xref: /openbmc/qemu/util/throttle.c (revision 1b111dc1)
1 /*
2  * QEMU throttling infrastructure
3  *
4  * Copyright (C) Nodalink, SARL. 2013
5  *
6  * Author:
7  *   Benoît Canet <benoit.canet@irqsave.net>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 or
12  * (at your option) version 3 of the License.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, see <http://www.gnu.org/licenses/>.
21  */
22 
23 #include "qemu/throttle.h"
24 #include "qemu/timer.h"
25 
26 /* This function make a bucket leak
27  *
28  * @bkt:   the bucket to make leak
29  * @delta_ns: the time delta
30  */
31 void throttle_leak_bucket(LeakyBucket *bkt, int64_t delta_ns)
32 {
33     double leak;
34 
35     /* compute how much to leak */
36     leak = (bkt->avg * (double) delta_ns) / NANOSECONDS_PER_SECOND;
37 
38     /* make the bucket leak */
39     bkt->level = MAX(bkt->level - leak, 0);
40 }
41 
42 /* Calculate the time delta since last leak and make proportionals leaks
43  *
44  * @now:      the current timestamp in ns
45  */
46 static void throttle_do_leak(ThrottleState *ts, int64_t now)
47 {
48     /* compute the time elapsed since the last leak */
49     int64_t delta_ns = now - ts->previous_leak;
50     int i;
51 
52     ts->previous_leak = now;
53 
54     if (delta_ns <= 0) {
55         return;
56     }
57 
58     /* make each bucket leak */
59     for (i = 0; i < BUCKETS_COUNT; i++) {
60         throttle_leak_bucket(&ts->cfg.buckets[i], delta_ns);
61     }
62 }
63 
64 /* do the real job of computing the time to wait
65  *
66  * @limit: the throttling limit
67  * @extra: the number of operation to delay
68  * @ret:   the time to wait in ns
69  */
70 static int64_t throttle_do_compute_wait(double limit, double extra)
71 {
72     double wait = extra * NANOSECONDS_PER_SECOND;
73     wait /= limit;
74     return wait;
75 }
76 
77 /* This function compute the wait time in ns that a leaky bucket should trigger
78  *
79  * @bkt: the leaky bucket we operate on
80  * @ret: the resulting wait time in ns or 0 if the operation can go through
81  */
82 int64_t throttle_compute_wait(LeakyBucket *bkt)
83 {
84     double extra; /* the number of extra units blocking the io */
85 
86     if (!bkt->avg) {
87         return 0;
88     }
89 
90     extra = bkt->level - bkt->max;
91 
92     if (extra <= 0) {
93         return 0;
94     }
95 
96     return throttle_do_compute_wait(bkt->avg, extra);
97 }
98 
99 /* This function compute the time that must be waited while this IO
100  *
101  * @is_write:   true if the current IO is a write, false if it's a read
102  * @ret:        time to wait
103  */
104 static int64_t throttle_compute_wait_for(ThrottleState *ts,
105                                          bool is_write)
106 {
107     BucketType to_check[2][4] = { {THROTTLE_BPS_TOTAL,
108                                    THROTTLE_OPS_TOTAL,
109                                    THROTTLE_BPS_READ,
110                                    THROTTLE_OPS_READ},
111                                   {THROTTLE_BPS_TOTAL,
112                                    THROTTLE_OPS_TOTAL,
113                                    THROTTLE_BPS_WRITE,
114                                    THROTTLE_OPS_WRITE}, };
115     int64_t wait, max_wait = 0;
116     int i;
117 
118     for (i = 0; i < 4; i++) {
119         BucketType index = to_check[is_write][i];
120         wait = throttle_compute_wait(&ts->cfg.buckets[index]);
121         if (wait > max_wait) {
122             max_wait = wait;
123         }
124     }
125 
126     return max_wait;
127 }
128 
129 /* compute the timer for this type of operation
130  *
131  * @is_write:   the type of operation
132  * @now:        the current clock timestamp
133  * @next_timestamp: the resulting timer
134  * @ret:        true if a timer must be set
135  */
136 bool throttle_compute_timer(ThrottleState *ts,
137                             bool is_write,
138                             int64_t now,
139                             int64_t *next_timestamp)
140 {
141     int64_t wait;
142 
143     /* leak proportionally to the time elapsed */
144     throttle_do_leak(ts, now);
145 
146     /* compute the wait time if any */
147     wait = throttle_compute_wait_for(ts, is_write);
148 
149     /* if the code must wait compute when the next timer should fire */
150     if (wait) {
151         *next_timestamp = now + wait;
152         return true;
153     }
154 
155     /* else no need to wait at all */
156     *next_timestamp = now;
157     return false;
158 }
159 
160 /* To be called first on the ThrottleState */
161 void throttle_init(ThrottleState *ts,
162                    QEMUClockType clock_type,
163                    QEMUTimerCB *read_timer_cb,
164                    QEMUTimerCB *write_timer_cb,
165                    void *timer_opaque)
166 {
167     memset(ts, 0, sizeof(ThrottleState));
168 
169     ts->clock_type = clock_type;
170     ts->timers[0] = timer_new_ns(clock_type, read_timer_cb, timer_opaque);
171     ts->timers[1] = timer_new_ns(clock_type, write_timer_cb, timer_opaque);
172 }
173 
174 /* destroy a timer */
175 static void throttle_timer_destroy(QEMUTimer **timer)
176 {
177     assert(*timer != NULL);
178 
179     timer_del(*timer);
180     timer_free(*timer);
181     *timer = NULL;
182 }
183 
184 /* To be called last on the ThrottleState */
185 void throttle_destroy(ThrottleState *ts)
186 {
187     int i;
188 
189     for (i = 0; i < 2; i++) {
190         throttle_timer_destroy(&ts->timers[i]);
191     }
192 }
193 
194 /* is any throttling timer configured */
195 bool throttle_have_timer(ThrottleState *ts)
196 {
197     if (ts->timers[0]) {
198         return true;
199     }
200 
201     return false;
202 }
203 
204 /* Does any throttling must be done
205  *
206  * @cfg: the throttling configuration to inspect
207  * @ret: true if throttling must be done else false
208  */
209 bool throttle_enabled(ThrottleConfig *cfg)
210 {
211     int i;
212 
213     for (i = 0; i < BUCKETS_COUNT; i++) {
214         if (cfg->buckets[i].avg > 0) {
215             return true;
216         }
217     }
218 
219     return false;
220 }
221 
222 /* return true if any two throttling parameters conflicts
223  *
224  * @cfg: the throttling configuration to inspect
225  * @ret: true if any conflict detected else false
226  */
227 bool throttle_conflicting(ThrottleConfig *cfg)
228 {
229     bool bps_flag, ops_flag;
230     bool bps_max_flag, ops_max_flag;
231 
232     bps_flag = cfg->buckets[THROTTLE_BPS_TOTAL].avg &&
233                (cfg->buckets[THROTTLE_BPS_READ].avg ||
234                 cfg->buckets[THROTTLE_BPS_WRITE].avg);
235 
236     ops_flag = cfg->buckets[THROTTLE_OPS_TOTAL].avg &&
237                (cfg->buckets[THROTTLE_OPS_READ].avg ||
238                 cfg->buckets[THROTTLE_OPS_WRITE].avg);
239 
240     bps_max_flag = cfg->buckets[THROTTLE_BPS_TOTAL].max &&
241                   (cfg->buckets[THROTTLE_BPS_READ].max  ||
242                    cfg->buckets[THROTTLE_BPS_WRITE].max);
243 
244     ops_max_flag = cfg->buckets[THROTTLE_OPS_TOTAL].max &&
245                    (cfg->buckets[THROTTLE_OPS_READ].max ||
246                    cfg->buckets[THROTTLE_OPS_WRITE].max);
247 
248     return bps_flag || ops_flag || bps_max_flag || ops_max_flag;
249 }
250 
251 /* check if a throttling configuration is valid
252  * @cfg: the throttling configuration to inspect
253  * @ret: true if valid else false
254  */
255 bool throttle_is_valid(ThrottleConfig *cfg)
256 {
257     bool invalid = false;
258     int i;
259 
260     for (i = 0; i < BUCKETS_COUNT; i++) {
261         if (cfg->buckets[i].avg < 0) {
262             invalid = true;
263         }
264     }
265 
266     for (i = 0; i < BUCKETS_COUNT; i++) {
267         if (cfg->buckets[i].max < 0) {
268             invalid = true;
269         }
270     }
271 
272     return !invalid;
273 }
274 
275 /* fix bucket parameters */
276 static void throttle_fix_bucket(LeakyBucket *bkt)
277 {
278     double min;
279 
280     /* zero bucket level */
281     bkt->level = 0;
282 
283     /* The following is done to cope with the Linux CFQ block scheduler
284      * which regroup reads and writes by block of 100ms in the guest.
285      * When they are two process one making reads and one making writes cfq
286      * make a pattern looking like the following:
287      * WWWWWWWWWWWRRRRRRRRRRRRRRWWWWWWWWWWWWWwRRRRRRRRRRRRRRRRR
288      * Having a max burst value of 100ms of the average will help smooth the
289      * throttling
290      */
291     min = bkt->avg / 10;
292     if (bkt->avg && !bkt->max) {
293         bkt->max = min;
294     }
295 }
296 
297 /* take care of canceling a timer */
298 static void throttle_cancel_timer(QEMUTimer *timer)
299 {
300     assert(timer != NULL);
301 
302     timer_del(timer);
303 }
304 
305 /* Used to configure the throttle
306  *
307  * @ts: the throttle state we are working on
308  * @cfg: the config to set
309  */
310 void throttle_config(ThrottleState *ts, ThrottleConfig *cfg)
311 {
312     int i;
313 
314     ts->cfg = *cfg;
315 
316     for (i = 0; i < BUCKETS_COUNT; i++) {
317         throttle_fix_bucket(&ts->cfg.buckets[i]);
318     }
319 
320     ts->previous_leak = qemu_clock_get_ns(ts->clock_type);
321 
322     for (i = 0; i < 2; i++) {
323         throttle_cancel_timer(ts->timers[i]);
324     }
325 }
326 
327 /* used to get config
328  *
329  * @ts:  the throttle state we are working on
330  * @cfg: the config to write
331  */
332 void throttle_get_config(ThrottleState *ts, ThrottleConfig *cfg)
333 {
334     *cfg = ts->cfg;
335 }
336 
337 
338 /* Schedule the read or write timer if needed
339  *
340  * NOTE: this function is not unit tested due to it's usage of timer_mod
341  *
342  * @is_write: the type of operation (read/write)
343  * @ret:      true if the timer has been scheduled else false
344  */
345 bool throttle_schedule_timer(ThrottleState *ts, bool is_write)
346 {
347     int64_t now = qemu_clock_get_ns(ts->clock_type);
348     int64_t next_timestamp;
349     bool must_wait;
350 
351     must_wait = throttle_compute_timer(ts,
352                                        is_write,
353                                        now,
354                                        &next_timestamp);
355 
356     /* request not throttled */
357     if (!must_wait) {
358         return false;
359     }
360 
361     /* request throttled and timer pending -> do nothing */
362     if (timer_pending(ts->timers[is_write])) {
363         return true;
364     }
365 
366     /* request throttled and timer not pending -> arm timer */
367     timer_mod(ts->timers[is_write], next_timestamp);
368     return true;
369 }
370 
371 /* do the accounting for this operation
372  *
373  * @is_write: the type of operation (read/write)
374  * @size:     the size of the operation
375  */
376 void throttle_account(ThrottleState *ts, bool is_write, uint64_t size)
377 {
378     double units = 1.0;
379 
380     /* if cfg.op_size is defined and smaller than size we compute unit count */
381     if (ts->cfg.op_size && size > ts->cfg.op_size) {
382         units = (double) size / ts->cfg.op_size;
383     }
384 
385     ts->cfg.buckets[THROTTLE_BPS_TOTAL].level += size;
386     ts->cfg.buckets[THROTTLE_OPS_TOTAL].level += units;
387 
388     if (is_write) {
389         ts->cfg.buckets[THROTTLE_BPS_WRITE].level += size;
390         ts->cfg.buckets[THROTTLE_OPS_WRITE].level += units;
391     } else {
392         ts->cfg.buckets[THROTTLE_BPS_READ].level += size;
393         ts->cfg.buckets[THROTTLE_OPS_READ].level += units;
394     }
395 }
396 
397