1 /* 2 * urcu-mb.c 3 * 4 * Userspace RCU library with explicit memory barriers 5 * 6 * Copyright (c) 2009 Mathieu Desnoyers <mathieu.desnoyers@efficios.com> 7 * Copyright (c) 2009 Paul E. McKenney, IBM Corporation. 8 * Copyright 2015 Red Hat, Inc. 9 * 10 * Ported to QEMU by Paolo Bonzini <pbonzini@redhat.com> 11 * 12 * This library is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU Lesser General Public 14 * License as published by the Free Software Foundation; either 15 * version 2.1 of the License, or (at your option) any later version. 16 * 17 * This library is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 20 * Lesser General Public License for more details. 21 * 22 * You should have received a copy of the GNU Lesser General Public 23 * License along with this library; if not, write to the Free Software 24 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 25 * 26 * IBM's contributions to this file may be relicensed under LGPLv2 or later. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "qemu-common.h" 31 #include "qemu/rcu.h" 32 #include "qemu/atomic.h" 33 #include "qemu/thread.h" 34 #include "qemu/main-loop.h" 35 36 /* 37 * Global grace period counter. Bit 0 is always one in rcu_gp_ctr. 38 * Bits 1 and above are defined in synchronize_rcu. 39 */ 40 #define RCU_GP_LOCKED (1UL << 0) 41 #define RCU_GP_CTR (1UL << 1) 42 43 unsigned long rcu_gp_ctr = RCU_GP_LOCKED; 44 45 QemuEvent rcu_gp_event; 46 static QemuMutex rcu_registry_lock; 47 static QemuMutex rcu_sync_lock; 48 49 /* 50 * Check whether a quiescent state was crossed between the beginning of 51 * update_counter_and_wait and now. 52 */ 53 static inline int rcu_gp_ongoing(unsigned long *ctr) 54 { 55 unsigned long v; 56 57 v = atomic_read(ctr); 58 return v && (v != rcu_gp_ctr); 59 } 60 61 /* Written to only by each individual reader. Read by both the reader and the 62 * writers. 63 */ 64 __thread struct rcu_reader_data rcu_reader; 65 66 /* Protected by rcu_registry_lock. */ 67 typedef QLIST_HEAD(, rcu_reader_data) ThreadList; 68 static ThreadList registry = QLIST_HEAD_INITIALIZER(registry); 69 70 /* Wait for previous parity/grace period to be empty of readers. */ 71 static void wait_for_readers(void) 72 { 73 ThreadList qsreaders = QLIST_HEAD_INITIALIZER(qsreaders); 74 struct rcu_reader_data *index, *tmp; 75 76 for (;;) { 77 /* We want to be notified of changes made to rcu_gp_ongoing 78 * while we walk the list. 79 */ 80 qemu_event_reset(&rcu_gp_event); 81 82 /* Instead of using atomic_mb_set for index->waiting, and 83 * atomic_mb_read for index->ctr, memory barriers are placed 84 * manually since writes to different threads are independent. 85 * qemu_event_reset has acquire semantics, so no memory barrier 86 * is needed here. 87 */ 88 QLIST_FOREACH(index, ®istry, node) { 89 atomic_set(&index->waiting, true); 90 } 91 92 /* Here, order the stores to index->waiting before the 93 * loads of index->ctr. 94 */ 95 smp_mb(); 96 97 QLIST_FOREACH_SAFE(index, ®istry, node, tmp) { 98 if (!rcu_gp_ongoing(&index->ctr)) { 99 QLIST_REMOVE(index, node); 100 QLIST_INSERT_HEAD(&qsreaders, index, node); 101 102 /* No need for mb_set here, worst of all we 103 * get some extra futex wakeups. 104 */ 105 atomic_set(&index->waiting, false); 106 } 107 } 108 109 if (QLIST_EMPTY(®istry)) { 110 break; 111 } 112 113 /* Wait for one thread to report a quiescent state and try again. 114 * Release rcu_registry_lock, so rcu_(un)register_thread() doesn't 115 * wait too much time. 116 * 117 * rcu_register_thread() may add nodes to ®istry; it will not 118 * wake up synchronize_rcu, but that is okay because at least another 119 * thread must exit its RCU read-side critical section before 120 * synchronize_rcu is done. The next iteration of the loop will 121 * move the new thread's rcu_reader from ®istry to &qsreaders, 122 * because rcu_gp_ongoing() will return false. 123 * 124 * rcu_unregister_thread() may remove nodes from &qsreaders instead 125 * of ®istry if it runs during qemu_event_wait. That's okay; 126 * the node then will not be added back to ®istry by QLIST_SWAP 127 * below. The invariant is that the node is part of one list when 128 * rcu_registry_lock is released. 129 */ 130 qemu_mutex_unlock(&rcu_registry_lock); 131 qemu_event_wait(&rcu_gp_event); 132 qemu_mutex_lock(&rcu_registry_lock); 133 } 134 135 /* put back the reader list in the registry */ 136 QLIST_SWAP(®istry, &qsreaders, node); 137 } 138 139 void synchronize_rcu(void) 140 { 141 qemu_mutex_lock(&rcu_sync_lock); 142 qemu_mutex_lock(&rcu_registry_lock); 143 144 if (!QLIST_EMPTY(®istry)) { 145 /* In either case, the atomic_mb_set below blocks stores that free 146 * old RCU-protected pointers. 147 */ 148 if (sizeof(rcu_gp_ctr) < 8) { 149 /* For architectures with 32-bit longs, a two-subphases algorithm 150 * ensures we do not encounter overflow bugs. 151 * 152 * Switch parity: 0 -> 1, 1 -> 0. 153 */ 154 atomic_mb_set(&rcu_gp_ctr, rcu_gp_ctr ^ RCU_GP_CTR); 155 wait_for_readers(); 156 atomic_mb_set(&rcu_gp_ctr, rcu_gp_ctr ^ RCU_GP_CTR); 157 } else { 158 /* Increment current grace period. */ 159 atomic_mb_set(&rcu_gp_ctr, rcu_gp_ctr + RCU_GP_CTR); 160 } 161 162 wait_for_readers(); 163 } 164 165 qemu_mutex_unlock(&rcu_registry_lock); 166 qemu_mutex_unlock(&rcu_sync_lock); 167 } 168 169 170 #define RCU_CALL_MIN_SIZE 30 171 172 /* Multi-producer, single-consumer queue based on urcu/static/wfqueue.h 173 * from liburcu. Note that head is only used by the consumer. 174 */ 175 static struct rcu_head dummy; 176 static struct rcu_head *head = &dummy, **tail = &dummy.next; 177 static int rcu_call_count; 178 static QemuEvent rcu_call_ready_event; 179 180 static void enqueue(struct rcu_head *node) 181 { 182 struct rcu_head **old_tail; 183 184 node->next = NULL; 185 old_tail = atomic_xchg(&tail, &node->next); 186 atomic_mb_set(old_tail, node); 187 } 188 189 static struct rcu_head *try_dequeue(void) 190 { 191 struct rcu_head *node, *next; 192 193 retry: 194 /* Test for an empty list, which we do not expect. Note that for 195 * the consumer head and tail are always consistent. The head 196 * is consistent because only the consumer reads/writes it. 197 * The tail, because it is the first step in the enqueuing. 198 * It is only the next pointers that might be inconsistent. 199 */ 200 if (head == &dummy && atomic_mb_read(&tail) == &dummy.next) { 201 abort(); 202 } 203 204 /* If the head node has NULL in its next pointer, the value is 205 * wrong and we need to wait until its enqueuer finishes the update. 206 */ 207 node = head; 208 next = atomic_mb_read(&head->next); 209 if (!next) { 210 return NULL; 211 } 212 213 /* Since we are the sole consumer, and we excluded the empty case 214 * above, the queue will always have at least two nodes: the 215 * dummy node, and the one being removed. So we do not need to update 216 * the tail pointer. 217 */ 218 head = next; 219 220 /* If we dequeued the dummy node, add it back at the end and retry. */ 221 if (node == &dummy) { 222 enqueue(node); 223 goto retry; 224 } 225 226 return node; 227 } 228 229 static void *call_rcu_thread(void *opaque) 230 { 231 struct rcu_head *node; 232 233 rcu_register_thread(); 234 235 for (;;) { 236 int tries = 0; 237 int n = atomic_read(&rcu_call_count); 238 239 /* Heuristically wait for a decent number of callbacks to pile up. 240 * Fetch rcu_call_count now, we only must process elements that were 241 * added before synchronize_rcu() starts. 242 */ 243 while (n == 0 || (n < RCU_CALL_MIN_SIZE && ++tries <= 5)) { 244 g_usleep(10000); 245 if (n == 0) { 246 qemu_event_reset(&rcu_call_ready_event); 247 n = atomic_read(&rcu_call_count); 248 if (n == 0) { 249 qemu_event_wait(&rcu_call_ready_event); 250 } 251 } 252 n = atomic_read(&rcu_call_count); 253 } 254 255 atomic_sub(&rcu_call_count, n); 256 synchronize_rcu(); 257 qemu_mutex_lock_iothread(); 258 while (n > 0) { 259 node = try_dequeue(); 260 while (!node) { 261 qemu_mutex_unlock_iothread(); 262 qemu_event_reset(&rcu_call_ready_event); 263 node = try_dequeue(); 264 if (!node) { 265 qemu_event_wait(&rcu_call_ready_event); 266 node = try_dequeue(); 267 } 268 qemu_mutex_lock_iothread(); 269 } 270 271 n--; 272 node->func(node); 273 } 274 qemu_mutex_unlock_iothread(); 275 } 276 abort(); 277 } 278 279 void call_rcu1(struct rcu_head *node, void (*func)(struct rcu_head *node)) 280 { 281 node->func = func; 282 enqueue(node); 283 atomic_inc(&rcu_call_count); 284 qemu_event_set(&rcu_call_ready_event); 285 } 286 287 void rcu_register_thread(void) 288 { 289 assert(rcu_reader.ctr == 0); 290 qemu_mutex_lock(&rcu_registry_lock); 291 QLIST_INSERT_HEAD(®istry, &rcu_reader, node); 292 qemu_mutex_unlock(&rcu_registry_lock); 293 } 294 295 void rcu_unregister_thread(void) 296 { 297 qemu_mutex_lock(&rcu_registry_lock); 298 QLIST_REMOVE(&rcu_reader, node); 299 qemu_mutex_unlock(&rcu_registry_lock); 300 } 301 302 static void rcu_init_complete(void) 303 { 304 QemuThread thread; 305 306 qemu_mutex_init(&rcu_registry_lock); 307 qemu_mutex_init(&rcu_sync_lock); 308 qemu_event_init(&rcu_gp_event, true); 309 310 qemu_event_init(&rcu_call_ready_event, false); 311 312 /* The caller is assumed to have iothread lock, so the call_rcu thread 313 * must have been quiescent even after forking, just recreate it. 314 */ 315 qemu_thread_create(&thread, "call_rcu", call_rcu_thread, 316 NULL, QEMU_THREAD_DETACHED); 317 318 rcu_register_thread(); 319 } 320 321 #ifdef CONFIG_POSIX 322 static void rcu_init_lock(void) 323 { 324 qemu_mutex_lock(&rcu_sync_lock); 325 qemu_mutex_lock(&rcu_registry_lock); 326 } 327 328 static void rcu_init_unlock(void) 329 { 330 qemu_mutex_unlock(&rcu_registry_lock); 331 qemu_mutex_unlock(&rcu_sync_lock); 332 } 333 #endif 334 335 void rcu_after_fork(void) 336 { 337 memset(®istry, 0, sizeof(registry)); 338 rcu_init_complete(); 339 } 340 341 static void __attribute__((__constructor__)) rcu_init(void) 342 { 343 #ifdef CONFIG_POSIX 344 pthread_atfork(rcu_init_lock, rcu_init_unlock, rcu_init_unlock); 345 #endif 346 rcu_init_complete(); 347 } 348