1 /* 2 * urcu-mb.c 3 * 4 * Userspace RCU library with explicit memory barriers 5 * 6 * Copyright (c) 2009 Mathieu Desnoyers <mathieu.desnoyers@efficios.com> 7 * Copyright (c) 2009 Paul E. McKenney, IBM Corporation. 8 * Copyright 2015 Red Hat, Inc. 9 * 10 * Ported to QEMU by Paolo Bonzini <pbonzini@redhat.com> 11 * 12 * This library is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU Lesser General Public 14 * License as published by the Free Software Foundation; either 15 * version 2.1 of the License, or (at your option) any later version. 16 * 17 * This library is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 20 * Lesser General Public License for more details. 21 * 22 * You should have received a copy of the GNU Lesser General Public 23 * License along with this library; if not, write to the Free Software 24 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 25 * 26 * IBM's contributions to this file may be relicensed under LGPLv2 or later. 27 */ 28 29 #include "qemu-common.h" 30 #include <stdio.h> 31 #include <assert.h> 32 #include <stdlib.h> 33 #include <stdint.h> 34 #include <errno.h> 35 #include "qemu/rcu.h" 36 #include "qemu/atomic.h" 37 #include "qemu/thread.h" 38 #include "qemu/main-loop.h" 39 40 /* 41 * Global grace period counter. Bit 0 is always one in rcu_gp_ctr. 42 * Bits 1 and above are defined in synchronize_rcu. 43 */ 44 #define RCU_GP_LOCKED (1UL << 0) 45 #define RCU_GP_CTR (1UL << 1) 46 47 unsigned long rcu_gp_ctr = RCU_GP_LOCKED; 48 49 QemuEvent rcu_gp_event; 50 static QemuMutex rcu_gp_lock; 51 52 /* 53 * Check whether a quiescent state was crossed between the beginning of 54 * update_counter_and_wait and now. 55 */ 56 static inline int rcu_gp_ongoing(unsigned long *ctr) 57 { 58 unsigned long v; 59 60 v = atomic_read(ctr); 61 return v && (v != rcu_gp_ctr); 62 } 63 64 /* Written to only by each individual reader. Read by both the reader and the 65 * writers. 66 */ 67 __thread struct rcu_reader_data rcu_reader; 68 69 /* Protected by rcu_gp_lock. */ 70 typedef QLIST_HEAD(, rcu_reader_data) ThreadList; 71 static ThreadList registry = QLIST_HEAD_INITIALIZER(registry); 72 73 /* Wait for previous parity/grace period to be empty of readers. */ 74 static void wait_for_readers(void) 75 { 76 ThreadList qsreaders = QLIST_HEAD_INITIALIZER(qsreaders); 77 struct rcu_reader_data *index, *tmp; 78 79 for (;;) { 80 /* We want to be notified of changes made to rcu_gp_ongoing 81 * while we walk the list. 82 */ 83 qemu_event_reset(&rcu_gp_event); 84 85 /* Instead of using atomic_mb_set for index->waiting, and 86 * atomic_mb_read for index->ctr, memory barriers are placed 87 * manually since writes to different threads are independent. 88 * atomic_mb_set has a smp_wmb before... 89 */ 90 smp_wmb(); 91 QLIST_FOREACH(index, ®istry, node) { 92 atomic_set(&index->waiting, true); 93 } 94 95 /* ... and a smp_mb after. */ 96 smp_mb(); 97 98 QLIST_FOREACH_SAFE(index, ®istry, node, tmp) { 99 if (!rcu_gp_ongoing(&index->ctr)) { 100 QLIST_REMOVE(index, node); 101 QLIST_INSERT_HEAD(&qsreaders, index, node); 102 103 /* No need for mb_set here, worst of all we 104 * get some extra futex wakeups. 105 */ 106 atomic_set(&index->waiting, false); 107 } 108 } 109 110 /* atomic_mb_read has smp_rmb after. */ 111 smp_rmb(); 112 113 if (QLIST_EMPTY(®istry)) { 114 break; 115 } 116 117 /* Wait for one thread to report a quiescent state and 118 * try again. 119 */ 120 qemu_event_wait(&rcu_gp_event); 121 } 122 123 /* put back the reader list in the registry */ 124 QLIST_SWAP(®istry, &qsreaders, node); 125 } 126 127 void synchronize_rcu(void) 128 { 129 qemu_mutex_lock(&rcu_gp_lock); 130 131 if (!QLIST_EMPTY(®istry)) { 132 /* In either case, the atomic_mb_set below blocks stores that free 133 * old RCU-protected pointers. 134 */ 135 if (sizeof(rcu_gp_ctr) < 8) { 136 /* For architectures with 32-bit longs, a two-subphases algorithm 137 * ensures we do not encounter overflow bugs. 138 * 139 * Switch parity: 0 -> 1, 1 -> 0. 140 */ 141 atomic_mb_set(&rcu_gp_ctr, rcu_gp_ctr ^ RCU_GP_CTR); 142 wait_for_readers(); 143 atomic_mb_set(&rcu_gp_ctr, rcu_gp_ctr ^ RCU_GP_CTR); 144 } else { 145 /* Increment current grace period. */ 146 atomic_mb_set(&rcu_gp_ctr, rcu_gp_ctr + RCU_GP_CTR); 147 } 148 149 wait_for_readers(); 150 } 151 152 qemu_mutex_unlock(&rcu_gp_lock); 153 } 154 155 156 #define RCU_CALL_MIN_SIZE 30 157 158 /* Multi-producer, single-consumer queue based on urcu/static/wfqueue.h 159 * from liburcu. Note that head is only used by the consumer. 160 */ 161 static struct rcu_head dummy; 162 static struct rcu_head *head = &dummy, **tail = &dummy.next; 163 static int rcu_call_count; 164 static QemuEvent rcu_call_ready_event; 165 166 static void enqueue(struct rcu_head *node) 167 { 168 struct rcu_head **old_tail; 169 170 node->next = NULL; 171 old_tail = atomic_xchg(&tail, &node->next); 172 atomic_mb_set(old_tail, node); 173 } 174 175 static struct rcu_head *try_dequeue(void) 176 { 177 struct rcu_head *node, *next; 178 179 retry: 180 /* Test for an empty list, which we do not expect. Note that for 181 * the consumer head and tail are always consistent. The head 182 * is consistent because only the consumer reads/writes it. 183 * The tail, because it is the first step in the enqueuing. 184 * It is only the next pointers that might be inconsistent. 185 */ 186 if (head == &dummy && atomic_mb_read(&tail) == &dummy.next) { 187 abort(); 188 } 189 190 /* If the head node has NULL in its next pointer, the value is 191 * wrong and we need to wait until its enqueuer finishes the update. 192 */ 193 node = head; 194 next = atomic_mb_read(&head->next); 195 if (!next) { 196 return NULL; 197 } 198 199 /* Since we are the sole consumer, and we excluded the empty case 200 * above, the queue will always have at least two nodes: the 201 * dummy node, and the one being removed. So we do not need to update 202 * the tail pointer. 203 */ 204 head = next; 205 206 /* If we dequeued the dummy node, add it back at the end and retry. */ 207 if (node == &dummy) { 208 enqueue(node); 209 goto retry; 210 } 211 212 return node; 213 } 214 215 static void *call_rcu_thread(void *opaque) 216 { 217 struct rcu_head *node; 218 219 for (;;) { 220 int tries = 0; 221 int n = atomic_read(&rcu_call_count); 222 223 /* Heuristically wait for a decent number of callbacks to pile up. 224 * Fetch rcu_call_count now, we only must process elements that were 225 * added before synchronize_rcu() starts. 226 */ 227 while (n == 0 || (n < RCU_CALL_MIN_SIZE && ++tries <= 5)) { 228 g_usleep(10000); 229 if (n == 0) { 230 qemu_event_reset(&rcu_call_ready_event); 231 n = atomic_read(&rcu_call_count); 232 if (n == 0) { 233 qemu_event_wait(&rcu_call_ready_event); 234 } 235 } 236 n = atomic_read(&rcu_call_count); 237 } 238 239 atomic_sub(&rcu_call_count, n); 240 synchronize_rcu(); 241 qemu_mutex_lock_iothread(); 242 while (n > 0) { 243 node = try_dequeue(); 244 while (!node) { 245 qemu_mutex_unlock_iothread(); 246 qemu_event_reset(&rcu_call_ready_event); 247 node = try_dequeue(); 248 if (!node) { 249 qemu_event_wait(&rcu_call_ready_event); 250 node = try_dequeue(); 251 } 252 qemu_mutex_lock_iothread(); 253 } 254 255 n--; 256 node->func(node); 257 } 258 qemu_mutex_unlock_iothread(); 259 } 260 abort(); 261 } 262 263 void call_rcu1(struct rcu_head *node, void (*func)(struct rcu_head *node)) 264 { 265 node->func = func; 266 enqueue(node); 267 atomic_inc(&rcu_call_count); 268 qemu_event_set(&rcu_call_ready_event); 269 } 270 271 void rcu_register_thread(void) 272 { 273 assert(rcu_reader.ctr == 0); 274 qemu_mutex_lock(&rcu_gp_lock); 275 QLIST_INSERT_HEAD(®istry, &rcu_reader, node); 276 qemu_mutex_unlock(&rcu_gp_lock); 277 } 278 279 void rcu_unregister_thread(void) 280 { 281 qemu_mutex_lock(&rcu_gp_lock); 282 QLIST_REMOVE(&rcu_reader, node); 283 qemu_mutex_unlock(&rcu_gp_lock); 284 } 285 286 static void rcu_init_complete(void) 287 { 288 QemuThread thread; 289 290 qemu_mutex_init(&rcu_gp_lock); 291 qemu_event_init(&rcu_gp_event, true); 292 293 qemu_event_init(&rcu_call_ready_event, false); 294 295 /* The caller is assumed to have iothread lock, so the call_rcu thread 296 * must have been quiescent even after forking, just recreate it. 297 */ 298 qemu_thread_create(&thread, "call_rcu", call_rcu_thread, 299 NULL, QEMU_THREAD_DETACHED); 300 301 rcu_register_thread(); 302 } 303 304 #ifdef CONFIG_POSIX 305 static void rcu_init_lock(void) 306 { 307 qemu_mutex_lock(&rcu_gp_lock); 308 } 309 310 static void rcu_init_unlock(void) 311 { 312 qemu_mutex_unlock(&rcu_gp_lock); 313 } 314 315 static void rcu_init_child(void) 316 { 317 qemu_mutex_unlock(&rcu_gp_lock); 318 memset(®istry, 0, sizeof(registry)); 319 rcu_init_complete(); 320 } 321 #endif 322 323 static void __attribute__((__constructor__)) rcu_init(void) 324 { 325 #ifdef CONFIG_POSIX 326 pthread_atfork(rcu_init_lock, rcu_init_unlock, rcu_init_child); 327 #endif 328 rcu_init_complete(); 329 } 330