xref: /openbmc/qemu/util/rcu.c (revision b917da4c)
1 /*
2  * urcu-mb.c
3  *
4  * Userspace RCU library with explicit memory barriers
5  *
6  * Copyright (c) 2009 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7  * Copyright (c) 2009 Paul E. McKenney, IBM Corporation.
8  * Copyright 2015 Red Hat, Inc.
9  *
10  * Ported to QEMU by Paolo Bonzini  <pbonzini@redhat.com>
11  *
12  * This library is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU Lesser General Public
14  * License as published by the Free Software Foundation; either
15  * version 2.1 of the License, or (at your option) any later version.
16  *
17  * This library is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * Lesser General Public License for more details.
21  *
22  * You should have received a copy of the GNU Lesser General Public
23  * License along with this library; if not, write to the Free Software
24  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25  *
26  * IBM's contributions to this file may be relicensed under LGPLv2 or later.
27  */
28 
29 #include "qemu/osdep.h"
30 #include "qemu-common.h"
31 #include "qemu/rcu.h"
32 #include "qemu/atomic.h"
33 #include "qemu/thread.h"
34 #include "qemu/main-loop.h"
35 
36 /*
37  * Global grace period counter.  Bit 0 is always one in rcu_gp_ctr.
38  * Bits 1 and above are defined in synchronize_rcu.
39  */
40 #define RCU_GP_LOCKED           (1UL << 0)
41 #define RCU_GP_CTR              (1UL << 1)
42 
43 unsigned long rcu_gp_ctr = RCU_GP_LOCKED;
44 
45 QemuEvent rcu_gp_event;
46 static QemuMutex rcu_registry_lock;
47 static QemuMutex rcu_sync_lock;
48 
49 /*
50  * Check whether a quiescent state was crossed between the beginning of
51  * update_counter_and_wait and now.
52  */
53 static inline int rcu_gp_ongoing(unsigned long *ctr)
54 {
55     unsigned long v;
56 
57     v = atomic_read(ctr);
58     return v && (v != rcu_gp_ctr);
59 }
60 
61 /* Written to only by each individual reader. Read by both the reader and the
62  * writers.
63  */
64 __thread struct rcu_reader_data rcu_reader;
65 
66 /* Protected by rcu_registry_lock.  */
67 typedef QLIST_HEAD(, rcu_reader_data) ThreadList;
68 static ThreadList registry = QLIST_HEAD_INITIALIZER(registry);
69 
70 /* Wait for previous parity/grace period to be empty of readers.  */
71 static void wait_for_readers(void)
72 {
73     ThreadList qsreaders = QLIST_HEAD_INITIALIZER(qsreaders);
74     struct rcu_reader_data *index, *tmp;
75 
76     for (;;) {
77         /* We want to be notified of changes made to rcu_gp_ongoing
78          * while we walk the list.
79          */
80         qemu_event_reset(&rcu_gp_event);
81 
82         /* Instead of using atomic_mb_set for index->waiting, and
83          * atomic_mb_read for index->ctr, memory barriers are placed
84          * manually since writes to different threads are independent.
85          * atomic_mb_set has a smp_wmb before...
86          */
87         smp_wmb();
88         QLIST_FOREACH(index, &registry, node) {
89             atomic_set(&index->waiting, true);
90         }
91 
92         /* ... and a smp_mb after.  */
93         smp_mb();
94 
95         QLIST_FOREACH_SAFE(index, &registry, node, tmp) {
96             if (!rcu_gp_ongoing(&index->ctr)) {
97                 QLIST_REMOVE(index, node);
98                 QLIST_INSERT_HEAD(&qsreaders, index, node);
99 
100                 /* No need for mb_set here, worst of all we
101                  * get some extra futex wakeups.
102                  */
103                 atomic_set(&index->waiting, false);
104             }
105         }
106 
107         /* atomic_mb_read has smp_rmb after.  */
108         smp_rmb();
109 
110         if (QLIST_EMPTY(&registry)) {
111             break;
112         }
113 
114         /* Wait for one thread to report a quiescent state and try again.
115          * Release rcu_registry_lock, so rcu_(un)register_thread() doesn't
116          * wait too much time.
117          *
118          * rcu_register_thread() may add nodes to &registry; it will not
119          * wake up synchronize_rcu, but that is okay because at least another
120          * thread must exit its RCU read-side critical section before
121          * synchronize_rcu is done.  The next iteration of the loop will
122          * move the new thread's rcu_reader from &registry to &qsreaders,
123          * because rcu_gp_ongoing() will return false.
124          *
125          * rcu_unregister_thread() may remove nodes from &qsreaders instead
126          * of &registry if it runs during qemu_event_wait.  That's okay;
127          * the node then will not be added back to &registry by QLIST_SWAP
128          * below.  The invariant is that the node is part of one list when
129          * rcu_registry_lock is released.
130          */
131         qemu_mutex_unlock(&rcu_registry_lock);
132         qemu_event_wait(&rcu_gp_event);
133         qemu_mutex_lock(&rcu_registry_lock);
134     }
135 
136     /* put back the reader list in the registry */
137     QLIST_SWAP(&registry, &qsreaders, node);
138 }
139 
140 void synchronize_rcu(void)
141 {
142     qemu_mutex_lock(&rcu_sync_lock);
143     qemu_mutex_lock(&rcu_registry_lock);
144 
145     if (!QLIST_EMPTY(&registry)) {
146         /* In either case, the atomic_mb_set below blocks stores that free
147          * old RCU-protected pointers.
148          */
149         if (sizeof(rcu_gp_ctr) < 8) {
150             /* For architectures with 32-bit longs, a two-subphases algorithm
151              * ensures we do not encounter overflow bugs.
152              *
153              * Switch parity: 0 -> 1, 1 -> 0.
154              */
155             atomic_mb_set(&rcu_gp_ctr, rcu_gp_ctr ^ RCU_GP_CTR);
156             wait_for_readers();
157             atomic_mb_set(&rcu_gp_ctr, rcu_gp_ctr ^ RCU_GP_CTR);
158         } else {
159             /* Increment current grace period.  */
160             atomic_mb_set(&rcu_gp_ctr, rcu_gp_ctr + RCU_GP_CTR);
161         }
162 
163         wait_for_readers();
164     }
165 
166     qemu_mutex_unlock(&rcu_registry_lock);
167     qemu_mutex_unlock(&rcu_sync_lock);
168 }
169 
170 
171 #define RCU_CALL_MIN_SIZE        30
172 
173 /* Multi-producer, single-consumer queue based on urcu/static/wfqueue.h
174  * from liburcu.  Note that head is only used by the consumer.
175  */
176 static struct rcu_head dummy;
177 static struct rcu_head *head = &dummy, **tail = &dummy.next;
178 static int rcu_call_count;
179 static QemuEvent rcu_call_ready_event;
180 
181 static void enqueue(struct rcu_head *node)
182 {
183     struct rcu_head **old_tail;
184 
185     node->next = NULL;
186     old_tail = atomic_xchg(&tail, &node->next);
187     atomic_mb_set(old_tail, node);
188 }
189 
190 static struct rcu_head *try_dequeue(void)
191 {
192     struct rcu_head *node, *next;
193 
194 retry:
195     /* Test for an empty list, which we do not expect.  Note that for
196      * the consumer head and tail are always consistent.  The head
197      * is consistent because only the consumer reads/writes it.
198      * The tail, because it is the first step in the enqueuing.
199      * It is only the next pointers that might be inconsistent.
200      */
201     if (head == &dummy && atomic_mb_read(&tail) == &dummy.next) {
202         abort();
203     }
204 
205     /* If the head node has NULL in its next pointer, the value is
206      * wrong and we need to wait until its enqueuer finishes the update.
207      */
208     node = head;
209     next = atomic_mb_read(&head->next);
210     if (!next) {
211         return NULL;
212     }
213 
214     /* Since we are the sole consumer, and we excluded the empty case
215      * above, the queue will always have at least two nodes: the
216      * dummy node, and the one being removed.  So we do not need to update
217      * the tail pointer.
218      */
219     head = next;
220 
221     /* If we dequeued the dummy node, add it back at the end and retry.  */
222     if (node == &dummy) {
223         enqueue(node);
224         goto retry;
225     }
226 
227     return node;
228 }
229 
230 static void *call_rcu_thread(void *opaque)
231 {
232     struct rcu_head *node;
233 
234     rcu_register_thread();
235 
236     for (;;) {
237         int tries = 0;
238         int n = atomic_read(&rcu_call_count);
239 
240         /* Heuristically wait for a decent number of callbacks to pile up.
241          * Fetch rcu_call_count now, we only must process elements that were
242          * added before synchronize_rcu() starts.
243          */
244         while (n == 0 || (n < RCU_CALL_MIN_SIZE && ++tries <= 5)) {
245             g_usleep(10000);
246             if (n == 0) {
247                 qemu_event_reset(&rcu_call_ready_event);
248                 n = atomic_read(&rcu_call_count);
249                 if (n == 0) {
250                     qemu_event_wait(&rcu_call_ready_event);
251                 }
252             }
253             n = atomic_read(&rcu_call_count);
254         }
255 
256         atomic_sub(&rcu_call_count, n);
257         synchronize_rcu();
258         qemu_mutex_lock_iothread();
259         while (n > 0) {
260             node = try_dequeue();
261             while (!node) {
262                 qemu_mutex_unlock_iothread();
263                 qemu_event_reset(&rcu_call_ready_event);
264                 node = try_dequeue();
265                 if (!node) {
266                     qemu_event_wait(&rcu_call_ready_event);
267                     node = try_dequeue();
268                 }
269                 qemu_mutex_lock_iothread();
270             }
271 
272             n--;
273             node->func(node);
274         }
275         qemu_mutex_unlock_iothread();
276     }
277     abort();
278 }
279 
280 void call_rcu1(struct rcu_head *node, void (*func)(struct rcu_head *node))
281 {
282     node->func = func;
283     enqueue(node);
284     atomic_inc(&rcu_call_count);
285     qemu_event_set(&rcu_call_ready_event);
286 }
287 
288 void rcu_register_thread(void)
289 {
290     assert(rcu_reader.ctr == 0);
291     qemu_mutex_lock(&rcu_registry_lock);
292     QLIST_INSERT_HEAD(&registry, &rcu_reader, node);
293     qemu_mutex_unlock(&rcu_registry_lock);
294 }
295 
296 void rcu_unregister_thread(void)
297 {
298     qemu_mutex_lock(&rcu_registry_lock);
299     QLIST_REMOVE(&rcu_reader, node);
300     qemu_mutex_unlock(&rcu_registry_lock);
301 }
302 
303 static void rcu_init_complete(void)
304 {
305     QemuThread thread;
306 
307     qemu_mutex_init(&rcu_registry_lock);
308     qemu_mutex_init(&rcu_sync_lock);
309     qemu_event_init(&rcu_gp_event, true);
310 
311     qemu_event_init(&rcu_call_ready_event, false);
312 
313     /* The caller is assumed to have iothread lock, so the call_rcu thread
314      * must have been quiescent even after forking, just recreate it.
315      */
316     qemu_thread_create(&thread, "call_rcu", call_rcu_thread,
317                        NULL, QEMU_THREAD_DETACHED);
318 
319     rcu_register_thread();
320 }
321 
322 #ifdef CONFIG_POSIX
323 static void rcu_init_lock(void)
324 {
325     qemu_mutex_lock(&rcu_sync_lock);
326     qemu_mutex_lock(&rcu_registry_lock);
327 }
328 
329 static void rcu_init_unlock(void)
330 {
331     qemu_mutex_unlock(&rcu_registry_lock);
332     qemu_mutex_unlock(&rcu_sync_lock);
333 }
334 #endif
335 
336 void rcu_after_fork(void)
337 {
338     memset(&registry, 0, sizeof(registry));
339     rcu_init_complete();
340 }
341 
342 static void __attribute__((__constructor__)) rcu_init(void)
343 {
344 #ifdef CONFIG_POSIX
345     pthread_atfork(rcu_init_lock, rcu_init_unlock, rcu_init_unlock);
346 #endif
347     rcu_init_complete();
348 }
349