xref: /openbmc/qemu/util/throttle.c (revision c964b660)
1 /*
2  * QEMU throttling infrastructure
3  *
4  * Copyright (C) Nodalink, EURL. 2013-2014
5  * Copyright (C) Igalia, S.L. 2015
6  *
7  * Authors:
8  *   Benoît Canet <benoit.canet@nodalink.com>
9  *   Alberto Garcia <berto@igalia.com>
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License as
13  * published by the Free Software Foundation; either version 2 or
14  * (at your option) version 3 of the License.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, see <http://www.gnu.org/licenses/>.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/throttle.h"
27 #include "qemu/timer.h"
28 #include "block/aio.h"
29 
30 /* This function make a bucket leak
31  *
32  * @bkt:   the bucket to make leak
33  * @delta_ns: the time delta
34  */
35 void throttle_leak_bucket(LeakyBucket *bkt, int64_t delta_ns)
36 {
37     double leak;
38 
39     /* compute how much to leak */
40     leak = (bkt->avg * (double) delta_ns) / NANOSECONDS_PER_SECOND;
41 
42     /* make the bucket leak */
43     bkt->level = MAX(bkt->level - leak, 0);
44 }
45 
46 /* Calculate the time delta since last leak and make proportionals leaks
47  *
48  * @now:      the current timestamp in ns
49  */
50 static void throttle_do_leak(ThrottleState *ts, int64_t now)
51 {
52     /* compute the time elapsed since the last leak */
53     int64_t delta_ns = now - ts->previous_leak;
54     int i;
55 
56     ts->previous_leak = now;
57 
58     if (delta_ns <= 0) {
59         return;
60     }
61 
62     /* make each bucket leak */
63     for (i = 0; i < BUCKETS_COUNT; i++) {
64         throttle_leak_bucket(&ts->cfg.buckets[i], delta_ns);
65     }
66 }
67 
68 /* do the real job of computing the time to wait
69  *
70  * @limit: the throttling limit
71  * @extra: the number of operation to delay
72  * @ret:   the time to wait in ns
73  */
74 static int64_t throttle_do_compute_wait(double limit, double extra)
75 {
76     double wait = extra * NANOSECONDS_PER_SECOND;
77     wait /= limit;
78     return wait;
79 }
80 
81 /* This function compute the wait time in ns that a leaky bucket should trigger
82  *
83  * @bkt: the leaky bucket we operate on
84  * @ret: the resulting wait time in ns or 0 if the operation can go through
85  */
86 int64_t throttle_compute_wait(LeakyBucket *bkt)
87 {
88     double extra; /* the number of extra units blocking the io */
89 
90     if (!bkt->avg) {
91         return 0;
92     }
93 
94     extra = bkt->level - bkt->max;
95 
96     if (extra <= 0) {
97         return 0;
98     }
99 
100     return throttle_do_compute_wait(bkt->avg, extra);
101 }
102 
103 /* This function compute the time that must be waited while this IO
104  *
105  * @is_write:   true if the current IO is a write, false if it's a read
106  * @ret:        time to wait
107  */
108 static int64_t throttle_compute_wait_for(ThrottleState *ts,
109                                          bool is_write)
110 {
111     BucketType to_check[2][4] = { {THROTTLE_BPS_TOTAL,
112                                    THROTTLE_OPS_TOTAL,
113                                    THROTTLE_BPS_READ,
114                                    THROTTLE_OPS_READ},
115                                   {THROTTLE_BPS_TOTAL,
116                                    THROTTLE_OPS_TOTAL,
117                                    THROTTLE_BPS_WRITE,
118                                    THROTTLE_OPS_WRITE}, };
119     int64_t wait, max_wait = 0;
120     int i;
121 
122     for (i = 0; i < 4; i++) {
123         BucketType index = to_check[is_write][i];
124         wait = throttle_compute_wait(&ts->cfg.buckets[index]);
125         if (wait > max_wait) {
126             max_wait = wait;
127         }
128     }
129 
130     return max_wait;
131 }
132 
133 /* compute the timer for this type of operation
134  *
135  * @is_write:   the type of operation
136  * @now:        the current clock timestamp
137  * @next_timestamp: the resulting timer
138  * @ret:        true if a timer must be set
139  */
140 bool throttle_compute_timer(ThrottleState *ts,
141                             bool is_write,
142                             int64_t now,
143                             int64_t *next_timestamp)
144 {
145     int64_t wait;
146 
147     /* leak proportionally to the time elapsed */
148     throttle_do_leak(ts, now);
149 
150     /* compute the wait time if any */
151     wait = throttle_compute_wait_for(ts, is_write);
152 
153     /* if the code must wait compute when the next timer should fire */
154     if (wait) {
155         *next_timestamp = now + wait;
156         return true;
157     }
158 
159     /* else no need to wait at all */
160     *next_timestamp = now;
161     return false;
162 }
163 
164 /* Add timers to event loop */
165 void throttle_timers_attach_aio_context(ThrottleTimers *tt,
166                                         AioContext *new_context)
167 {
168     tt->timers[0] = aio_timer_new(new_context, tt->clock_type, SCALE_NS,
169                                   tt->read_timer_cb, tt->timer_opaque);
170     tt->timers[1] = aio_timer_new(new_context, tt->clock_type, SCALE_NS,
171                                   tt->write_timer_cb, tt->timer_opaque);
172 }
173 
174 /* To be called first on the ThrottleState */
175 void throttle_init(ThrottleState *ts)
176 {
177     memset(ts, 0, sizeof(ThrottleState));
178 }
179 
180 /* To be called first on the ThrottleTimers */
181 void throttle_timers_init(ThrottleTimers *tt,
182                           AioContext *aio_context,
183                           QEMUClockType clock_type,
184                           QEMUTimerCB *read_timer_cb,
185                           QEMUTimerCB *write_timer_cb,
186                           void *timer_opaque)
187 {
188     memset(tt, 0, sizeof(ThrottleTimers));
189 
190     tt->clock_type = clock_type;
191     tt->read_timer_cb = read_timer_cb;
192     tt->write_timer_cb = write_timer_cb;
193     tt->timer_opaque = timer_opaque;
194     throttle_timers_attach_aio_context(tt, aio_context);
195 }
196 
197 /* destroy a timer */
198 static void throttle_timer_destroy(QEMUTimer **timer)
199 {
200     assert(*timer != NULL);
201 
202     timer_del(*timer);
203     timer_free(*timer);
204     *timer = NULL;
205 }
206 
207 /* Remove timers from event loop */
208 void throttle_timers_detach_aio_context(ThrottleTimers *tt)
209 {
210     int i;
211 
212     for (i = 0; i < 2; i++) {
213         throttle_timer_destroy(&tt->timers[i]);
214     }
215 }
216 
217 /* To be called last on the ThrottleTimers */
218 void throttle_timers_destroy(ThrottleTimers *tt)
219 {
220     throttle_timers_detach_aio_context(tt);
221 }
222 
223 /* is any throttling timer configured */
224 bool throttle_timers_are_initialized(ThrottleTimers *tt)
225 {
226     if (tt->timers[0]) {
227         return true;
228     }
229 
230     return false;
231 }
232 
233 /* Does any throttling must be done
234  *
235  * @cfg: the throttling configuration to inspect
236  * @ret: true if throttling must be done else false
237  */
238 bool throttle_enabled(ThrottleConfig *cfg)
239 {
240     int i;
241 
242     for (i = 0; i < BUCKETS_COUNT; i++) {
243         if (cfg->buckets[i].avg > 0) {
244             return true;
245         }
246     }
247 
248     return false;
249 }
250 
251 /* return true if any two throttling parameters conflicts
252  *
253  * @cfg: the throttling configuration to inspect
254  * @ret: true if any conflict detected else false
255  */
256 bool throttle_conflicting(ThrottleConfig *cfg)
257 {
258     bool bps_flag, ops_flag;
259     bool bps_max_flag, ops_max_flag;
260 
261     bps_flag = cfg->buckets[THROTTLE_BPS_TOTAL].avg &&
262                (cfg->buckets[THROTTLE_BPS_READ].avg ||
263                 cfg->buckets[THROTTLE_BPS_WRITE].avg);
264 
265     ops_flag = cfg->buckets[THROTTLE_OPS_TOTAL].avg &&
266                (cfg->buckets[THROTTLE_OPS_READ].avg ||
267                 cfg->buckets[THROTTLE_OPS_WRITE].avg);
268 
269     bps_max_flag = cfg->buckets[THROTTLE_BPS_TOTAL].max &&
270                   (cfg->buckets[THROTTLE_BPS_READ].max  ||
271                    cfg->buckets[THROTTLE_BPS_WRITE].max);
272 
273     ops_max_flag = cfg->buckets[THROTTLE_OPS_TOTAL].max &&
274                    (cfg->buckets[THROTTLE_OPS_READ].max ||
275                    cfg->buckets[THROTTLE_OPS_WRITE].max);
276 
277     return bps_flag || ops_flag || bps_max_flag || ops_max_flag;
278 }
279 
280 /* check if a throttling configuration is valid
281  * @cfg: the throttling configuration to inspect
282  * @ret: true if valid else false
283  */
284 bool throttle_is_valid(ThrottleConfig *cfg)
285 {
286     int i;
287 
288     for (i = 0; i < BUCKETS_COUNT; i++) {
289         if (cfg->buckets[i].avg < 0 ||
290             cfg->buckets[i].max < 0 ||
291             cfg->buckets[i].avg > THROTTLE_VALUE_MAX ||
292             cfg->buckets[i].max > THROTTLE_VALUE_MAX) {
293             return false;
294         }
295     }
296 
297     return true;
298 }
299 
300 /* check if bps_max/iops_max is used without bps/iops
301  * @cfg: the throttling configuration to inspect
302  */
303 bool throttle_max_is_missing_limit(ThrottleConfig *cfg)
304 {
305     int i;
306 
307     for (i = 0; i < BUCKETS_COUNT; i++) {
308         if (cfg->buckets[i].max && !cfg->buckets[i].avg) {
309             return true;
310         }
311     }
312     return false;
313 }
314 
315 /* fix bucket parameters */
316 static void throttle_fix_bucket(LeakyBucket *bkt)
317 {
318     double min;
319 
320     /* zero bucket level */
321     bkt->level = 0;
322 
323     /* The following is done to cope with the Linux CFQ block scheduler
324      * which regroup reads and writes by block of 100ms in the guest.
325      * When they are two process one making reads and one making writes cfq
326      * make a pattern looking like the following:
327      * WWWWWWWWWWWRRRRRRRRRRRRRRWWWWWWWWWWWWWwRRRRRRRRRRRRRRRRR
328      * Having a max burst value of 100ms of the average will help smooth the
329      * throttling
330      */
331     min = bkt->avg / 10;
332     if (bkt->avg && !bkt->max) {
333         bkt->max = min;
334     }
335 }
336 
337 /* take care of canceling a timer */
338 static void throttle_cancel_timer(QEMUTimer *timer)
339 {
340     assert(timer != NULL);
341 
342     timer_del(timer);
343 }
344 
345 /* Used to configure the throttle
346  *
347  * @ts: the throttle state we are working on
348  * @tt: the throttle timers we use in this aio context
349  * @cfg: the config to set
350  */
351 void throttle_config(ThrottleState *ts,
352                      ThrottleTimers *tt,
353                      ThrottleConfig *cfg)
354 {
355     int i;
356 
357     ts->cfg = *cfg;
358 
359     for (i = 0; i < BUCKETS_COUNT; i++) {
360         throttle_fix_bucket(&ts->cfg.buckets[i]);
361     }
362 
363     ts->previous_leak = qemu_clock_get_ns(tt->clock_type);
364 
365     for (i = 0; i < 2; i++) {
366         throttle_cancel_timer(tt->timers[i]);
367     }
368 }
369 
370 /* used to get config
371  *
372  * @ts:  the throttle state we are working on
373  * @cfg: the config to write
374  */
375 void throttle_get_config(ThrottleState *ts, ThrottleConfig *cfg)
376 {
377     *cfg = ts->cfg;
378 }
379 
380 
381 /* Schedule the read or write timer if needed
382  *
383  * NOTE: this function is not unit tested due to it's usage of timer_mod
384  *
385  * @tt:       the timers structure
386  * @is_write: the type of operation (read/write)
387  * @ret:      true if the timer has been scheduled else false
388  */
389 bool throttle_schedule_timer(ThrottleState *ts,
390                              ThrottleTimers *tt,
391                              bool is_write)
392 {
393     int64_t now = qemu_clock_get_ns(tt->clock_type);
394     int64_t next_timestamp;
395     bool must_wait;
396 
397     must_wait = throttle_compute_timer(ts,
398                                        is_write,
399                                        now,
400                                        &next_timestamp);
401 
402     /* request not throttled */
403     if (!must_wait) {
404         return false;
405     }
406 
407     /* request throttled and timer pending -> do nothing */
408     if (timer_pending(tt->timers[is_write])) {
409         return true;
410     }
411 
412     /* request throttled and timer not pending -> arm timer */
413     timer_mod(tt->timers[is_write], next_timestamp);
414     return true;
415 }
416 
417 /* do the accounting for this operation
418  *
419  * @is_write: the type of operation (read/write)
420  * @size:     the size of the operation
421  */
422 void throttle_account(ThrottleState *ts, bool is_write, uint64_t size)
423 {
424     double units = 1.0;
425 
426     /* if cfg.op_size is defined and smaller than size we compute unit count */
427     if (ts->cfg.op_size && size > ts->cfg.op_size) {
428         units = (double) size / ts->cfg.op_size;
429     }
430 
431     ts->cfg.buckets[THROTTLE_BPS_TOTAL].level += size;
432     ts->cfg.buckets[THROTTLE_OPS_TOTAL].level += units;
433 
434     if (is_write) {
435         ts->cfg.buckets[THROTTLE_BPS_WRITE].level += size;
436         ts->cfg.buckets[THROTTLE_OPS_WRITE].level += units;
437     } else {
438         ts->cfg.buckets[THROTTLE_BPS_READ].level += size;
439         ts->cfg.buckets[THROTTLE_OPS_READ].level += units;
440     }
441 }
442 
443