1 /* 2 * Win32 implementation for mutex/cond/thread functions 3 * 4 * Copyright Red Hat, Inc. 2010 5 * 6 * Author: 7 * Paolo Bonzini <pbonzini@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 #include "qemu-common.h" 14 #include "qemu/thread.h" 15 #include <process.h> 16 #include <assert.h> 17 #include <limits.h> 18 19 static bool name_threads; 20 21 void qemu_thread_naming(bool enable) 22 { 23 /* But note we don't actually name them on Windows yet */ 24 name_threads = enable; 25 26 fprintf(stderr, "qemu: thread naming not supported on this host\n"); 27 } 28 29 static void error_exit(int err, const char *msg) 30 { 31 char *pstr; 32 33 FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER, 34 NULL, err, 0, (LPTSTR)&pstr, 2, NULL); 35 fprintf(stderr, "qemu: %s: %s\n", msg, pstr); 36 LocalFree(pstr); 37 abort(); 38 } 39 40 void qemu_mutex_init(QemuMutex *mutex) 41 { 42 mutex->owner = 0; 43 InitializeCriticalSection(&mutex->lock); 44 } 45 46 void qemu_mutex_destroy(QemuMutex *mutex) 47 { 48 assert(mutex->owner == 0); 49 DeleteCriticalSection(&mutex->lock); 50 } 51 52 void qemu_mutex_lock(QemuMutex *mutex) 53 { 54 EnterCriticalSection(&mutex->lock); 55 56 /* Win32 CRITICAL_SECTIONs are recursive. Assert that we're not 57 * using them as such. 58 */ 59 assert(mutex->owner == 0); 60 mutex->owner = GetCurrentThreadId(); 61 } 62 63 int qemu_mutex_trylock(QemuMutex *mutex) 64 { 65 int owned; 66 67 owned = TryEnterCriticalSection(&mutex->lock); 68 if (owned) { 69 assert(mutex->owner == 0); 70 mutex->owner = GetCurrentThreadId(); 71 } 72 return !owned; 73 } 74 75 void qemu_mutex_unlock(QemuMutex *mutex) 76 { 77 assert(mutex->owner == GetCurrentThreadId()); 78 mutex->owner = 0; 79 LeaveCriticalSection(&mutex->lock); 80 } 81 82 void qemu_cond_init(QemuCond *cond) 83 { 84 memset(cond, 0, sizeof(*cond)); 85 86 cond->sema = CreateSemaphore(NULL, 0, LONG_MAX, NULL); 87 if (!cond->sema) { 88 error_exit(GetLastError(), __func__); 89 } 90 cond->continue_event = CreateEvent(NULL, /* security */ 91 FALSE, /* auto-reset */ 92 FALSE, /* not signaled */ 93 NULL); /* name */ 94 if (!cond->continue_event) { 95 error_exit(GetLastError(), __func__); 96 } 97 } 98 99 void qemu_cond_destroy(QemuCond *cond) 100 { 101 BOOL result; 102 result = CloseHandle(cond->continue_event); 103 if (!result) { 104 error_exit(GetLastError(), __func__); 105 } 106 cond->continue_event = 0; 107 result = CloseHandle(cond->sema); 108 if (!result) { 109 error_exit(GetLastError(), __func__); 110 } 111 cond->sema = 0; 112 } 113 114 void qemu_cond_signal(QemuCond *cond) 115 { 116 DWORD result; 117 118 /* 119 * Signal only when there are waiters. cond->waiters is 120 * incremented by pthread_cond_wait under the external lock, 121 * so we are safe about that. 122 */ 123 if (cond->waiters == 0) { 124 return; 125 } 126 127 /* 128 * Waiting threads decrement it outside the external lock, but 129 * only if another thread is executing pthread_cond_broadcast and 130 * has the mutex. So, it also cannot be decremented concurrently 131 * with this particular access. 132 */ 133 cond->target = cond->waiters - 1; 134 result = SignalObjectAndWait(cond->sema, cond->continue_event, 135 INFINITE, FALSE); 136 if (result == WAIT_ABANDONED || result == WAIT_FAILED) { 137 error_exit(GetLastError(), __func__); 138 } 139 } 140 141 void qemu_cond_broadcast(QemuCond *cond) 142 { 143 BOOLEAN result; 144 /* 145 * As in pthread_cond_signal, access to cond->waiters and 146 * cond->target is locked via the external mutex. 147 */ 148 if (cond->waiters == 0) { 149 return; 150 } 151 152 cond->target = 0; 153 result = ReleaseSemaphore(cond->sema, cond->waiters, NULL); 154 if (!result) { 155 error_exit(GetLastError(), __func__); 156 } 157 158 /* 159 * At this point all waiters continue. Each one takes its 160 * slice of the semaphore. Now it's our turn to wait: Since 161 * the external mutex is held, no thread can leave cond_wait, 162 * yet. For this reason, we can be sure that no thread gets 163 * a chance to eat *more* than one slice. OTOH, it means 164 * that the last waiter must send us a wake-up. 165 */ 166 WaitForSingleObject(cond->continue_event, INFINITE); 167 } 168 169 void qemu_cond_wait(QemuCond *cond, QemuMutex *mutex) 170 { 171 /* 172 * This access is protected under the mutex. 173 */ 174 cond->waiters++; 175 176 /* 177 * Unlock external mutex and wait for signal. 178 * NOTE: we've held mutex locked long enough to increment 179 * waiters count above, so there's no problem with 180 * leaving mutex unlocked before we wait on semaphore. 181 */ 182 qemu_mutex_unlock(mutex); 183 WaitForSingleObject(cond->sema, INFINITE); 184 185 /* Now waiters must rendez-vous with the signaling thread and 186 * let it continue. For cond_broadcast this has heavy contention 187 * and triggers thundering herd. So goes life. 188 * 189 * Decrease waiters count. The mutex is not taken, so we have 190 * to do this atomically. 191 * 192 * All waiters contend for the mutex at the end of this function 193 * until the signaling thread relinquishes it. To ensure 194 * each waiter consumes exactly one slice of the semaphore, 195 * the signaling thread stops until it is told by the last 196 * waiter that it can go on. 197 */ 198 if (InterlockedDecrement(&cond->waiters) == cond->target) { 199 SetEvent(cond->continue_event); 200 } 201 202 qemu_mutex_lock(mutex); 203 } 204 205 void qemu_sem_init(QemuSemaphore *sem, int init) 206 { 207 /* Manual reset. */ 208 sem->sema = CreateSemaphore(NULL, init, LONG_MAX, NULL); 209 } 210 211 void qemu_sem_destroy(QemuSemaphore *sem) 212 { 213 CloseHandle(sem->sema); 214 } 215 216 void qemu_sem_post(QemuSemaphore *sem) 217 { 218 ReleaseSemaphore(sem->sema, 1, NULL); 219 } 220 221 int qemu_sem_timedwait(QemuSemaphore *sem, int ms) 222 { 223 int rc = WaitForSingleObject(sem->sema, ms); 224 if (rc == WAIT_OBJECT_0) { 225 return 0; 226 } 227 if (rc != WAIT_TIMEOUT) { 228 error_exit(GetLastError(), __func__); 229 } 230 return -1; 231 } 232 233 void qemu_sem_wait(QemuSemaphore *sem) 234 { 235 if (WaitForSingleObject(sem->sema, INFINITE) != WAIT_OBJECT_0) { 236 error_exit(GetLastError(), __func__); 237 } 238 } 239 240 void qemu_event_init(QemuEvent *ev, bool init) 241 { 242 /* Manual reset. */ 243 ev->event = CreateEvent(NULL, TRUE, init, NULL); 244 } 245 246 void qemu_event_destroy(QemuEvent *ev) 247 { 248 CloseHandle(ev->event); 249 } 250 251 void qemu_event_set(QemuEvent *ev) 252 { 253 SetEvent(ev->event); 254 } 255 256 void qemu_event_reset(QemuEvent *ev) 257 { 258 ResetEvent(ev->event); 259 } 260 261 void qemu_event_wait(QemuEvent *ev) 262 { 263 WaitForSingleObject(ev->event, INFINITE); 264 } 265 266 struct QemuThreadData { 267 /* Passed to win32_start_routine. */ 268 void *(*start_routine)(void *); 269 void *arg; 270 short mode; 271 272 /* Only used for joinable threads. */ 273 bool exited; 274 void *ret; 275 CRITICAL_SECTION cs; 276 }; 277 278 static __thread QemuThreadData *qemu_thread_data; 279 280 static unsigned __stdcall win32_start_routine(void *arg) 281 { 282 QemuThreadData *data = (QemuThreadData *) arg; 283 void *(*start_routine)(void *) = data->start_routine; 284 void *thread_arg = data->arg; 285 286 if (data->mode == QEMU_THREAD_DETACHED) { 287 g_free(data); 288 data = NULL; 289 } 290 qemu_thread_data = data; 291 qemu_thread_exit(start_routine(thread_arg)); 292 abort(); 293 } 294 295 void qemu_thread_exit(void *arg) 296 { 297 QemuThreadData *data = qemu_thread_data; 298 299 if (data) { 300 assert(data->mode != QEMU_THREAD_DETACHED); 301 data->ret = arg; 302 EnterCriticalSection(&data->cs); 303 data->exited = true; 304 LeaveCriticalSection(&data->cs); 305 } 306 _endthreadex(0); 307 } 308 309 void *qemu_thread_join(QemuThread *thread) 310 { 311 QemuThreadData *data; 312 void *ret; 313 HANDLE handle; 314 315 data = thread->data; 316 if (!data) { 317 return NULL; 318 } 319 /* 320 * Because multiple copies of the QemuThread can exist via 321 * qemu_thread_get_self, we need to store a value that cannot 322 * leak there. The simplest, non racy way is to store the TID, 323 * discard the handle that _beginthreadex gives back, and 324 * get another copy of the handle here. 325 */ 326 handle = qemu_thread_get_handle(thread); 327 if (handle) { 328 WaitForSingleObject(handle, INFINITE); 329 CloseHandle(handle); 330 } 331 ret = data->ret; 332 assert(data->mode != QEMU_THREAD_DETACHED); 333 DeleteCriticalSection(&data->cs); 334 g_free(data); 335 return ret; 336 } 337 338 void qemu_thread_create(QemuThread *thread, const char *name, 339 void *(*start_routine)(void *), 340 void *arg, int mode) 341 { 342 HANDLE hThread; 343 struct QemuThreadData *data; 344 345 data = g_malloc(sizeof *data); 346 data->start_routine = start_routine; 347 data->arg = arg; 348 data->mode = mode; 349 data->exited = false; 350 351 if (data->mode != QEMU_THREAD_DETACHED) { 352 InitializeCriticalSection(&data->cs); 353 } 354 355 hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine, 356 data, 0, &thread->tid); 357 if (!hThread) { 358 error_exit(GetLastError(), __func__); 359 } 360 CloseHandle(hThread); 361 thread->data = (mode == QEMU_THREAD_DETACHED) ? NULL : data; 362 } 363 364 void qemu_thread_get_self(QemuThread *thread) 365 { 366 thread->data = qemu_thread_data; 367 thread->tid = GetCurrentThreadId(); 368 } 369 370 HANDLE qemu_thread_get_handle(QemuThread *thread) 371 { 372 QemuThreadData *data; 373 HANDLE handle; 374 375 data = thread->data; 376 if (!data) { 377 return NULL; 378 } 379 380 assert(data->mode != QEMU_THREAD_DETACHED); 381 EnterCriticalSection(&data->cs); 382 if (!data->exited) { 383 handle = OpenThread(SYNCHRONIZE | THREAD_SUSPEND_RESUME, FALSE, 384 thread->tid); 385 } else { 386 handle = NULL; 387 } 388 LeaveCriticalSection(&data->cs); 389 return handle; 390 } 391 392 bool qemu_thread_is_self(QemuThread *thread) 393 { 394 return GetCurrentThreadId() == thread->tid; 395 } 396