1 /* 2 * QEMU throttling infrastructure 3 * 4 * Copyright (C) Nodalink, SARL. 2013 5 * 6 * Author: 7 * Benoît Canet <benoit.canet@irqsave.net> 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License as 11 * published by the Free Software Foundation; either version 2 or 12 * (at your option) version 3 of the License. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, see <http://www.gnu.org/licenses/>. 21 */ 22 23 #include "qemu/throttle.h" 24 #include "qemu/timer.h" 25 26 /* This function make a bucket leak 27 * 28 * @bkt: the bucket to make leak 29 * @delta_ns: the time delta 30 */ 31 void throttle_leak_bucket(LeakyBucket *bkt, int64_t delta_ns) 32 { 33 double leak; 34 35 /* compute how much to leak */ 36 leak = (bkt->avg * (double) delta_ns) / NANOSECONDS_PER_SECOND; 37 38 /* make the bucket leak */ 39 bkt->level = MAX(bkt->level - leak, 0); 40 } 41 42 /* Calculate the time delta since last leak and make proportionals leaks 43 * 44 * @now: the current timestamp in ns 45 */ 46 static void throttle_do_leak(ThrottleState *ts, int64_t now) 47 { 48 /* compute the time elapsed since the last leak */ 49 int64_t delta_ns = now - ts->previous_leak; 50 int i; 51 52 ts->previous_leak = now; 53 54 if (delta_ns <= 0) { 55 return; 56 } 57 58 /* make each bucket leak */ 59 for (i = 0; i < BUCKETS_COUNT; i++) { 60 throttle_leak_bucket(&ts->cfg.buckets[i], delta_ns); 61 } 62 } 63 64 /* do the real job of computing the time to wait 65 * 66 * @limit: the throttling limit 67 * @extra: the number of operation to delay 68 * @ret: the time to wait in ns 69 */ 70 static int64_t throttle_do_compute_wait(double limit, double extra) 71 { 72 double wait = extra * NANOSECONDS_PER_SECOND; 73 wait /= limit; 74 return wait; 75 } 76 77 /* This function compute the wait time in ns that a leaky bucket should trigger 78 * 79 * @bkt: the leaky bucket we operate on 80 * @ret: the resulting wait time in ns or 0 if the operation can go through 81 */ 82 int64_t throttle_compute_wait(LeakyBucket *bkt) 83 { 84 double extra; /* the number of extra units blocking the io */ 85 86 if (!bkt->avg) { 87 return 0; 88 } 89 90 extra = bkt->level - bkt->max; 91 92 if (extra <= 0) { 93 return 0; 94 } 95 96 return throttle_do_compute_wait(bkt->avg, extra); 97 } 98 99 /* This function compute the time that must be waited while this IO 100 * 101 * @is_write: true if the current IO is a write, false if it's a read 102 * @ret: time to wait 103 */ 104 static int64_t throttle_compute_wait_for(ThrottleState *ts, 105 bool is_write) 106 { 107 BucketType to_check[2][4] = { {THROTTLE_BPS_TOTAL, 108 THROTTLE_OPS_TOTAL, 109 THROTTLE_BPS_READ, 110 THROTTLE_OPS_READ}, 111 {THROTTLE_BPS_TOTAL, 112 THROTTLE_OPS_TOTAL, 113 THROTTLE_BPS_WRITE, 114 THROTTLE_OPS_WRITE}, }; 115 int64_t wait, max_wait = 0; 116 int i; 117 118 for (i = 0; i < 4; i++) { 119 BucketType index = to_check[is_write][i]; 120 wait = throttle_compute_wait(&ts->cfg.buckets[index]); 121 if (wait > max_wait) { 122 max_wait = wait; 123 } 124 } 125 126 return max_wait; 127 } 128 129 /* compute the timer for this type of operation 130 * 131 * @is_write: the type of operation 132 * @now: the current clock timestamp 133 * @next_timestamp: the resulting timer 134 * @ret: true if a timer must be set 135 */ 136 bool throttle_compute_timer(ThrottleState *ts, 137 bool is_write, 138 int64_t now, 139 int64_t *next_timestamp) 140 { 141 int64_t wait; 142 143 /* leak proportionally to the time elapsed */ 144 throttle_do_leak(ts, now); 145 146 /* compute the wait time if any */ 147 wait = throttle_compute_wait_for(ts, is_write); 148 149 /* if the code must wait compute when the next timer should fire */ 150 if (wait) { 151 *next_timestamp = now + wait; 152 return true; 153 } 154 155 /* else no need to wait at all */ 156 *next_timestamp = now; 157 return false; 158 } 159 160 /* To be called first on the ThrottleState */ 161 void throttle_init(ThrottleState *ts, 162 QEMUClockType clock_type, 163 QEMUTimerCB *read_timer_cb, 164 QEMUTimerCB *write_timer_cb, 165 void *timer_opaque) 166 { 167 memset(ts, 0, sizeof(ThrottleState)); 168 169 ts->clock_type = clock_type; 170 ts->timers[0] = timer_new_ns(clock_type, read_timer_cb, timer_opaque); 171 ts->timers[1] = timer_new_ns(clock_type, write_timer_cb, timer_opaque); 172 } 173 174 /* destroy a timer */ 175 static void throttle_timer_destroy(QEMUTimer **timer) 176 { 177 assert(*timer != NULL); 178 179 timer_del(*timer); 180 timer_free(*timer); 181 *timer = NULL; 182 } 183 184 /* To be called last on the ThrottleState */ 185 void throttle_destroy(ThrottleState *ts) 186 { 187 int i; 188 189 for (i = 0; i < 2; i++) { 190 throttle_timer_destroy(&ts->timers[i]); 191 } 192 } 193 194 /* is any throttling timer configured */ 195 bool throttle_have_timer(ThrottleState *ts) 196 { 197 if (ts->timers[0]) { 198 return true; 199 } 200 201 return false; 202 } 203 204 /* Does any throttling must be done 205 * 206 * @cfg: the throttling configuration to inspect 207 * @ret: true if throttling must be done else false 208 */ 209 bool throttle_enabled(ThrottleConfig *cfg) 210 { 211 int i; 212 213 for (i = 0; i < BUCKETS_COUNT; i++) { 214 if (cfg->buckets[i].avg > 0) { 215 return true; 216 } 217 } 218 219 return false; 220 } 221 222 /* return true if any two throttling parameters conflicts 223 * 224 * @cfg: the throttling configuration to inspect 225 * @ret: true if any conflict detected else false 226 */ 227 bool throttle_conflicting(ThrottleConfig *cfg) 228 { 229 bool bps_flag, ops_flag; 230 bool bps_max_flag, ops_max_flag; 231 232 bps_flag = cfg->buckets[THROTTLE_BPS_TOTAL].avg && 233 (cfg->buckets[THROTTLE_BPS_READ].avg || 234 cfg->buckets[THROTTLE_BPS_WRITE].avg); 235 236 ops_flag = cfg->buckets[THROTTLE_OPS_TOTAL].avg && 237 (cfg->buckets[THROTTLE_OPS_READ].avg || 238 cfg->buckets[THROTTLE_OPS_WRITE].avg); 239 240 bps_max_flag = cfg->buckets[THROTTLE_BPS_TOTAL].max && 241 (cfg->buckets[THROTTLE_BPS_READ].max || 242 cfg->buckets[THROTTLE_BPS_WRITE].max); 243 244 ops_max_flag = cfg->buckets[THROTTLE_OPS_TOTAL].max && 245 (cfg->buckets[THROTTLE_OPS_READ].max || 246 cfg->buckets[THROTTLE_OPS_WRITE].max); 247 248 return bps_flag || ops_flag || bps_max_flag || ops_max_flag; 249 } 250 251 /* check if a throttling configuration is valid 252 * @cfg: the throttling configuration to inspect 253 * @ret: true if valid else false 254 */ 255 bool throttle_is_valid(ThrottleConfig *cfg) 256 { 257 bool invalid = false; 258 int i; 259 260 for (i = 0; i < BUCKETS_COUNT; i++) { 261 if (cfg->buckets[i].avg < 0) { 262 invalid = true; 263 } 264 } 265 266 for (i = 0; i < BUCKETS_COUNT; i++) { 267 if (cfg->buckets[i].max < 0) { 268 invalid = true; 269 } 270 } 271 272 return !invalid; 273 } 274 275 /* fix bucket parameters */ 276 static void throttle_fix_bucket(LeakyBucket *bkt) 277 { 278 double min; 279 280 /* zero bucket level */ 281 bkt->level = 0; 282 283 /* The following is done to cope with the Linux CFQ block scheduler 284 * which regroup reads and writes by block of 100ms in the guest. 285 * When they are two process one making reads and one making writes cfq 286 * make a pattern looking like the following: 287 * WWWWWWWWWWWRRRRRRRRRRRRRRWWWWWWWWWWWWWwRRRRRRRRRRRRRRRRR 288 * Having a max burst value of 100ms of the average will help smooth the 289 * throttling 290 */ 291 min = bkt->avg / 10; 292 if (bkt->avg && !bkt->max) { 293 bkt->max = min; 294 } 295 } 296 297 /* take care of canceling a timer */ 298 static void throttle_cancel_timer(QEMUTimer *timer) 299 { 300 assert(timer != NULL); 301 302 timer_del(timer); 303 } 304 305 /* Used to configure the throttle 306 * 307 * @ts: the throttle state we are working on 308 * @cfg: the config to set 309 */ 310 void throttle_config(ThrottleState *ts, ThrottleConfig *cfg) 311 { 312 int i; 313 314 ts->cfg = *cfg; 315 316 for (i = 0; i < BUCKETS_COUNT; i++) { 317 throttle_fix_bucket(&ts->cfg.buckets[i]); 318 } 319 320 ts->previous_leak = qemu_clock_get_ns(ts->clock_type); 321 322 for (i = 0; i < 2; i++) { 323 throttle_cancel_timer(ts->timers[i]); 324 } 325 } 326 327 /* used to get config 328 * 329 * @ts: the throttle state we are working on 330 * @cfg: the config to write 331 */ 332 void throttle_get_config(ThrottleState *ts, ThrottleConfig *cfg) 333 { 334 *cfg = ts->cfg; 335 } 336 337 338 /* Schedule the read or write timer if needed 339 * 340 * NOTE: this function is not unit tested due to it's usage of timer_mod 341 * 342 * @is_write: the type of operation (read/write) 343 * @ret: true if the timer has been scheduled else false 344 */ 345 bool throttle_schedule_timer(ThrottleState *ts, bool is_write) 346 { 347 int64_t now = qemu_clock_get_ns(ts->clock_type); 348 int64_t next_timestamp; 349 bool must_wait; 350 351 must_wait = throttle_compute_timer(ts, 352 is_write, 353 now, 354 &next_timestamp); 355 356 /* request not throttled */ 357 if (!must_wait) { 358 return false; 359 } 360 361 /* request throttled and timer pending -> do nothing */ 362 if (timer_pending(ts->timers[is_write])) { 363 return true; 364 } 365 366 /* request throttled and timer not pending -> arm timer */ 367 timer_mod(ts->timers[is_write], next_timestamp); 368 return true; 369 } 370 371 /* do the accounting for this operation 372 * 373 * @is_write: the type of operation (read/write) 374 * @size: the size of the operation 375 */ 376 void throttle_account(ThrottleState *ts, bool is_write, uint64_t size) 377 { 378 double units = 1.0; 379 380 /* if cfg.op_size is defined and smaller than size we compute unit count */ 381 if (ts->cfg.op_size && size > ts->cfg.op_size) { 382 units = (double) size / ts->cfg.op_size; 383 } 384 385 ts->cfg.buckets[THROTTLE_BPS_TOTAL].level += size; 386 ts->cfg.buckets[THROTTLE_OPS_TOTAL].level += units; 387 388 if (is_write) { 389 ts->cfg.buckets[THROTTLE_BPS_WRITE].level += size; 390 ts->cfg.buckets[THROTTLE_OPS_WRITE].level += units; 391 } else { 392 ts->cfg.buckets[THROTTLE_BPS_READ].level += size; 393 ts->cfg.buckets[THROTTLE_OPS_READ].level += units; 394 } 395 } 396 397