1 /* 2 * urcu-mb.c 3 * 4 * Userspace RCU library with explicit memory barriers 5 * 6 * Copyright (c) 2009 Mathieu Desnoyers <mathieu.desnoyers@efficios.com> 7 * Copyright (c) 2009 Paul E. McKenney, IBM Corporation. 8 * Copyright 2015 Red Hat, Inc. 9 * 10 * Ported to QEMU by Paolo Bonzini <pbonzini@redhat.com> 11 * 12 * This library is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU Lesser General Public 14 * License as published by the Free Software Foundation; either 15 * version 2.1 of the License, or (at your option) any later version. 16 * 17 * This library is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 20 * Lesser General Public License for more details. 21 * 22 * You should have received a copy of the GNU Lesser General Public 23 * License along with this library; if not, write to the Free Software 24 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 25 * 26 * IBM's contributions to this file may be relicensed under LGPLv2 or later. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "qemu-common.h" 31 #include "qemu/rcu.h" 32 #include "qemu/atomic.h" 33 #include "qemu/thread.h" 34 #include "qemu/main-loop.h" 35 36 /* 37 * Global grace period counter. Bit 0 is always one in rcu_gp_ctr. 38 * Bits 1 and above are defined in synchronize_rcu. 39 */ 40 #define RCU_GP_LOCKED (1UL << 0) 41 #define RCU_GP_CTR (1UL << 1) 42 43 unsigned long rcu_gp_ctr = RCU_GP_LOCKED; 44 45 QemuEvent rcu_gp_event; 46 static QemuMutex rcu_registry_lock; 47 static QemuMutex rcu_sync_lock; 48 49 /* 50 * Check whether a quiescent state was crossed between the beginning of 51 * update_counter_and_wait and now. 52 */ 53 static inline int rcu_gp_ongoing(unsigned long *ctr) 54 { 55 unsigned long v; 56 57 v = atomic_read(ctr); 58 return v && (v != rcu_gp_ctr); 59 } 60 61 /* Written to only by each individual reader. Read by both the reader and the 62 * writers. 63 */ 64 __thread struct rcu_reader_data rcu_reader; 65 66 /* Protected by rcu_registry_lock. */ 67 typedef QLIST_HEAD(, rcu_reader_data) ThreadList; 68 static ThreadList registry = QLIST_HEAD_INITIALIZER(registry); 69 70 /* Wait for previous parity/grace period to be empty of readers. */ 71 static void wait_for_readers(void) 72 { 73 ThreadList qsreaders = QLIST_HEAD_INITIALIZER(qsreaders); 74 struct rcu_reader_data *index, *tmp; 75 76 for (;;) { 77 /* We want to be notified of changes made to rcu_gp_ongoing 78 * while we walk the list. 79 */ 80 qemu_event_reset(&rcu_gp_event); 81 82 /* Instead of using atomic_mb_set for index->waiting, and 83 * atomic_mb_read for index->ctr, memory barriers are placed 84 * manually since writes to different threads are independent. 85 * atomic_mb_set has a smp_wmb before... 86 */ 87 smp_wmb(); 88 QLIST_FOREACH(index, ®istry, node) { 89 atomic_set(&index->waiting, true); 90 } 91 92 /* ... and a smp_mb after. */ 93 smp_mb(); 94 95 QLIST_FOREACH_SAFE(index, ®istry, node, tmp) { 96 if (!rcu_gp_ongoing(&index->ctr)) { 97 QLIST_REMOVE(index, node); 98 QLIST_INSERT_HEAD(&qsreaders, index, node); 99 100 /* No need for mb_set here, worst of all we 101 * get some extra futex wakeups. 102 */ 103 atomic_set(&index->waiting, false); 104 } 105 } 106 107 /* atomic_mb_read has smp_rmb after. */ 108 smp_rmb(); 109 110 if (QLIST_EMPTY(®istry)) { 111 break; 112 } 113 114 /* Wait for one thread to report a quiescent state and try again. 115 * Release rcu_registry_lock, so rcu_(un)register_thread() doesn't 116 * wait too much time. 117 * 118 * rcu_register_thread() may add nodes to ®istry; it will not 119 * wake up synchronize_rcu, but that is okay because at least another 120 * thread must exit its RCU read-side critical section before 121 * synchronize_rcu is done. The next iteration of the loop will 122 * move the new thread's rcu_reader from ®istry to &qsreaders, 123 * because rcu_gp_ongoing() will return false. 124 * 125 * rcu_unregister_thread() may remove nodes from &qsreaders instead 126 * of ®istry if it runs during qemu_event_wait. That's okay; 127 * the node then will not be added back to ®istry by QLIST_SWAP 128 * below. The invariant is that the node is part of one list when 129 * rcu_registry_lock is released. 130 */ 131 qemu_mutex_unlock(&rcu_registry_lock); 132 qemu_event_wait(&rcu_gp_event); 133 qemu_mutex_lock(&rcu_registry_lock); 134 } 135 136 /* put back the reader list in the registry */ 137 QLIST_SWAP(®istry, &qsreaders, node); 138 } 139 140 void synchronize_rcu(void) 141 { 142 qemu_mutex_lock(&rcu_sync_lock); 143 qemu_mutex_lock(&rcu_registry_lock); 144 145 if (!QLIST_EMPTY(®istry)) { 146 /* In either case, the atomic_mb_set below blocks stores that free 147 * old RCU-protected pointers. 148 */ 149 if (sizeof(rcu_gp_ctr) < 8) { 150 /* For architectures with 32-bit longs, a two-subphases algorithm 151 * ensures we do not encounter overflow bugs. 152 * 153 * Switch parity: 0 -> 1, 1 -> 0. 154 */ 155 atomic_mb_set(&rcu_gp_ctr, rcu_gp_ctr ^ RCU_GP_CTR); 156 wait_for_readers(); 157 atomic_mb_set(&rcu_gp_ctr, rcu_gp_ctr ^ RCU_GP_CTR); 158 } else { 159 /* Increment current grace period. */ 160 atomic_mb_set(&rcu_gp_ctr, rcu_gp_ctr + RCU_GP_CTR); 161 } 162 163 wait_for_readers(); 164 } 165 166 qemu_mutex_unlock(&rcu_registry_lock); 167 qemu_mutex_unlock(&rcu_sync_lock); 168 } 169 170 171 #define RCU_CALL_MIN_SIZE 30 172 173 /* Multi-producer, single-consumer queue based on urcu/static/wfqueue.h 174 * from liburcu. Note that head is only used by the consumer. 175 */ 176 static struct rcu_head dummy; 177 static struct rcu_head *head = &dummy, **tail = &dummy.next; 178 static int rcu_call_count; 179 static QemuEvent rcu_call_ready_event; 180 181 static void enqueue(struct rcu_head *node) 182 { 183 struct rcu_head **old_tail; 184 185 node->next = NULL; 186 old_tail = atomic_xchg(&tail, &node->next); 187 atomic_mb_set(old_tail, node); 188 } 189 190 static struct rcu_head *try_dequeue(void) 191 { 192 struct rcu_head *node, *next; 193 194 retry: 195 /* Test for an empty list, which we do not expect. Note that for 196 * the consumer head and tail are always consistent. The head 197 * is consistent because only the consumer reads/writes it. 198 * The tail, because it is the first step in the enqueuing. 199 * It is only the next pointers that might be inconsistent. 200 */ 201 if (head == &dummy && atomic_mb_read(&tail) == &dummy.next) { 202 abort(); 203 } 204 205 /* If the head node has NULL in its next pointer, the value is 206 * wrong and we need to wait until its enqueuer finishes the update. 207 */ 208 node = head; 209 next = atomic_mb_read(&head->next); 210 if (!next) { 211 return NULL; 212 } 213 214 /* Since we are the sole consumer, and we excluded the empty case 215 * above, the queue will always have at least two nodes: the 216 * dummy node, and the one being removed. So we do not need to update 217 * the tail pointer. 218 */ 219 head = next; 220 221 /* If we dequeued the dummy node, add it back at the end and retry. */ 222 if (node == &dummy) { 223 enqueue(node); 224 goto retry; 225 } 226 227 return node; 228 } 229 230 static void *call_rcu_thread(void *opaque) 231 { 232 struct rcu_head *node; 233 234 rcu_register_thread(); 235 236 for (;;) { 237 int tries = 0; 238 int n = atomic_read(&rcu_call_count); 239 240 /* Heuristically wait for a decent number of callbacks to pile up. 241 * Fetch rcu_call_count now, we only must process elements that were 242 * added before synchronize_rcu() starts. 243 */ 244 while (n == 0 || (n < RCU_CALL_MIN_SIZE && ++tries <= 5)) { 245 g_usleep(10000); 246 if (n == 0) { 247 qemu_event_reset(&rcu_call_ready_event); 248 n = atomic_read(&rcu_call_count); 249 if (n == 0) { 250 qemu_event_wait(&rcu_call_ready_event); 251 } 252 } 253 n = atomic_read(&rcu_call_count); 254 } 255 256 atomic_sub(&rcu_call_count, n); 257 synchronize_rcu(); 258 qemu_mutex_lock_iothread(); 259 while (n > 0) { 260 node = try_dequeue(); 261 while (!node) { 262 qemu_mutex_unlock_iothread(); 263 qemu_event_reset(&rcu_call_ready_event); 264 node = try_dequeue(); 265 if (!node) { 266 qemu_event_wait(&rcu_call_ready_event); 267 node = try_dequeue(); 268 } 269 qemu_mutex_lock_iothread(); 270 } 271 272 n--; 273 node->func(node); 274 } 275 qemu_mutex_unlock_iothread(); 276 } 277 abort(); 278 } 279 280 void call_rcu1(struct rcu_head *node, void (*func)(struct rcu_head *node)) 281 { 282 node->func = func; 283 enqueue(node); 284 atomic_inc(&rcu_call_count); 285 qemu_event_set(&rcu_call_ready_event); 286 } 287 288 void rcu_register_thread(void) 289 { 290 assert(rcu_reader.ctr == 0); 291 qemu_mutex_lock(&rcu_registry_lock); 292 QLIST_INSERT_HEAD(®istry, &rcu_reader, node); 293 qemu_mutex_unlock(&rcu_registry_lock); 294 } 295 296 void rcu_unregister_thread(void) 297 { 298 qemu_mutex_lock(&rcu_registry_lock); 299 QLIST_REMOVE(&rcu_reader, node); 300 qemu_mutex_unlock(&rcu_registry_lock); 301 } 302 303 static void rcu_init_complete(void) 304 { 305 QemuThread thread; 306 307 qemu_mutex_init(&rcu_registry_lock); 308 qemu_mutex_init(&rcu_sync_lock); 309 qemu_event_init(&rcu_gp_event, true); 310 311 qemu_event_init(&rcu_call_ready_event, false); 312 313 /* The caller is assumed to have iothread lock, so the call_rcu thread 314 * must have been quiescent even after forking, just recreate it. 315 */ 316 qemu_thread_create(&thread, "call_rcu", call_rcu_thread, 317 NULL, QEMU_THREAD_DETACHED); 318 319 rcu_register_thread(); 320 } 321 322 #ifdef CONFIG_POSIX 323 static void rcu_init_lock(void) 324 { 325 qemu_mutex_lock(&rcu_sync_lock); 326 qemu_mutex_lock(&rcu_registry_lock); 327 } 328 329 static void rcu_init_unlock(void) 330 { 331 qemu_mutex_unlock(&rcu_registry_lock); 332 qemu_mutex_unlock(&rcu_sync_lock); 333 } 334 #endif 335 336 void rcu_after_fork(void) 337 { 338 memset(®istry, 0, sizeof(registry)); 339 rcu_init_complete(); 340 } 341 342 static void __attribute__((__constructor__)) rcu_init(void) 343 { 344 #ifdef CONFIG_POSIX 345 pthread_atfork(rcu_init_lock, rcu_init_unlock, rcu_init_unlock); 346 #endif 347 rcu_init_complete(); 348 } 349