xref: /openbmc/qemu/util/rcu.c (revision e4370165)
1 /*
2  * urcu-mb.c
3  *
4  * Userspace RCU library with explicit memory barriers
5  *
6  * Copyright (c) 2009 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7  * Copyright (c) 2009 Paul E. McKenney, IBM Corporation.
8  * Copyright 2015 Red Hat, Inc.
9  *
10  * Ported to QEMU by Paolo Bonzini  <pbonzini@redhat.com>
11  *
12  * This library is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU Lesser General Public
14  * License as published by the Free Software Foundation; either
15  * version 2.1 of the License, or (at your option) any later version.
16  *
17  * This library is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * Lesser General Public License for more details.
21  *
22  * You should have received a copy of the GNU Lesser General Public
23  * License along with this library; if not, write to the Free Software
24  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25  *
26  * IBM's contributions to this file may be relicensed under LGPLv2 or later.
27  */
28 
29 #include "qemu/osdep.h"
30 #include "qemu-common.h"
31 #include "qemu/rcu.h"
32 #include "qemu/atomic.h"
33 #include "qemu/thread.h"
34 #include "qemu/main-loop.h"
35 
36 /*
37  * Global grace period counter.  Bit 0 is always one in rcu_gp_ctr.
38  * Bits 1 and above are defined in synchronize_rcu.
39  */
40 #define RCU_GP_LOCKED           (1UL << 0)
41 #define RCU_GP_CTR              (1UL << 1)
42 
43 unsigned long rcu_gp_ctr = RCU_GP_LOCKED;
44 
45 QemuEvent rcu_gp_event;
46 static QemuMutex rcu_registry_lock;
47 static QemuMutex rcu_sync_lock;
48 
49 /*
50  * Check whether a quiescent state was crossed between the beginning of
51  * update_counter_and_wait and now.
52  */
53 static inline int rcu_gp_ongoing(unsigned long *ctr)
54 {
55     unsigned long v;
56 
57     v = atomic_read(ctr);
58     return v && (v != rcu_gp_ctr);
59 }
60 
61 /* Written to only by each individual reader. Read by both the reader and the
62  * writers.
63  */
64 __thread struct rcu_reader_data rcu_reader;
65 
66 /* Protected by rcu_registry_lock.  */
67 typedef QLIST_HEAD(, rcu_reader_data) ThreadList;
68 static ThreadList registry = QLIST_HEAD_INITIALIZER(registry);
69 
70 /* Wait for previous parity/grace period to be empty of readers.  */
71 static void wait_for_readers(void)
72 {
73     ThreadList qsreaders = QLIST_HEAD_INITIALIZER(qsreaders);
74     struct rcu_reader_data *index, *tmp;
75 
76     for (;;) {
77         /* We want to be notified of changes made to rcu_gp_ongoing
78          * while we walk the list.
79          */
80         qemu_event_reset(&rcu_gp_event);
81 
82         /* Instead of using atomic_mb_set for index->waiting, and
83          * atomic_mb_read for index->ctr, memory barriers are placed
84          * manually since writes to different threads are independent.
85          * qemu_event_reset has acquire semantics, so no memory barrier
86          * is needed here.
87          */
88         QLIST_FOREACH(index, &registry, node) {
89             atomic_set(&index->waiting, true);
90         }
91 
92         /* Here, order the stores to index->waiting before the
93          * loads of index->ctr.
94          */
95         smp_mb();
96 
97         QLIST_FOREACH_SAFE(index, &registry, node, tmp) {
98             if (!rcu_gp_ongoing(&index->ctr)) {
99                 QLIST_REMOVE(index, node);
100                 QLIST_INSERT_HEAD(&qsreaders, index, node);
101 
102                 /* No need for mb_set here, worst of all we
103                  * get some extra futex wakeups.
104                  */
105                 atomic_set(&index->waiting, false);
106             }
107         }
108 
109         if (QLIST_EMPTY(&registry)) {
110             break;
111         }
112 
113         /* Wait for one thread to report a quiescent state and try again.
114          * Release rcu_registry_lock, so rcu_(un)register_thread() doesn't
115          * wait too much time.
116          *
117          * rcu_register_thread() may add nodes to &registry; it will not
118          * wake up synchronize_rcu, but that is okay because at least another
119          * thread must exit its RCU read-side critical section before
120          * synchronize_rcu is done.  The next iteration of the loop will
121          * move the new thread's rcu_reader from &registry to &qsreaders,
122          * because rcu_gp_ongoing() will return false.
123          *
124          * rcu_unregister_thread() may remove nodes from &qsreaders instead
125          * of &registry if it runs during qemu_event_wait.  That's okay;
126          * the node then will not be added back to &registry by QLIST_SWAP
127          * below.  The invariant is that the node is part of one list when
128          * rcu_registry_lock is released.
129          */
130         qemu_mutex_unlock(&rcu_registry_lock);
131         qemu_event_wait(&rcu_gp_event);
132         qemu_mutex_lock(&rcu_registry_lock);
133     }
134 
135     /* put back the reader list in the registry */
136     QLIST_SWAP(&registry, &qsreaders, node);
137 }
138 
139 void synchronize_rcu(void)
140 {
141     qemu_mutex_lock(&rcu_sync_lock);
142     qemu_mutex_lock(&rcu_registry_lock);
143 
144     if (!QLIST_EMPTY(&registry)) {
145         /* In either case, the atomic_mb_set below blocks stores that free
146          * old RCU-protected pointers.
147          */
148         if (sizeof(rcu_gp_ctr) < 8) {
149             /* For architectures with 32-bit longs, a two-subphases algorithm
150              * ensures we do not encounter overflow bugs.
151              *
152              * Switch parity: 0 -> 1, 1 -> 0.
153              */
154             atomic_mb_set(&rcu_gp_ctr, rcu_gp_ctr ^ RCU_GP_CTR);
155             wait_for_readers();
156             atomic_mb_set(&rcu_gp_ctr, rcu_gp_ctr ^ RCU_GP_CTR);
157         } else {
158             /* Increment current grace period.  */
159             atomic_mb_set(&rcu_gp_ctr, rcu_gp_ctr + RCU_GP_CTR);
160         }
161 
162         wait_for_readers();
163     }
164 
165     qemu_mutex_unlock(&rcu_registry_lock);
166     qemu_mutex_unlock(&rcu_sync_lock);
167 }
168 
169 
170 #define RCU_CALL_MIN_SIZE        30
171 
172 /* Multi-producer, single-consumer queue based on urcu/static/wfqueue.h
173  * from liburcu.  Note that head is only used by the consumer.
174  */
175 static struct rcu_head dummy;
176 static struct rcu_head *head = &dummy, **tail = &dummy.next;
177 static int rcu_call_count;
178 static QemuEvent rcu_call_ready_event;
179 
180 static void enqueue(struct rcu_head *node)
181 {
182     struct rcu_head **old_tail;
183 
184     node->next = NULL;
185     old_tail = atomic_xchg(&tail, &node->next);
186     atomic_mb_set(old_tail, node);
187 }
188 
189 static struct rcu_head *try_dequeue(void)
190 {
191     struct rcu_head *node, *next;
192 
193 retry:
194     /* Test for an empty list, which we do not expect.  Note that for
195      * the consumer head and tail are always consistent.  The head
196      * is consistent because only the consumer reads/writes it.
197      * The tail, because it is the first step in the enqueuing.
198      * It is only the next pointers that might be inconsistent.
199      */
200     if (head == &dummy && atomic_mb_read(&tail) == &dummy.next) {
201         abort();
202     }
203 
204     /* If the head node has NULL in its next pointer, the value is
205      * wrong and we need to wait until its enqueuer finishes the update.
206      */
207     node = head;
208     next = atomic_mb_read(&head->next);
209     if (!next) {
210         return NULL;
211     }
212 
213     /* Since we are the sole consumer, and we excluded the empty case
214      * above, the queue will always have at least two nodes: the
215      * dummy node, and the one being removed.  So we do not need to update
216      * the tail pointer.
217      */
218     head = next;
219 
220     /* If we dequeued the dummy node, add it back at the end and retry.  */
221     if (node == &dummy) {
222         enqueue(node);
223         goto retry;
224     }
225 
226     return node;
227 }
228 
229 static void *call_rcu_thread(void *opaque)
230 {
231     struct rcu_head *node;
232 
233     rcu_register_thread();
234 
235     for (;;) {
236         int tries = 0;
237         int n = atomic_read(&rcu_call_count);
238 
239         /* Heuristically wait for a decent number of callbacks to pile up.
240          * Fetch rcu_call_count now, we only must process elements that were
241          * added before synchronize_rcu() starts.
242          */
243         while (n == 0 || (n < RCU_CALL_MIN_SIZE && ++tries <= 5)) {
244             g_usleep(10000);
245             if (n == 0) {
246                 qemu_event_reset(&rcu_call_ready_event);
247                 n = atomic_read(&rcu_call_count);
248                 if (n == 0) {
249                     qemu_event_wait(&rcu_call_ready_event);
250                 }
251             }
252             n = atomic_read(&rcu_call_count);
253         }
254 
255         atomic_sub(&rcu_call_count, n);
256         synchronize_rcu();
257         qemu_mutex_lock_iothread();
258         while (n > 0) {
259             node = try_dequeue();
260             while (!node) {
261                 qemu_mutex_unlock_iothread();
262                 qemu_event_reset(&rcu_call_ready_event);
263                 node = try_dequeue();
264                 if (!node) {
265                     qemu_event_wait(&rcu_call_ready_event);
266                     node = try_dequeue();
267                 }
268                 qemu_mutex_lock_iothread();
269             }
270 
271             n--;
272             node->func(node);
273         }
274         qemu_mutex_unlock_iothread();
275     }
276     abort();
277 }
278 
279 void call_rcu1(struct rcu_head *node, void (*func)(struct rcu_head *node))
280 {
281     node->func = func;
282     enqueue(node);
283     atomic_inc(&rcu_call_count);
284     qemu_event_set(&rcu_call_ready_event);
285 }
286 
287 void rcu_register_thread(void)
288 {
289     assert(rcu_reader.ctr == 0);
290     qemu_mutex_lock(&rcu_registry_lock);
291     QLIST_INSERT_HEAD(&registry, &rcu_reader, node);
292     qemu_mutex_unlock(&rcu_registry_lock);
293 }
294 
295 void rcu_unregister_thread(void)
296 {
297     qemu_mutex_lock(&rcu_registry_lock);
298     QLIST_REMOVE(&rcu_reader, node);
299     qemu_mutex_unlock(&rcu_registry_lock);
300 }
301 
302 static void rcu_init_complete(void)
303 {
304     QemuThread thread;
305 
306     qemu_mutex_init(&rcu_registry_lock);
307     qemu_mutex_init(&rcu_sync_lock);
308     qemu_event_init(&rcu_gp_event, true);
309 
310     qemu_event_init(&rcu_call_ready_event, false);
311 
312     /* The caller is assumed to have iothread lock, so the call_rcu thread
313      * must have been quiescent even after forking, just recreate it.
314      */
315     qemu_thread_create(&thread, "call_rcu", call_rcu_thread,
316                        NULL, QEMU_THREAD_DETACHED);
317 
318     rcu_register_thread();
319 }
320 
321 #ifdef CONFIG_POSIX
322 static void rcu_init_lock(void)
323 {
324     qemu_mutex_lock(&rcu_sync_lock);
325     qemu_mutex_lock(&rcu_registry_lock);
326 }
327 
328 static void rcu_init_unlock(void)
329 {
330     qemu_mutex_unlock(&rcu_registry_lock);
331     qemu_mutex_unlock(&rcu_sync_lock);
332 }
333 #endif
334 
335 void rcu_after_fork(void)
336 {
337     memset(&registry, 0, sizeof(registry));
338     rcu_init_complete();
339 }
340 
341 static void __attribute__((__constructor__)) rcu_init(void)
342 {
343 #ifdef CONFIG_POSIX
344     pthread_atfork(rcu_init_lock, rcu_init_unlock, rcu_init_unlock);
345 #endif
346     rcu_init_complete();
347 }
348