xref: /openbmc/qemu/util/rcu.c (revision 14b61600)
1 /*
2  * urcu-mb.c
3  *
4  * Userspace RCU library with explicit memory barriers
5  *
6  * Copyright (c) 2009 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7  * Copyright (c) 2009 Paul E. McKenney, IBM Corporation.
8  * Copyright 2015 Red Hat, Inc.
9  *
10  * Ported to QEMU by Paolo Bonzini  <pbonzini@redhat.com>
11  *
12  * This library is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU Lesser General Public
14  * License as published by the Free Software Foundation; either
15  * version 2.1 of the License, or (at your option) any later version.
16  *
17  * This library is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * Lesser General Public License for more details.
21  *
22  * You should have received a copy of the GNU Lesser General Public
23  * License along with this library; if not, write to the Free Software
24  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25  *
26  * IBM's contributions to this file may be relicensed under LGPLv2 or later.
27  */
28 
29 #include "qemu-common.h"
30 #include <stdio.h>
31 #include <assert.h>
32 #include <stdlib.h>
33 #include <stdint.h>
34 #include <errno.h>
35 #include "qemu/rcu.h"
36 #include "qemu/atomic.h"
37 #include "qemu/thread.h"
38 #include "qemu/main-loop.h"
39 
40 /*
41  * Global grace period counter.  Bit 0 is always one in rcu_gp_ctr.
42  * Bits 1 and above are defined in synchronize_rcu.
43  */
44 #define RCU_GP_LOCKED           (1UL << 0)
45 #define RCU_GP_CTR              (1UL << 1)
46 
47 unsigned long rcu_gp_ctr = RCU_GP_LOCKED;
48 
49 QemuEvent rcu_gp_event;
50 static QemuMutex rcu_registry_lock;
51 static QemuMutex rcu_sync_lock;
52 
53 /*
54  * Check whether a quiescent state was crossed between the beginning of
55  * update_counter_and_wait and now.
56  */
57 static inline int rcu_gp_ongoing(unsigned long *ctr)
58 {
59     unsigned long v;
60 
61     v = atomic_read(ctr);
62     return v && (v != rcu_gp_ctr);
63 }
64 
65 /* Written to only by each individual reader. Read by both the reader and the
66  * writers.
67  */
68 __thread struct rcu_reader_data rcu_reader;
69 
70 /* Protected by rcu_registry_lock.  */
71 typedef QLIST_HEAD(, rcu_reader_data) ThreadList;
72 static ThreadList registry = QLIST_HEAD_INITIALIZER(registry);
73 
74 /* Wait for previous parity/grace period to be empty of readers.  */
75 static void wait_for_readers(void)
76 {
77     ThreadList qsreaders = QLIST_HEAD_INITIALIZER(qsreaders);
78     struct rcu_reader_data *index, *tmp;
79 
80     for (;;) {
81         /* We want to be notified of changes made to rcu_gp_ongoing
82          * while we walk the list.
83          */
84         qemu_event_reset(&rcu_gp_event);
85 
86         /* Instead of using atomic_mb_set for index->waiting, and
87          * atomic_mb_read for index->ctr, memory barriers are placed
88          * manually since writes to different threads are independent.
89          * atomic_mb_set has a smp_wmb before...
90          */
91         smp_wmb();
92         QLIST_FOREACH(index, &registry, node) {
93             atomic_set(&index->waiting, true);
94         }
95 
96         /* ... and a smp_mb after.  */
97         smp_mb();
98 
99         QLIST_FOREACH_SAFE(index, &registry, node, tmp) {
100             if (!rcu_gp_ongoing(&index->ctr)) {
101                 QLIST_REMOVE(index, node);
102                 QLIST_INSERT_HEAD(&qsreaders, index, node);
103 
104                 /* No need for mb_set here, worst of all we
105                  * get some extra futex wakeups.
106                  */
107                 atomic_set(&index->waiting, false);
108             }
109         }
110 
111         /* atomic_mb_read has smp_rmb after.  */
112         smp_rmb();
113 
114         if (QLIST_EMPTY(&registry)) {
115             break;
116         }
117 
118         /* Wait for one thread to report a quiescent state and try again.
119          * Release rcu_registry_lock, so rcu_(un)register_thread() doesn't
120          * wait too much time.
121          *
122          * rcu_register_thread() may add nodes to &registry; it will not
123          * wake up synchronize_rcu, but that is okay because at least another
124          * thread must exit its RCU read-side critical section before
125          * synchronize_rcu is done.  The next iteration of the loop will
126          * move the new thread's rcu_reader from &registry to &qsreaders,
127          * because rcu_gp_ongoing() will return false.
128          *
129          * rcu_unregister_thread() may remove nodes from &qsreaders instead
130          * of &registry if it runs during qemu_event_wait.  That's okay;
131          * the node then will not be added back to &registry by QLIST_SWAP
132          * below.  The invariant is that the node is part of one list when
133          * rcu_registry_lock is released.
134          */
135         qemu_mutex_unlock(&rcu_registry_lock);
136         qemu_event_wait(&rcu_gp_event);
137         qemu_mutex_lock(&rcu_registry_lock);
138     }
139 
140     /* put back the reader list in the registry */
141     QLIST_SWAP(&registry, &qsreaders, node);
142 }
143 
144 void synchronize_rcu(void)
145 {
146     qemu_mutex_lock(&rcu_sync_lock);
147     qemu_mutex_lock(&rcu_registry_lock);
148 
149     if (!QLIST_EMPTY(&registry)) {
150         /* In either case, the atomic_mb_set below blocks stores that free
151          * old RCU-protected pointers.
152          */
153         if (sizeof(rcu_gp_ctr) < 8) {
154             /* For architectures with 32-bit longs, a two-subphases algorithm
155              * ensures we do not encounter overflow bugs.
156              *
157              * Switch parity: 0 -> 1, 1 -> 0.
158              */
159             atomic_mb_set(&rcu_gp_ctr, rcu_gp_ctr ^ RCU_GP_CTR);
160             wait_for_readers();
161             atomic_mb_set(&rcu_gp_ctr, rcu_gp_ctr ^ RCU_GP_CTR);
162         } else {
163             /* Increment current grace period.  */
164             atomic_mb_set(&rcu_gp_ctr, rcu_gp_ctr + RCU_GP_CTR);
165         }
166 
167         wait_for_readers();
168     }
169 
170     qemu_mutex_unlock(&rcu_registry_lock);
171     qemu_mutex_unlock(&rcu_sync_lock);
172 }
173 
174 
175 #define RCU_CALL_MIN_SIZE        30
176 
177 /* Multi-producer, single-consumer queue based on urcu/static/wfqueue.h
178  * from liburcu.  Note that head is only used by the consumer.
179  */
180 static struct rcu_head dummy;
181 static struct rcu_head *head = &dummy, **tail = &dummy.next;
182 static int rcu_call_count;
183 static QemuEvent rcu_call_ready_event;
184 
185 static void enqueue(struct rcu_head *node)
186 {
187     struct rcu_head **old_tail;
188 
189     node->next = NULL;
190     old_tail = atomic_xchg(&tail, &node->next);
191     atomic_mb_set(old_tail, node);
192 }
193 
194 static struct rcu_head *try_dequeue(void)
195 {
196     struct rcu_head *node, *next;
197 
198 retry:
199     /* Test for an empty list, which we do not expect.  Note that for
200      * the consumer head and tail are always consistent.  The head
201      * is consistent because only the consumer reads/writes it.
202      * The tail, because it is the first step in the enqueuing.
203      * It is only the next pointers that might be inconsistent.
204      */
205     if (head == &dummy && atomic_mb_read(&tail) == &dummy.next) {
206         abort();
207     }
208 
209     /* If the head node has NULL in its next pointer, the value is
210      * wrong and we need to wait until its enqueuer finishes the update.
211      */
212     node = head;
213     next = atomic_mb_read(&head->next);
214     if (!next) {
215         return NULL;
216     }
217 
218     /* Since we are the sole consumer, and we excluded the empty case
219      * above, the queue will always have at least two nodes: the
220      * dummy node, and the one being removed.  So we do not need to update
221      * the tail pointer.
222      */
223     head = next;
224 
225     /* If we dequeued the dummy node, add it back at the end and retry.  */
226     if (node == &dummy) {
227         enqueue(node);
228         goto retry;
229     }
230 
231     return node;
232 }
233 
234 static void *call_rcu_thread(void *opaque)
235 {
236     struct rcu_head *node;
237 
238     rcu_register_thread();
239 
240     for (;;) {
241         int tries = 0;
242         int n = atomic_read(&rcu_call_count);
243 
244         /* Heuristically wait for a decent number of callbacks to pile up.
245          * Fetch rcu_call_count now, we only must process elements that were
246          * added before synchronize_rcu() starts.
247          */
248         while (n == 0 || (n < RCU_CALL_MIN_SIZE && ++tries <= 5)) {
249             g_usleep(10000);
250             if (n == 0) {
251                 qemu_event_reset(&rcu_call_ready_event);
252                 n = atomic_read(&rcu_call_count);
253                 if (n == 0) {
254                     qemu_event_wait(&rcu_call_ready_event);
255                 }
256             }
257             n = atomic_read(&rcu_call_count);
258         }
259 
260         atomic_sub(&rcu_call_count, n);
261         synchronize_rcu();
262         qemu_mutex_lock_iothread();
263         while (n > 0) {
264             node = try_dequeue();
265             while (!node) {
266                 qemu_mutex_unlock_iothread();
267                 qemu_event_reset(&rcu_call_ready_event);
268                 node = try_dequeue();
269                 if (!node) {
270                     qemu_event_wait(&rcu_call_ready_event);
271                     node = try_dequeue();
272                 }
273                 qemu_mutex_lock_iothread();
274             }
275 
276             n--;
277             node->func(node);
278         }
279         qemu_mutex_unlock_iothread();
280     }
281     abort();
282 }
283 
284 void call_rcu1(struct rcu_head *node, void (*func)(struct rcu_head *node))
285 {
286     node->func = func;
287     enqueue(node);
288     atomic_inc(&rcu_call_count);
289     qemu_event_set(&rcu_call_ready_event);
290 }
291 
292 void rcu_register_thread(void)
293 {
294     assert(rcu_reader.ctr == 0);
295     qemu_mutex_lock(&rcu_registry_lock);
296     QLIST_INSERT_HEAD(&registry, &rcu_reader, node);
297     qemu_mutex_unlock(&rcu_registry_lock);
298 }
299 
300 void rcu_unregister_thread(void)
301 {
302     qemu_mutex_lock(&rcu_registry_lock);
303     QLIST_REMOVE(&rcu_reader, node);
304     qemu_mutex_unlock(&rcu_registry_lock);
305 }
306 
307 static void rcu_init_complete(void)
308 {
309     QemuThread thread;
310 
311     qemu_mutex_init(&rcu_registry_lock);
312     qemu_mutex_init(&rcu_sync_lock);
313     qemu_event_init(&rcu_gp_event, true);
314 
315     qemu_event_init(&rcu_call_ready_event, false);
316 
317     /* The caller is assumed to have iothread lock, so the call_rcu thread
318      * must have been quiescent even after forking, just recreate it.
319      */
320     qemu_thread_create(&thread, "call_rcu", call_rcu_thread,
321                        NULL, QEMU_THREAD_DETACHED);
322 
323     rcu_register_thread();
324 }
325 
326 #ifdef CONFIG_POSIX
327 static void rcu_init_lock(void)
328 {
329     qemu_mutex_lock(&rcu_sync_lock);
330     qemu_mutex_lock(&rcu_registry_lock);
331 }
332 
333 static void rcu_init_unlock(void)
334 {
335     qemu_mutex_unlock(&rcu_registry_lock);
336     qemu_mutex_unlock(&rcu_sync_lock);
337 }
338 #endif
339 
340 void rcu_after_fork(void)
341 {
342     memset(&registry, 0, sizeof(registry));
343     rcu_init_complete();
344 }
345 
346 static void __attribute__((__constructor__)) rcu_init(void)
347 {
348 #ifdef CONFIG_POSIX
349     pthread_atfork(rcu_init_lock, rcu_init_unlock, rcu_init_unlock);
350 #endif
351     rcu_init_complete();
352 }
353