845.30602.arnd@arndb.de
239  */
240 #define readb_relaxed(c)	__raw_readb(c)
241 #define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16) \
242 					__raw_readw(c)); __r; })
243 #define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32) \
244 					__raw_readl(c)); __r; })
245 
246 #define writeb_relaxed(v,c)	__raw_writeb(v,c)
247 #define writew_relaxed(v,c)	__raw_writew((__force u16) cpu_to_le16(v),c)
248 #define writel_relaxed(v,c)	__raw_writel((__force u32) cpu_to_le32(v),c)
249 
250 #define out_arch(type, endian, a, v)	__raw_write##type(cpu_to_##endian(v), a)
251 #define in_arch(type, endian, a)	endian##_to_cpu(__raw_read##type(a))
252 
253 #define out_le32(a, v)	out_arch(l, le32, a, v)
254 #define out_le16(a, v)	out_arch(w, le16, a, v)
255 
256 #define in_le32(a)	in_arch(l, le32, a)
257 #define in_le16(a)	in_arch(w, le16, a)
258 
259 #define out_be32(a, v)	out_arch(l, be32, a, v)
260 #define out_be16(a, v)	out_arch(w, be16, a, v)
261 
262 #define in_be32(a)	in_arch(l, be32, a)
263 #define in_be16(a)	in_arch(w, be16, a)
264 
265 #define out_8(a, v)	__raw_writeb(v, a)
266 #define in_8(a)		__raw_readb(a)
267 
268 /*
269  * Clear and set bits in one shot. These macros can be used to clear and
270  * set multiple bits in a register using a single call. These macros can
271  * also be used to set a multiple-bit bit pattern using a mask, by
272  * specifying the mask in the 'clear' parameter and the new bit pattern
273  * in the 'set' parameter.
274  */
275 
276 #define clrbits(type, addr, clear) \
277 	out_##type((addr), in_##type(addr) & ~(clear))
278 
279 #define setbits(type, addr, set) \
280 	out_##type((addr), in_##type(addr) | (set))
281 
282 #define clrsetbits(type, addr, clear, set) \
283 	out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
284 
285 #define clrbits_be32(addr, clear) clrbits(be32, addr, clear)
286 #define setbits_be32(addr, set) setbits(be32, addr, set)
287 #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
288 
289 #define clrbits_le32(addr, clear) clrbits(le32, addr, clear)
290 #define setbits_le32(addr, set) setbits(le32, addr, set)
291 #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
292 
293 #define clrbits_be16(addr, clear) clrbits(be16, addr, clear)
294 #define setbits_be16(addr, set) setbits(be16, addr, set)
295 #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
296 
297 #define clrbits_le16(addr, clear) clrbits(le16, addr, clear)
298 #define setbits_le16(addr, set) setbits(le16, addr, set)
299 #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
300 
301 #define clrbits_8(addr, clear) clrbits(8, addr, clear)
302 #define setbits_8(addr, set) setbits(8, addr, set)
303 #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
304 
305 static inline phys_addr_t virt_to_phys(void *vaddr)
306 {
307 	return (phys_addr_t)((unsigned long)vaddr);
308 }
309 
310 #endif	/* __ASM_ARC_IO_H */
311