xref: /openbmc/qemu/util/throttle.c (revision 76f4afb4)
1 /*
2  * QEMU throttling infrastructure
3  *
4  * Copyright (C) Nodalink, SARL. 2013
5  *
6  * Author:
7  *   Benoît Canet <benoit.canet@irqsave.net>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 or
12  * (at your option) version 3 of the License.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, see <http://www.gnu.org/licenses/>.
21  */
22 
23 #include "qemu/throttle.h"
24 #include "qemu/timer.h"
25 #include "block/aio.h"
26 
27 /* This function make a bucket leak
28  *
29  * @bkt:   the bucket to make leak
30  * @delta_ns: the time delta
31  */
32 void throttle_leak_bucket(LeakyBucket *bkt, int64_t delta_ns)
33 {
34     double leak;
35 
36     /* compute how much to leak */
37     leak = (bkt->avg * (double) delta_ns) / NANOSECONDS_PER_SECOND;
38 
39     /* make the bucket leak */
40     bkt->level = MAX(bkt->level - leak, 0);
41 }
42 
43 /* Calculate the time delta since last leak and make proportionals leaks
44  *
45  * @now:      the current timestamp in ns
46  */
47 static void throttle_do_leak(ThrottleState *ts, int64_t now)
48 {
49     /* compute the time elapsed since the last leak */
50     int64_t delta_ns = now - ts->previous_leak;
51     int i;
52 
53     ts->previous_leak = now;
54 
55     if (delta_ns <= 0) {
56         return;
57     }
58 
59     /* make each bucket leak */
60     for (i = 0; i < BUCKETS_COUNT; i++) {
61         throttle_leak_bucket(&ts->cfg.buckets[i], delta_ns);
62     }
63 }
64 
65 /* do the real job of computing the time to wait
66  *
67  * @limit: the throttling limit
68  * @extra: the number of operation to delay
69  * @ret:   the time to wait in ns
70  */
71 static int64_t throttle_do_compute_wait(double limit, double extra)
72 {
73     double wait = extra * NANOSECONDS_PER_SECOND;
74     wait /= limit;
75     return wait;
76 }
77 
78 /* This function compute the wait time in ns that a leaky bucket should trigger
79  *
80  * @bkt: the leaky bucket we operate on
81  * @ret: the resulting wait time in ns or 0 if the operation can go through
82  */
83 int64_t throttle_compute_wait(LeakyBucket *bkt)
84 {
85     double extra; /* the number of extra units blocking the io */
86 
87     if (!bkt->avg) {
88         return 0;
89     }
90 
91     extra = bkt->level - bkt->max;
92 
93     if (extra <= 0) {
94         return 0;
95     }
96 
97     return throttle_do_compute_wait(bkt->avg, extra);
98 }
99 
100 /* This function compute the time that must be waited while this IO
101  *
102  * @is_write:   true if the current IO is a write, false if it's a read
103  * @ret:        time to wait
104  */
105 static int64_t throttle_compute_wait_for(ThrottleState *ts,
106                                          bool is_write)
107 {
108     BucketType to_check[2][4] = { {THROTTLE_BPS_TOTAL,
109                                    THROTTLE_OPS_TOTAL,
110                                    THROTTLE_BPS_READ,
111                                    THROTTLE_OPS_READ},
112                                   {THROTTLE_BPS_TOTAL,
113                                    THROTTLE_OPS_TOTAL,
114                                    THROTTLE_BPS_WRITE,
115                                    THROTTLE_OPS_WRITE}, };
116     int64_t wait, max_wait = 0;
117     int i;
118 
119     for (i = 0; i < 4; i++) {
120         BucketType index = to_check[is_write][i];
121         wait = throttle_compute_wait(&ts->cfg.buckets[index]);
122         if (wait > max_wait) {
123             max_wait = wait;
124         }
125     }
126 
127     return max_wait;
128 }
129 
130 /* compute the timer for this type of operation
131  *
132  * @is_write:   the type of operation
133  * @now:        the current clock timestamp
134  * @next_timestamp: the resulting timer
135  * @ret:        true if a timer must be set
136  */
137 bool throttle_compute_timer(ThrottleState *ts,
138                             bool is_write,
139                             int64_t now,
140                             int64_t *next_timestamp)
141 {
142     int64_t wait;
143 
144     /* leak proportionally to the time elapsed */
145     throttle_do_leak(ts, now);
146 
147     /* compute the wait time if any */
148     wait = throttle_compute_wait_for(ts, is_write);
149 
150     /* if the code must wait compute when the next timer should fire */
151     if (wait) {
152         *next_timestamp = now + wait;
153         return true;
154     }
155 
156     /* else no need to wait at all */
157     *next_timestamp = now;
158     return false;
159 }
160 
161 /* Add timers to event loop */
162 void throttle_timers_attach_aio_context(ThrottleTimers *tt,
163                                         AioContext *new_context)
164 {
165     tt->timers[0] = aio_timer_new(new_context, tt->clock_type, SCALE_NS,
166                                   tt->read_timer_cb, tt->timer_opaque);
167     tt->timers[1] = aio_timer_new(new_context, tt->clock_type, SCALE_NS,
168                                   tt->write_timer_cb, tt->timer_opaque);
169 }
170 
171 /* To be called first on the ThrottleState */
172 void throttle_init(ThrottleState *ts)
173 {
174     memset(ts, 0, sizeof(ThrottleState));
175 }
176 
177 /* To be called first on the ThrottleTimers */
178 void throttle_timers_init(ThrottleTimers *tt,
179                           AioContext *aio_context,
180                           QEMUClockType clock_type,
181                           QEMUTimerCB *read_timer_cb,
182                           QEMUTimerCB *write_timer_cb,
183                           void *timer_opaque)
184 {
185     memset(tt, 0, sizeof(ThrottleTimers));
186 
187     tt->clock_type = clock_type;
188     tt->read_timer_cb = read_timer_cb;
189     tt->write_timer_cb = write_timer_cb;
190     tt->timer_opaque = timer_opaque;
191     throttle_timers_attach_aio_context(tt, aio_context);
192 }
193 
194 /* destroy a timer */
195 static void throttle_timer_destroy(QEMUTimer **timer)
196 {
197     assert(*timer != NULL);
198 
199     timer_del(*timer);
200     timer_free(*timer);
201     *timer = NULL;
202 }
203 
204 /* Remove timers from event loop */
205 void throttle_timers_detach_aio_context(ThrottleTimers *tt)
206 {
207     int i;
208 
209     for (i = 0; i < 2; i++) {
210         throttle_timer_destroy(&tt->timers[i]);
211     }
212 }
213 
214 /* To be called last on the ThrottleTimers */
215 void throttle_timers_destroy(ThrottleTimers *tt)
216 {
217     throttle_timers_detach_aio_context(tt);
218 }
219 
220 /* is any throttling timer configured */
221 bool throttle_timers_are_initialized(ThrottleTimers *tt)
222 {
223     if (tt->timers[0]) {
224         return true;
225     }
226 
227     return false;
228 }
229 
230 /* Does any throttling must be done
231  *
232  * @cfg: the throttling configuration to inspect
233  * @ret: true if throttling must be done else false
234  */
235 bool throttle_enabled(ThrottleConfig *cfg)
236 {
237     int i;
238 
239     for (i = 0; i < BUCKETS_COUNT; i++) {
240         if (cfg->buckets[i].avg > 0) {
241             return true;
242         }
243     }
244 
245     return false;
246 }
247 
248 /* return true if any two throttling parameters conflicts
249  *
250  * @cfg: the throttling configuration to inspect
251  * @ret: true if any conflict detected else false
252  */
253 bool throttle_conflicting(ThrottleConfig *cfg)
254 {
255     bool bps_flag, ops_flag;
256     bool bps_max_flag, ops_max_flag;
257 
258     bps_flag = cfg->buckets[THROTTLE_BPS_TOTAL].avg &&
259                (cfg->buckets[THROTTLE_BPS_READ].avg ||
260                 cfg->buckets[THROTTLE_BPS_WRITE].avg);
261 
262     ops_flag = cfg->buckets[THROTTLE_OPS_TOTAL].avg &&
263                (cfg->buckets[THROTTLE_OPS_READ].avg ||
264                 cfg->buckets[THROTTLE_OPS_WRITE].avg);
265 
266     bps_max_flag = cfg->buckets[THROTTLE_BPS_TOTAL].max &&
267                   (cfg->buckets[THROTTLE_BPS_READ].max  ||
268                    cfg->buckets[THROTTLE_BPS_WRITE].max);
269 
270     ops_max_flag = cfg->buckets[THROTTLE_OPS_TOTAL].max &&
271                    (cfg->buckets[THROTTLE_OPS_READ].max ||
272                    cfg->buckets[THROTTLE_OPS_WRITE].max);
273 
274     return bps_flag || ops_flag || bps_max_flag || ops_max_flag;
275 }
276 
277 /* check if a throttling configuration is valid
278  * @cfg: the throttling configuration to inspect
279  * @ret: true if valid else false
280  */
281 bool throttle_is_valid(ThrottleConfig *cfg)
282 {
283     bool invalid = false;
284     int i;
285 
286     for (i = 0; i < BUCKETS_COUNT; i++) {
287         if (cfg->buckets[i].avg < 0) {
288             invalid = true;
289         }
290     }
291 
292     for (i = 0; i < BUCKETS_COUNT; i++) {
293         if (cfg->buckets[i].max < 0) {
294             invalid = true;
295         }
296     }
297 
298     return !invalid;
299 }
300 
301 /* fix bucket parameters */
302 static void throttle_fix_bucket(LeakyBucket *bkt)
303 {
304     double min;
305 
306     /* zero bucket level */
307     bkt->level = 0;
308 
309     /* The following is done to cope with the Linux CFQ block scheduler
310      * which regroup reads and writes by block of 100ms in the guest.
311      * When they are two process one making reads and one making writes cfq
312      * make a pattern looking like the following:
313      * WWWWWWWWWWWRRRRRRRRRRRRRRWWWWWWWWWWWWWwRRRRRRRRRRRRRRRRR
314      * Having a max burst value of 100ms of the average will help smooth the
315      * throttling
316      */
317     min = bkt->avg / 10;
318     if (bkt->avg && !bkt->max) {
319         bkt->max = min;
320     }
321 }
322 
323 /* take care of canceling a timer */
324 static void throttle_cancel_timer(QEMUTimer *timer)
325 {
326     assert(timer != NULL);
327 
328     timer_del(timer);
329 }
330 
331 /* Used to configure the throttle
332  *
333  * @ts: the throttle state we are working on
334  * @tt: the throttle timers we use in this aio context
335  * @cfg: the config to set
336  */
337 void throttle_config(ThrottleState *ts,
338                      ThrottleTimers *tt,
339                      ThrottleConfig *cfg)
340 {
341     int i;
342 
343     ts->cfg = *cfg;
344 
345     for (i = 0; i < BUCKETS_COUNT; i++) {
346         throttle_fix_bucket(&ts->cfg.buckets[i]);
347     }
348 
349     ts->previous_leak = qemu_clock_get_ns(tt->clock_type);
350 
351     for (i = 0; i < 2; i++) {
352         throttle_cancel_timer(tt->timers[i]);
353     }
354 }
355 
356 /* used to get config
357  *
358  * @ts:  the throttle state we are working on
359  * @cfg: the config to write
360  */
361 void throttle_get_config(ThrottleState *ts, ThrottleConfig *cfg)
362 {
363     *cfg = ts->cfg;
364 }
365 
366 
367 /* Schedule the read or write timer if needed
368  *
369  * NOTE: this function is not unit tested due to it's usage of timer_mod
370  *
371  * @tt:       the timers structure
372  * @is_write: the type of operation (read/write)
373  * @ret:      true if the timer has been scheduled else false
374  */
375 bool throttle_schedule_timer(ThrottleState *ts,
376                              ThrottleTimers *tt,
377                              bool is_write)
378 {
379     int64_t now = qemu_clock_get_ns(tt->clock_type);
380     int64_t next_timestamp;
381     bool must_wait;
382 
383     must_wait = throttle_compute_timer(ts,
384                                        is_write,
385                                        now,
386                                        &next_timestamp);
387 
388     /* request not throttled */
389     if (!must_wait) {
390         return false;
391     }
392 
393     /* request throttled and timer pending -> do nothing */
394     if (timer_pending(tt->timers[is_write])) {
395         return true;
396     }
397 
398     /* request throttled and timer not pending -> arm timer */
399     timer_mod(tt->timers[is_write], next_timestamp);
400     return true;
401 }
402 
403 /* do the accounting for this operation
404  *
405  * @is_write: the type of operation (read/write)
406  * @size:     the size of the operation
407  */
408 void throttle_account(ThrottleState *ts, bool is_write, uint64_t size)
409 {
410     double units = 1.0;
411 
412     /* if cfg.op_size is defined and smaller than size we compute unit count */
413     if (ts->cfg.op_size && size > ts->cfg.op_size) {
414         units = (double) size / ts->cfg.op_size;
415     }
416 
417     ts->cfg.buckets[THROTTLE_BPS_TOTAL].level += size;
418     ts->cfg.buckets[THROTTLE_OPS_TOTAL].level += units;
419 
420     if (is_write) {
421         ts->cfg.buckets[THROTTLE_BPS_WRITE].level += size;
422         ts->cfg.buckets[THROTTLE_OPS_WRITE].level += units;
423     } else {
424         ts->cfg.buckets[THROTTLE_BPS_READ].level += size;
425         ts->cfg.buckets[THROTTLE_OPS_READ].level += units;
426     }
427 }
428 
429