xref: /openbmc/qemu/util/rcu.c (revision d1fd31f8)
1 /*
2  * urcu-mb.c
3  *
4  * Userspace RCU library with explicit memory barriers
5  *
6  * Copyright (c) 2009 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7  * Copyright (c) 2009 Paul E. McKenney, IBM Corporation.
8  * Copyright 2015 Red Hat, Inc.
9  *
10  * Ported to QEMU by Paolo Bonzini  <pbonzini@redhat.com>
11  *
12  * This library is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU Lesser General Public
14  * License as published by the Free Software Foundation; either
15  * version 2.1 of the License, or (at your option) any later version.
16  *
17  * This library is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * Lesser General Public License for more details.
21  *
22  * You should have received a copy of the GNU Lesser General Public
23  * License along with this library; if not, write to the Free Software
24  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25  *
26  * IBM's contributions to this file may be relicensed under LGPLv2 or later.
27  */
28 
29 #include "qemu/osdep.h"
30 #include "qemu-common.h"
31 #include "qemu/rcu.h"
32 #include "qemu/atomic.h"
33 #include "qemu/thread.h"
34 #include "qemu/main-loop.h"
35 #if defined(CONFIG_MALLOC_TRIM)
36 #include <malloc.h>
37 #endif
38 
39 /*
40  * Global grace period counter.  Bit 0 is always one in rcu_gp_ctr.
41  * Bits 1 and above are defined in synchronize_rcu.
42  */
43 #define RCU_GP_LOCKED           (1UL << 0)
44 #define RCU_GP_CTR              (1UL << 1)
45 
46 unsigned long rcu_gp_ctr = RCU_GP_LOCKED;
47 
48 QemuEvent rcu_gp_event;
49 static QemuMutex rcu_registry_lock;
50 static QemuMutex rcu_sync_lock;
51 
52 /*
53  * Check whether a quiescent state was crossed between the beginning of
54  * update_counter_and_wait and now.
55  */
56 static inline int rcu_gp_ongoing(unsigned long *ctr)
57 {
58     unsigned long v;
59 
60     v = atomic_read(ctr);
61     return v && (v != rcu_gp_ctr);
62 }
63 
64 /* Written to only by each individual reader. Read by both the reader and the
65  * writers.
66  */
67 __thread struct rcu_reader_data rcu_reader;
68 
69 /* Protected by rcu_registry_lock.  */
70 typedef QLIST_HEAD(, rcu_reader_data) ThreadList;
71 static ThreadList registry = QLIST_HEAD_INITIALIZER(registry);
72 
73 /* Wait for previous parity/grace period to be empty of readers.  */
74 static void wait_for_readers(void)
75 {
76     ThreadList qsreaders = QLIST_HEAD_INITIALIZER(qsreaders);
77     struct rcu_reader_data *index, *tmp;
78 
79     for (;;) {
80         /* We want to be notified of changes made to rcu_gp_ongoing
81          * while we walk the list.
82          */
83         qemu_event_reset(&rcu_gp_event);
84 
85         /* Instead of using atomic_mb_set for index->waiting, and
86          * atomic_mb_read for index->ctr, memory barriers are placed
87          * manually since writes to different threads are independent.
88          * qemu_event_reset has acquire semantics, so no memory barrier
89          * is needed here.
90          */
91         QLIST_FOREACH(index, &registry, node) {
92             atomic_set(&index->waiting, true);
93         }
94 
95         /* Here, order the stores to index->waiting before the loads of
96          * index->ctr.  Pairs with smp_mb_placeholder() in rcu_read_unlock(),
97          * ensuring that the loads of index->ctr are sequentially consistent.
98          */
99         smp_mb_global();
100 
101         QLIST_FOREACH_SAFE(index, &registry, node, tmp) {
102             if (!rcu_gp_ongoing(&index->ctr)) {
103                 QLIST_REMOVE(index, node);
104                 QLIST_INSERT_HEAD(&qsreaders, index, node);
105 
106                 /* No need for mb_set here, worst of all we
107                  * get some extra futex wakeups.
108                  */
109                 atomic_set(&index->waiting, false);
110             }
111         }
112 
113         if (QLIST_EMPTY(&registry)) {
114             break;
115         }
116 
117         /* Wait for one thread to report a quiescent state and try again.
118          * Release rcu_registry_lock, so rcu_(un)register_thread() doesn't
119          * wait too much time.
120          *
121          * rcu_register_thread() may add nodes to &registry; it will not
122          * wake up synchronize_rcu, but that is okay because at least another
123          * thread must exit its RCU read-side critical section before
124          * synchronize_rcu is done.  The next iteration of the loop will
125          * move the new thread's rcu_reader from &registry to &qsreaders,
126          * because rcu_gp_ongoing() will return false.
127          *
128          * rcu_unregister_thread() may remove nodes from &qsreaders instead
129          * of &registry if it runs during qemu_event_wait.  That's okay;
130          * the node then will not be added back to &registry by QLIST_SWAP
131          * below.  The invariant is that the node is part of one list when
132          * rcu_registry_lock is released.
133          */
134         qemu_mutex_unlock(&rcu_registry_lock);
135         qemu_event_wait(&rcu_gp_event);
136         qemu_mutex_lock(&rcu_registry_lock);
137     }
138 
139     /* put back the reader list in the registry */
140     QLIST_SWAP(&registry, &qsreaders, node);
141 }
142 
143 void synchronize_rcu(void)
144 {
145     qemu_mutex_lock(&rcu_sync_lock);
146 
147     /* Write RCU-protected pointers before reading p_rcu_reader->ctr.
148      * Pairs with smp_mb_placeholder() in rcu_read_lock().
149      */
150     smp_mb_global();
151 
152     qemu_mutex_lock(&rcu_registry_lock);
153     if (!QLIST_EMPTY(&registry)) {
154         /* In either case, the atomic_mb_set below blocks stores that free
155          * old RCU-protected pointers.
156          */
157         if (sizeof(rcu_gp_ctr) < 8) {
158             /* For architectures with 32-bit longs, a two-subphases algorithm
159              * ensures we do not encounter overflow bugs.
160              *
161              * Switch parity: 0 -> 1, 1 -> 0.
162              */
163             atomic_mb_set(&rcu_gp_ctr, rcu_gp_ctr ^ RCU_GP_CTR);
164             wait_for_readers();
165             atomic_mb_set(&rcu_gp_ctr, rcu_gp_ctr ^ RCU_GP_CTR);
166         } else {
167             /* Increment current grace period.  */
168             atomic_mb_set(&rcu_gp_ctr, rcu_gp_ctr + RCU_GP_CTR);
169         }
170 
171         wait_for_readers();
172     }
173 
174     qemu_mutex_unlock(&rcu_registry_lock);
175     qemu_mutex_unlock(&rcu_sync_lock);
176 }
177 
178 
179 #define RCU_CALL_MIN_SIZE        30
180 
181 /* Multi-producer, single-consumer queue based on urcu/static/wfqueue.h
182  * from liburcu.  Note that head is only used by the consumer.
183  */
184 static struct rcu_head dummy;
185 static struct rcu_head *head = &dummy, **tail = &dummy.next;
186 static int rcu_call_count;
187 static QemuEvent rcu_call_ready_event;
188 
189 static void enqueue(struct rcu_head *node)
190 {
191     struct rcu_head **old_tail;
192 
193     node->next = NULL;
194     old_tail = atomic_xchg(&tail, &node->next);
195     atomic_mb_set(old_tail, node);
196 }
197 
198 static struct rcu_head *try_dequeue(void)
199 {
200     struct rcu_head *node, *next;
201 
202 retry:
203     /* Test for an empty list, which we do not expect.  Note that for
204      * the consumer head and tail are always consistent.  The head
205      * is consistent because only the consumer reads/writes it.
206      * The tail, because it is the first step in the enqueuing.
207      * It is only the next pointers that might be inconsistent.
208      */
209     if (head == &dummy && atomic_mb_read(&tail) == &dummy.next) {
210         abort();
211     }
212 
213     /* If the head node has NULL in its next pointer, the value is
214      * wrong and we need to wait until its enqueuer finishes the update.
215      */
216     node = head;
217     next = atomic_mb_read(&head->next);
218     if (!next) {
219         return NULL;
220     }
221 
222     /* Since we are the sole consumer, and we excluded the empty case
223      * above, the queue will always have at least two nodes: the
224      * dummy node, and the one being removed.  So we do not need to update
225      * the tail pointer.
226      */
227     head = next;
228 
229     /* If we dequeued the dummy node, add it back at the end and retry.  */
230     if (node == &dummy) {
231         enqueue(node);
232         goto retry;
233     }
234 
235     return node;
236 }
237 
238 static void *call_rcu_thread(void *opaque)
239 {
240     struct rcu_head *node;
241 
242     rcu_register_thread();
243 
244     for (;;) {
245         int tries = 0;
246         int n = atomic_read(&rcu_call_count);
247 
248         /* Heuristically wait for a decent number of callbacks to pile up.
249          * Fetch rcu_call_count now, we only must process elements that were
250          * added before synchronize_rcu() starts.
251          */
252         while (n == 0 || (n < RCU_CALL_MIN_SIZE && ++tries <= 5)) {
253             g_usleep(10000);
254             if (n == 0) {
255                 qemu_event_reset(&rcu_call_ready_event);
256                 n = atomic_read(&rcu_call_count);
257                 if (n == 0) {
258 #if defined(CONFIG_MALLOC_TRIM)
259                     malloc_trim(4 * 1024 * 1024);
260 #endif
261                     qemu_event_wait(&rcu_call_ready_event);
262                 }
263             }
264             n = atomic_read(&rcu_call_count);
265         }
266 
267         atomic_sub(&rcu_call_count, n);
268         synchronize_rcu();
269         qemu_mutex_lock_iothread();
270         while (n > 0) {
271             node = try_dequeue();
272             while (!node) {
273                 qemu_mutex_unlock_iothread();
274                 qemu_event_reset(&rcu_call_ready_event);
275                 node = try_dequeue();
276                 if (!node) {
277                     qemu_event_wait(&rcu_call_ready_event);
278                     node = try_dequeue();
279                 }
280                 qemu_mutex_lock_iothread();
281             }
282 
283             n--;
284             node->func(node);
285         }
286         qemu_mutex_unlock_iothread();
287     }
288     abort();
289 }
290 
291 void call_rcu1(struct rcu_head *node, void (*func)(struct rcu_head *node))
292 {
293     node->func = func;
294     enqueue(node);
295     atomic_inc(&rcu_call_count);
296     qemu_event_set(&rcu_call_ready_event);
297 }
298 
299 void rcu_register_thread(void)
300 {
301     assert(rcu_reader.ctr == 0);
302     qemu_mutex_lock(&rcu_registry_lock);
303     QLIST_INSERT_HEAD(&registry, &rcu_reader, node);
304     qemu_mutex_unlock(&rcu_registry_lock);
305 }
306 
307 void rcu_unregister_thread(void)
308 {
309     qemu_mutex_lock(&rcu_registry_lock);
310     QLIST_REMOVE(&rcu_reader, node);
311     qemu_mutex_unlock(&rcu_registry_lock);
312 }
313 
314 static void rcu_init_complete(void)
315 {
316     QemuThread thread;
317 
318     qemu_mutex_init(&rcu_registry_lock);
319     qemu_mutex_init(&rcu_sync_lock);
320     qemu_event_init(&rcu_gp_event, true);
321 
322     qemu_event_init(&rcu_call_ready_event, false);
323 
324     /* The caller is assumed to have iothread lock, so the call_rcu thread
325      * must have been quiescent even after forking, just recreate it.
326      */
327     qemu_thread_create(&thread, "call_rcu", call_rcu_thread,
328                        NULL, QEMU_THREAD_DETACHED);
329 
330     rcu_register_thread();
331 }
332 
333 static int atfork_depth = 1;
334 
335 void rcu_enable_atfork(void)
336 {
337     atfork_depth++;
338 }
339 
340 void rcu_disable_atfork(void)
341 {
342     atfork_depth--;
343 }
344 
345 #ifdef CONFIG_POSIX
346 static void rcu_init_lock(void)
347 {
348     if (atfork_depth < 1) {
349         return;
350     }
351 
352     qemu_mutex_lock(&rcu_sync_lock);
353     qemu_mutex_lock(&rcu_registry_lock);
354 }
355 
356 static void rcu_init_unlock(void)
357 {
358     if (atfork_depth < 1) {
359         return;
360     }
361 
362     qemu_mutex_unlock(&rcu_registry_lock);
363     qemu_mutex_unlock(&rcu_sync_lock);
364 }
365 
366 static void rcu_init_child(void)
367 {
368     if (atfork_depth < 1) {
369         return;
370     }
371 
372     memset(&registry, 0, sizeof(registry));
373     rcu_init_complete();
374 }
375 #endif
376 
377 static void __attribute__((__constructor__)) rcu_init(void)
378 {
379     smp_mb_global_init();
380 #ifdef CONFIG_POSIX
381     pthread_atfork(rcu_init_lock, rcu_init_unlock, rcu_init_child);
382 #endif
383     rcu_init_complete();
384 }
385