xref: /openbmc/qemu/util/throttle.c (revision bf957284)
1 /*
2  * QEMU throttling infrastructure
3  *
4  * Copyright (C) Nodalink, EURL. 2013-2014
5  * Copyright (C) Igalia, S.L. 2015
6  *
7  * Authors:
8  *   Benoît Canet <benoit.canet@nodalink.com>
9  *   Alberto Garcia <berto@igalia.com>
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License as
13  * published by the Free Software Foundation; either version 2 or
14  * (at your option) version 3 of the License.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, see <http://www.gnu.org/licenses/>.
23  */
24 
25 #include "qemu/throttle.h"
26 #include "qemu/timer.h"
27 #include "block/aio.h"
28 
29 /* This function make a bucket leak
30  *
31  * @bkt:   the bucket to make leak
32  * @delta_ns: the time delta
33  */
34 void throttle_leak_bucket(LeakyBucket *bkt, int64_t delta_ns)
35 {
36     double leak;
37 
38     /* compute how much to leak */
39     leak = (bkt->avg * (double) delta_ns) / NANOSECONDS_PER_SECOND;
40 
41     /* make the bucket leak */
42     bkt->level = MAX(bkt->level - leak, 0);
43 }
44 
45 /* Calculate the time delta since last leak and make proportionals leaks
46  *
47  * @now:      the current timestamp in ns
48  */
49 static void throttle_do_leak(ThrottleState *ts, int64_t now)
50 {
51     /* compute the time elapsed since the last leak */
52     int64_t delta_ns = now - ts->previous_leak;
53     int i;
54 
55     ts->previous_leak = now;
56 
57     if (delta_ns <= 0) {
58         return;
59     }
60 
61     /* make each bucket leak */
62     for (i = 0; i < BUCKETS_COUNT; i++) {
63         throttle_leak_bucket(&ts->cfg.buckets[i], delta_ns);
64     }
65 }
66 
67 /* do the real job of computing the time to wait
68  *
69  * @limit: the throttling limit
70  * @extra: the number of operation to delay
71  * @ret:   the time to wait in ns
72  */
73 static int64_t throttle_do_compute_wait(double limit, double extra)
74 {
75     double wait = extra * NANOSECONDS_PER_SECOND;
76     wait /= limit;
77     return wait;
78 }
79 
80 /* This function compute the wait time in ns that a leaky bucket should trigger
81  *
82  * @bkt: the leaky bucket we operate on
83  * @ret: the resulting wait time in ns or 0 if the operation can go through
84  */
85 int64_t throttle_compute_wait(LeakyBucket *bkt)
86 {
87     double extra; /* the number of extra units blocking the io */
88 
89     if (!bkt->avg) {
90         return 0;
91     }
92 
93     extra = bkt->level - bkt->max;
94 
95     if (extra <= 0) {
96         return 0;
97     }
98 
99     return throttle_do_compute_wait(bkt->avg, extra);
100 }
101 
102 /* This function compute the time that must be waited while this IO
103  *
104  * @is_write:   true if the current IO is a write, false if it's a read
105  * @ret:        time to wait
106  */
107 static int64_t throttle_compute_wait_for(ThrottleState *ts,
108                                          bool is_write)
109 {
110     BucketType to_check[2][4] = { {THROTTLE_BPS_TOTAL,
111                                    THROTTLE_OPS_TOTAL,
112                                    THROTTLE_BPS_READ,
113                                    THROTTLE_OPS_READ},
114                                   {THROTTLE_BPS_TOTAL,
115                                    THROTTLE_OPS_TOTAL,
116                                    THROTTLE_BPS_WRITE,
117                                    THROTTLE_OPS_WRITE}, };
118     int64_t wait, max_wait = 0;
119     int i;
120 
121     for (i = 0; i < 4; i++) {
122         BucketType index = to_check[is_write][i];
123         wait = throttle_compute_wait(&ts->cfg.buckets[index]);
124         if (wait > max_wait) {
125             max_wait = wait;
126         }
127     }
128 
129     return max_wait;
130 }
131 
132 /* compute the timer for this type of operation
133  *
134  * @is_write:   the type of operation
135  * @now:        the current clock timestamp
136  * @next_timestamp: the resulting timer
137  * @ret:        true if a timer must be set
138  */
139 bool throttle_compute_timer(ThrottleState *ts,
140                             bool is_write,
141                             int64_t now,
142                             int64_t *next_timestamp)
143 {
144     int64_t wait;
145 
146     /* leak proportionally to the time elapsed */
147     throttle_do_leak(ts, now);
148 
149     /* compute the wait time if any */
150     wait = throttle_compute_wait_for(ts, is_write);
151 
152     /* if the code must wait compute when the next timer should fire */
153     if (wait) {
154         *next_timestamp = now + wait;
155         return true;
156     }
157 
158     /* else no need to wait at all */
159     *next_timestamp = now;
160     return false;
161 }
162 
163 /* Add timers to event loop */
164 void throttle_timers_attach_aio_context(ThrottleTimers *tt,
165                                         AioContext *new_context)
166 {
167     tt->timers[0] = aio_timer_new(new_context, tt->clock_type, SCALE_NS,
168                                   tt->read_timer_cb, tt->timer_opaque);
169     tt->timers[1] = aio_timer_new(new_context, tt->clock_type, SCALE_NS,
170                                   tt->write_timer_cb, tt->timer_opaque);
171 }
172 
173 /* To be called first on the ThrottleState */
174 void throttle_init(ThrottleState *ts)
175 {
176     memset(ts, 0, sizeof(ThrottleState));
177 }
178 
179 /* To be called first on the ThrottleTimers */
180 void throttle_timers_init(ThrottleTimers *tt,
181                           AioContext *aio_context,
182                           QEMUClockType clock_type,
183                           QEMUTimerCB *read_timer_cb,
184                           QEMUTimerCB *write_timer_cb,
185                           void *timer_opaque)
186 {
187     memset(tt, 0, sizeof(ThrottleTimers));
188 
189     tt->clock_type = clock_type;
190     tt->read_timer_cb = read_timer_cb;
191     tt->write_timer_cb = write_timer_cb;
192     tt->timer_opaque = timer_opaque;
193     throttle_timers_attach_aio_context(tt, aio_context);
194 }
195 
196 /* destroy a timer */
197 static void throttle_timer_destroy(QEMUTimer **timer)
198 {
199     assert(*timer != NULL);
200 
201     timer_del(*timer);
202     timer_free(*timer);
203     *timer = NULL;
204 }
205 
206 /* Remove timers from event loop */
207 void throttle_timers_detach_aio_context(ThrottleTimers *tt)
208 {
209     int i;
210 
211     for (i = 0; i < 2; i++) {
212         throttle_timer_destroy(&tt->timers[i]);
213     }
214 }
215 
216 /* To be called last on the ThrottleTimers */
217 void throttle_timers_destroy(ThrottleTimers *tt)
218 {
219     throttle_timers_detach_aio_context(tt);
220 }
221 
222 /* is any throttling timer configured */
223 bool throttle_timers_are_initialized(ThrottleTimers *tt)
224 {
225     if (tt->timers[0]) {
226         return true;
227     }
228 
229     return false;
230 }
231 
232 /* Does any throttling must be done
233  *
234  * @cfg: the throttling configuration to inspect
235  * @ret: true if throttling must be done else false
236  */
237 bool throttle_enabled(ThrottleConfig *cfg)
238 {
239     int i;
240 
241     for (i = 0; i < BUCKETS_COUNT; i++) {
242         if (cfg->buckets[i].avg > 0) {
243             return true;
244         }
245     }
246 
247     return false;
248 }
249 
250 /* return true if any two throttling parameters conflicts
251  *
252  * @cfg: the throttling configuration to inspect
253  * @ret: true if any conflict detected else false
254  */
255 bool throttle_conflicting(ThrottleConfig *cfg)
256 {
257     bool bps_flag, ops_flag;
258     bool bps_max_flag, ops_max_flag;
259 
260     bps_flag = cfg->buckets[THROTTLE_BPS_TOTAL].avg &&
261                (cfg->buckets[THROTTLE_BPS_READ].avg ||
262                 cfg->buckets[THROTTLE_BPS_WRITE].avg);
263 
264     ops_flag = cfg->buckets[THROTTLE_OPS_TOTAL].avg &&
265                (cfg->buckets[THROTTLE_OPS_READ].avg ||
266                 cfg->buckets[THROTTLE_OPS_WRITE].avg);
267 
268     bps_max_flag = cfg->buckets[THROTTLE_BPS_TOTAL].max &&
269                   (cfg->buckets[THROTTLE_BPS_READ].max  ||
270                    cfg->buckets[THROTTLE_BPS_WRITE].max);
271 
272     ops_max_flag = cfg->buckets[THROTTLE_OPS_TOTAL].max &&
273                    (cfg->buckets[THROTTLE_OPS_READ].max ||
274                    cfg->buckets[THROTTLE_OPS_WRITE].max);
275 
276     return bps_flag || ops_flag || bps_max_flag || ops_max_flag;
277 }
278 
279 /* check if a throttling configuration is valid
280  * @cfg: the throttling configuration to inspect
281  * @ret: true if valid else false
282  */
283 bool throttle_is_valid(ThrottleConfig *cfg)
284 {
285     bool invalid = false;
286     int i;
287 
288     for (i = 0; i < BUCKETS_COUNT; i++) {
289         if (cfg->buckets[i].avg < 0) {
290             invalid = true;
291         }
292     }
293 
294     for (i = 0; i < BUCKETS_COUNT; i++) {
295         if (cfg->buckets[i].max < 0) {
296             invalid = true;
297         }
298     }
299 
300     return !invalid;
301 }
302 
303 /* check if bps_max/iops_max is used without bps/iops
304  * @cfg: the throttling configuration to inspect
305  */
306 bool throttle_max_is_missing_limit(ThrottleConfig *cfg)
307 {
308     int i;
309 
310     for (i = 0; i < BUCKETS_COUNT; i++) {
311         if (cfg->buckets[i].max && !cfg->buckets[i].avg) {
312             return true;
313         }
314     }
315     return false;
316 }
317 
318 /* fix bucket parameters */
319 static void throttle_fix_bucket(LeakyBucket *bkt)
320 {
321     double min;
322 
323     /* zero bucket level */
324     bkt->level = 0;
325 
326     /* The following is done to cope with the Linux CFQ block scheduler
327      * which regroup reads and writes by block of 100ms in the guest.
328      * When they are two process one making reads and one making writes cfq
329      * make a pattern looking like the following:
330      * WWWWWWWWWWWRRRRRRRRRRRRRRWWWWWWWWWWWWWwRRRRRRRRRRRRRRRRR
331      * Having a max burst value of 100ms of the average will help smooth the
332      * throttling
333      */
334     min = bkt->avg / 10;
335     if (bkt->avg && !bkt->max) {
336         bkt->max = min;
337     }
338 }
339 
340 /* take care of canceling a timer */
341 static void throttle_cancel_timer(QEMUTimer *timer)
342 {
343     assert(timer != NULL);
344 
345     timer_del(timer);
346 }
347 
348 /* Used to configure the throttle
349  *
350  * @ts: the throttle state we are working on
351  * @tt: the throttle timers we use in this aio context
352  * @cfg: the config to set
353  */
354 void throttle_config(ThrottleState *ts,
355                      ThrottleTimers *tt,
356                      ThrottleConfig *cfg)
357 {
358     int i;
359 
360     ts->cfg = *cfg;
361 
362     for (i = 0; i < BUCKETS_COUNT; i++) {
363         throttle_fix_bucket(&ts->cfg.buckets[i]);
364     }
365 
366     ts->previous_leak = qemu_clock_get_ns(tt->clock_type);
367 
368     for (i = 0; i < 2; i++) {
369         throttle_cancel_timer(tt->timers[i]);
370     }
371 }
372 
373 /* used to get config
374  *
375  * @ts:  the throttle state we are working on
376  * @cfg: the config to write
377  */
378 void throttle_get_config(ThrottleState *ts, ThrottleConfig *cfg)
379 {
380     *cfg = ts->cfg;
381 }
382 
383 
384 /* Schedule the read or write timer if needed
385  *
386  * NOTE: this function is not unit tested due to it's usage of timer_mod
387  *
388  * @tt:       the timers structure
389  * @is_write: the type of operation (read/write)
390  * @ret:      true if the timer has been scheduled else false
391  */
392 bool throttle_schedule_timer(ThrottleState *ts,
393                              ThrottleTimers *tt,
394                              bool is_write)
395 {
396     int64_t now = qemu_clock_get_ns(tt->clock_type);
397     int64_t next_timestamp;
398     bool must_wait;
399 
400     must_wait = throttle_compute_timer(ts,
401                                        is_write,
402                                        now,
403                                        &next_timestamp);
404 
405     /* request not throttled */
406     if (!must_wait) {
407         return false;
408     }
409 
410     /* request throttled and timer pending -> do nothing */
411     if (timer_pending(tt->timers[is_write])) {
412         return true;
413     }
414 
415     /* request throttled and timer not pending -> arm timer */
416     timer_mod(tt->timers[is_write], next_timestamp);
417     return true;
418 }
419 
420 /* do the accounting for this operation
421  *
422  * @is_write: the type of operation (read/write)
423  * @size:     the size of the operation
424  */
425 void throttle_account(ThrottleState *ts, bool is_write, uint64_t size)
426 {
427     double units = 1.0;
428 
429     /* if cfg.op_size is defined and smaller than size we compute unit count */
430     if (ts->cfg.op_size && size > ts->cfg.op_size) {
431         units = (double) size / ts->cfg.op_size;
432     }
433 
434     ts->cfg.buckets[THROTTLE_BPS_TOTAL].level += size;
435     ts->cfg.buckets[THROTTLE_OPS_TOTAL].level += units;
436 
437     if (is_write) {
438         ts->cfg.buckets[THROTTLE_BPS_WRITE].level += size;
439         ts->cfg.buckets[THROTTLE_OPS_WRITE].level += units;
440     } else {
441         ts->cfg.buckets[THROTTLE_BPS_READ].level += size;
442         ts->cfg.buckets[THROTTLE_OPS_READ].level += units;
443     }
444 }
445 
446