1 /* 2 * Win32 implementation for mutex/cond/thread functions 3 * 4 * Copyright Red Hat, Inc. 2010 5 * 6 * Author: 7 * Paolo Bonzini <pbonzini@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 #include "qemu/osdep.h" 14 #include "qemu-common.h" 15 #include "qemu/thread.h" 16 #include "qemu/notify.h" 17 #include <process.h> 18 19 static bool name_threads; 20 21 void qemu_thread_naming(bool enable) 22 { 23 /* But note we don't actually name them on Windows yet */ 24 name_threads = enable; 25 26 fprintf(stderr, "qemu: thread naming not supported on this host\n"); 27 } 28 29 static void error_exit(int err, const char *msg) 30 { 31 char *pstr; 32 33 FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER, 34 NULL, err, 0, (LPTSTR)&pstr, 2, NULL); 35 fprintf(stderr, "qemu: %s: %s\n", msg, pstr); 36 LocalFree(pstr); 37 abort(); 38 } 39 40 void qemu_mutex_init(QemuMutex *mutex) 41 { 42 mutex->owner = 0; 43 InitializeCriticalSection(&mutex->lock); 44 } 45 46 void qemu_mutex_destroy(QemuMutex *mutex) 47 { 48 assert(mutex->owner == 0); 49 DeleteCriticalSection(&mutex->lock); 50 } 51 52 void qemu_mutex_lock(QemuMutex *mutex) 53 { 54 EnterCriticalSection(&mutex->lock); 55 56 /* Win32 CRITICAL_SECTIONs are recursive. Assert that we're not 57 * using them as such. 58 */ 59 assert(mutex->owner == 0); 60 mutex->owner = GetCurrentThreadId(); 61 } 62 63 int qemu_mutex_trylock(QemuMutex *mutex) 64 { 65 int owned; 66 67 owned = TryEnterCriticalSection(&mutex->lock); 68 if (owned) { 69 assert(mutex->owner == 0); 70 mutex->owner = GetCurrentThreadId(); 71 } 72 return !owned; 73 } 74 75 void qemu_mutex_unlock(QemuMutex *mutex) 76 { 77 assert(mutex->owner == GetCurrentThreadId()); 78 mutex->owner = 0; 79 LeaveCriticalSection(&mutex->lock); 80 } 81 82 void qemu_cond_init(QemuCond *cond) 83 { 84 memset(cond, 0, sizeof(*cond)); 85 86 cond->sema = CreateSemaphore(NULL, 0, LONG_MAX, NULL); 87 if (!cond->sema) { 88 error_exit(GetLastError(), __func__); 89 } 90 cond->continue_event = CreateEvent(NULL, /* security */ 91 FALSE, /* auto-reset */ 92 FALSE, /* not signaled */ 93 NULL); /* name */ 94 if (!cond->continue_event) { 95 error_exit(GetLastError(), __func__); 96 } 97 } 98 99 void qemu_cond_destroy(QemuCond *cond) 100 { 101 BOOL result; 102 result = CloseHandle(cond->continue_event); 103 if (!result) { 104 error_exit(GetLastError(), __func__); 105 } 106 cond->continue_event = 0; 107 result = CloseHandle(cond->sema); 108 if (!result) { 109 error_exit(GetLastError(), __func__); 110 } 111 cond->sema = 0; 112 } 113 114 void qemu_cond_signal(QemuCond *cond) 115 { 116 DWORD result; 117 118 /* 119 * Signal only when there are waiters. cond->waiters is 120 * incremented by pthread_cond_wait under the external lock, 121 * so we are safe about that. 122 */ 123 if (cond->waiters == 0) { 124 return; 125 } 126 127 /* 128 * Waiting threads decrement it outside the external lock, but 129 * only if another thread is executing pthread_cond_broadcast and 130 * has the mutex. So, it also cannot be decremented concurrently 131 * with this particular access. 132 */ 133 cond->target = cond->waiters - 1; 134 result = SignalObjectAndWait(cond->sema, cond->continue_event, 135 INFINITE, FALSE); 136 if (result == WAIT_ABANDONED || result == WAIT_FAILED) { 137 error_exit(GetLastError(), __func__); 138 } 139 } 140 141 void qemu_cond_broadcast(QemuCond *cond) 142 { 143 BOOLEAN result; 144 /* 145 * As in pthread_cond_signal, access to cond->waiters and 146 * cond->target is locked via the external mutex. 147 */ 148 if (cond->waiters == 0) { 149 return; 150 } 151 152 cond->target = 0; 153 result = ReleaseSemaphore(cond->sema, cond->waiters, NULL); 154 if (!result) { 155 error_exit(GetLastError(), __func__); 156 } 157 158 /* 159 * At this point all waiters continue. Each one takes its 160 * slice of the semaphore. Now it's our turn to wait: Since 161 * the external mutex is held, no thread can leave cond_wait, 162 * yet. For this reason, we can be sure that no thread gets 163 * a chance to eat *more* than one slice. OTOH, it means 164 * that the last waiter must send us a wake-up. 165 */ 166 WaitForSingleObject(cond->continue_event, INFINITE); 167 } 168 169 void qemu_cond_wait(QemuCond *cond, QemuMutex *mutex) 170 { 171 /* 172 * This access is protected under the mutex. 173 */ 174 cond->waiters++; 175 176 /* 177 * Unlock external mutex and wait for signal. 178 * NOTE: we've held mutex locked long enough to increment 179 * waiters count above, so there's no problem with 180 * leaving mutex unlocked before we wait on semaphore. 181 */ 182 qemu_mutex_unlock(mutex); 183 WaitForSingleObject(cond->sema, INFINITE); 184 185 /* Now waiters must rendez-vous with the signaling thread and 186 * let it continue. For cond_broadcast this has heavy contention 187 * and triggers thundering herd. So goes life. 188 * 189 * Decrease waiters count. The mutex is not taken, so we have 190 * to do this atomically. 191 * 192 * All waiters contend for the mutex at the end of this function 193 * until the signaling thread relinquishes it. To ensure 194 * each waiter consumes exactly one slice of the semaphore, 195 * the signaling thread stops until it is told by the last 196 * waiter that it can go on. 197 */ 198 if (InterlockedDecrement(&cond->waiters) == cond->target) { 199 SetEvent(cond->continue_event); 200 } 201 202 qemu_mutex_lock(mutex); 203 } 204 205 void qemu_sem_init(QemuSemaphore *sem, int init) 206 { 207 /* Manual reset. */ 208 sem->sema = CreateSemaphore(NULL, init, LONG_MAX, NULL); 209 } 210 211 void qemu_sem_destroy(QemuSemaphore *sem) 212 { 213 CloseHandle(sem->sema); 214 } 215 216 void qemu_sem_post(QemuSemaphore *sem) 217 { 218 ReleaseSemaphore(sem->sema, 1, NULL); 219 } 220 221 int qemu_sem_timedwait(QemuSemaphore *sem, int ms) 222 { 223 int rc = WaitForSingleObject(sem->sema, ms); 224 if (rc == WAIT_OBJECT_0) { 225 return 0; 226 } 227 if (rc != WAIT_TIMEOUT) { 228 error_exit(GetLastError(), __func__); 229 } 230 return -1; 231 } 232 233 void qemu_sem_wait(QemuSemaphore *sem) 234 { 235 if (WaitForSingleObject(sem->sema, INFINITE) != WAIT_OBJECT_0) { 236 error_exit(GetLastError(), __func__); 237 } 238 } 239 240 /* Wrap a Win32 manual-reset event with a fast userspace path. The idea 241 * is to reset the Win32 event lazily, as part of a test-reset-test-wait 242 * sequence. Such a sequence is, indeed, how QemuEvents are used by 243 * RCU and other subsystems! 244 * 245 * Valid transitions: 246 * - free->set, when setting the event 247 * - busy->set, when setting the event, followed by futex_wake 248 * - set->free, when resetting the event 249 * - free->busy, when waiting 250 * 251 * set->busy does not happen (it can be observed from the outside but 252 * it really is set->free->busy). 253 * 254 * busy->free provably cannot happen; to enforce it, the set->free transition 255 * is done with an OR, which becomes a no-op if the event has concurrently 256 * transitioned to free or busy (and is faster than cmpxchg). 257 */ 258 259 #define EV_SET 0 260 #define EV_FREE 1 261 #define EV_BUSY -1 262 263 void qemu_event_init(QemuEvent *ev, bool init) 264 { 265 /* Manual reset. */ 266 ev->event = CreateEvent(NULL, TRUE, TRUE, NULL); 267 ev->value = (init ? EV_SET : EV_FREE); 268 } 269 270 void qemu_event_destroy(QemuEvent *ev) 271 { 272 CloseHandle(ev->event); 273 } 274 275 void qemu_event_set(QemuEvent *ev) 276 { 277 if (atomic_mb_read(&ev->value) != EV_SET) { 278 if (atomic_xchg(&ev->value, EV_SET) == EV_BUSY) { 279 /* There were waiters, wake them up. */ 280 SetEvent(ev->event); 281 } 282 } 283 } 284 285 void qemu_event_reset(QemuEvent *ev) 286 { 287 if (atomic_mb_read(&ev->value) == EV_SET) { 288 /* If there was a concurrent reset (or even reset+wait), 289 * do nothing. Otherwise change EV_SET->EV_FREE. 290 */ 291 atomic_or(&ev->value, EV_FREE); 292 } 293 } 294 295 void qemu_event_wait(QemuEvent *ev) 296 { 297 unsigned value; 298 299 value = atomic_mb_read(&ev->value); 300 if (value != EV_SET) { 301 if (value == EV_FREE) { 302 /* qemu_event_set is not yet going to call SetEvent, but we are 303 * going to do another check for EV_SET below when setting EV_BUSY. 304 * At that point it is safe to call WaitForSingleObject. 305 */ 306 ResetEvent(ev->event); 307 308 /* Tell qemu_event_set that there are waiters. No need to retry 309 * because there cannot be a concurent busy->free transition. 310 * After the CAS, the event will be either set or busy. 311 */ 312 if (atomic_cmpxchg(&ev->value, EV_FREE, EV_BUSY) == EV_SET) { 313 value = EV_SET; 314 } else { 315 value = EV_BUSY; 316 } 317 } 318 if (value == EV_BUSY) { 319 WaitForSingleObject(ev->event, INFINITE); 320 } 321 } 322 } 323 324 struct QemuThreadData { 325 /* Passed to win32_start_routine. */ 326 void *(*start_routine)(void *); 327 void *arg; 328 short mode; 329 NotifierList exit; 330 331 /* Only used for joinable threads. */ 332 bool exited; 333 void *ret; 334 CRITICAL_SECTION cs; 335 }; 336 337 static bool atexit_registered; 338 static NotifierList main_thread_exit; 339 340 static __thread QemuThreadData *qemu_thread_data; 341 342 static void run_main_thread_exit(void) 343 { 344 notifier_list_notify(&main_thread_exit, NULL); 345 } 346 347 void qemu_thread_atexit_add(Notifier *notifier) 348 { 349 if (!qemu_thread_data) { 350 if (!atexit_registered) { 351 atexit_registered = true; 352 atexit(run_main_thread_exit); 353 } 354 notifier_list_add(&main_thread_exit, notifier); 355 } else { 356 notifier_list_add(&qemu_thread_data->exit, notifier); 357 } 358 } 359 360 void qemu_thread_atexit_remove(Notifier *notifier) 361 { 362 notifier_remove(notifier); 363 } 364 365 static unsigned __stdcall win32_start_routine(void *arg) 366 { 367 QemuThreadData *data = (QemuThreadData *) arg; 368 void *(*start_routine)(void *) = data->start_routine; 369 void *thread_arg = data->arg; 370 371 qemu_thread_data = data; 372 qemu_thread_exit(start_routine(thread_arg)); 373 abort(); 374 } 375 376 void qemu_thread_exit(void *arg) 377 { 378 QemuThreadData *data = qemu_thread_data; 379 380 notifier_list_notify(&data->exit, NULL); 381 if (data->mode == QEMU_THREAD_JOINABLE) { 382 data->ret = arg; 383 EnterCriticalSection(&data->cs); 384 data->exited = true; 385 LeaveCriticalSection(&data->cs); 386 } else { 387 g_free(data); 388 } 389 _endthreadex(0); 390 } 391 392 void *qemu_thread_join(QemuThread *thread) 393 { 394 QemuThreadData *data; 395 void *ret; 396 HANDLE handle; 397 398 data = thread->data; 399 if (data->mode == QEMU_THREAD_DETACHED) { 400 return NULL; 401 } 402 403 /* 404 * Because multiple copies of the QemuThread can exist via 405 * qemu_thread_get_self, we need to store a value that cannot 406 * leak there. The simplest, non racy way is to store the TID, 407 * discard the handle that _beginthreadex gives back, and 408 * get another copy of the handle here. 409 */ 410 handle = qemu_thread_get_handle(thread); 411 if (handle) { 412 WaitForSingleObject(handle, INFINITE); 413 CloseHandle(handle); 414 } 415 ret = data->ret; 416 DeleteCriticalSection(&data->cs); 417 g_free(data); 418 return ret; 419 } 420 421 void qemu_thread_create(QemuThread *thread, const char *name, 422 void *(*start_routine)(void *), 423 void *arg, int mode) 424 { 425 HANDLE hThread; 426 struct QemuThreadData *data; 427 428 data = g_malloc(sizeof *data); 429 data->start_routine = start_routine; 430 data->arg = arg; 431 data->mode = mode; 432 data->exited = false; 433 notifier_list_init(&data->exit); 434 435 if (data->mode != QEMU_THREAD_DETACHED) { 436 InitializeCriticalSection(&data->cs); 437 } 438 439 hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine, 440 data, 0, &thread->tid); 441 if (!hThread) { 442 error_exit(GetLastError(), __func__); 443 } 444 CloseHandle(hThread); 445 thread->data = data; 446 } 447 448 void qemu_thread_get_self(QemuThread *thread) 449 { 450 thread->data = qemu_thread_data; 451 thread->tid = GetCurrentThreadId(); 452 } 453 454 HANDLE qemu_thread_get_handle(QemuThread *thread) 455 { 456 QemuThreadData *data; 457 HANDLE handle; 458 459 data = thread->data; 460 if (data->mode == QEMU_THREAD_DETACHED) { 461 return NULL; 462 } 463 464 EnterCriticalSection(&data->cs); 465 if (!data->exited) { 466 handle = OpenThread(SYNCHRONIZE | THREAD_SUSPEND_RESUME, FALSE, 467 thread->tid); 468 } else { 469 handle = NULL; 470 } 471 LeaveCriticalSection(&data->cs); 472 return handle; 473 } 474 475 bool qemu_thread_is_self(QemuThread *thread) 476 { 477 return GetCurrentThreadId() == thread->tid; 478 } 479