xref: /openbmc/qemu/util/qemu-thread-win32.c (revision b14df228)
1 /*
2  * Win32 implementation for mutex/cond/thread functions
3  *
4  * Copyright Red Hat, Inc. 2010
5  *
6  * Author:
7  *  Paolo Bonzini <pbonzini@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 #include "qemu/osdep.h"
15 #include "qemu/thread.h"
16 #include "qemu/notify.h"
17 #include "qemu-thread-common.h"
18 #include <process.h>
19 
20 static bool name_threads;
21 
22 void qemu_thread_naming(bool enable)
23 {
24     /* But note we don't actually name them on Windows yet */
25     name_threads = enable;
26 
27     fprintf(stderr, "qemu: thread naming not supported on this host\n");
28 }
29 
30 static void error_exit(int err, const char *msg)
31 {
32     char *pstr;
33 
34     FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER,
35                   NULL, err, 0, (LPTSTR)&pstr, 2, NULL);
36     fprintf(stderr, "qemu: %s: %s\n", msg, pstr);
37     LocalFree(pstr);
38     abort();
39 }
40 
41 void qemu_mutex_init(QemuMutex *mutex)
42 {
43     InitializeSRWLock(&mutex->lock);
44     qemu_mutex_post_init(mutex);
45 }
46 
47 void qemu_mutex_destroy(QemuMutex *mutex)
48 {
49     assert(mutex->initialized);
50     mutex->initialized = false;
51     InitializeSRWLock(&mutex->lock);
52 }
53 
54 void qemu_mutex_lock_impl(QemuMutex *mutex, const char *file, const int line)
55 {
56     assert(mutex->initialized);
57     qemu_mutex_pre_lock(mutex, file, line);
58     AcquireSRWLockExclusive(&mutex->lock);
59     qemu_mutex_post_lock(mutex, file, line);
60 }
61 
62 int qemu_mutex_trylock_impl(QemuMutex *mutex, const char *file, const int line)
63 {
64     int owned;
65 
66     assert(mutex->initialized);
67     owned = TryAcquireSRWLockExclusive(&mutex->lock);
68     if (owned) {
69         qemu_mutex_post_lock(mutex, file, line);
70         return 0;
71     }
72     return -EBUSY;
73 }
74 
75 void qemu_mutex_unlock_impl(QemuMutex *mutex, const char *file, const int line)
76 {
77     assert(mutex->initialized);
78     qemu_mutex_pre_unlock(mutex, file, line);
79     ReleaseSRWLockExclusive(&mutex->lock);
80 }
81 
82 void qemu_rec_mutex_init(QemuRecMutex *mutex)
83 {
84     InitializeCriticalSection(&mutex->lock);
85     mutex->initialized = true;
86 }
87 
88 void qemu_rec_mutex_destroy(QemuRecMutex *mutex)
89 {
90     assert(mutex->initialized);
91     mutex->initialized = false;
92     DeleteCriticalSection(&mutex->lock);
93 }
94 
95 void qemu_rec_mutex_lock_impl(QemuRecMutex *mutex, const char *file, int line)
96 {
97     assert(mutex->initialized);
98     EnterCriticalSection(&mutex->lock);
99 }
100 
101 int qemu_rec_mutex_trylock_impl(QemuRecMutex *mutex, const char *file, int line)
102 {
103     assert(mutex->initialized);
104     return !TryEnterCriticalSection(&mutex->lock);
105 }
106 
107 void qemu_rec_mutex_unlock_impl(QemuRecMutex *mutex, const char *file, int line)
108 {
109     assert(mutex->initialized);
110     LeaveCriticalSection(&mutex->lock);
111 }
112 
113 void qemu_cond_init(QemuCond *cond)
114 {
115     memset(cond, 0, sizeof(*cond));
116     InitializeConditionVariable(&cond->var);
117     cond->initialized = true;
118 }
119 
120 void qemu_cond_destroy(QemuCond *cond)
121 {
122     assert(cond->initialized);
123     cond->initialized = false;
124     InitializeConditionVariable(&cond->var);
125 }
126 
127 void qemu_cond_signal(QemuCond *cond)
128 {
129     assert(cond->initialized);
130     WakeConditionVariable(&cond->var);
131 }
132 
133 void qemu_cond_broadcast(QemuCond *cond)
134 {
135     assert(cond->initialized);
136     WakeAllConditionVariable(&cond->var);
137 }
138 
139 void qemu_cond_wait_impl(QemuCond *cond, QemuMutex *mutex, const char *file, const int line)
140 {
141     assert(cond->initialized);
142     qemu_mutex_pre_unlock(mutex, file, line);
143     SleepConditionVariableSRW(&cond->var, &mutex->lock, INFINITE, 0);
144     qemu_mutex_post_lock(mutex, file, line);
145 }
146 
147 bool qemu_cond_timedwait_impl(QemuCond *cond, QemuMutex *mutex, int ms,
148                               const char *file, const int line)
149 {
150     int rc = 0;
151 
152     assert(cond->initialized);
153     trace_qemu_mutex_unlock(mutex, file, line);
154     if (!SleepConditionVariableSRW(&cond->var, &mutex->lock, ms, 0)) {
155         rc = GetLastError();
156     }
157     trace_qemu_mutex_locked(mutex, file, line);
158     if (rc && rc != ERROR_TIMEOUT) {
159         error_exit(rc, __func__);
160     }
161     return rc != ERROR_TIMEOUT;
162 }
163 
164 void qemu_sem_init(QemuSemaphore *sem, int init)
165 {
166     /* Manual reset.  */
167     sem->sema = CreateSemaphore(NULL, init, LONG_MAX, NULL);
168     sem->initialized = true;
169 }
170 
171 void qemu_sem_destroy(QemuSemaphore *sem)
172 {
173     assert(sem->initialized);
174     sem->initialized = false;
175     CloseHandle(sem->sema);
176 }
177 
178 void qemu_sem_post(QemuSemaphore *sem)
179 {
180     assert(sem->initialized);
181     ReleaseSemaphore(sem->sema, 1, NULL);
182 }
183 
184 int qemu_sem_timedwait(QemuSemaphore *sem, int ms)
185 {
186     int rc;
187 
188     assert(sem->initialized);
189     rc = WaitForSingleObject(sem->sema, ms);
190     if (rc == WAIT_OBJECT_0) {
191         return 0;
192     }
193     if (rc != WAIT_TIMEOUT) {
194         error_exit(GetLastError(), __func__);
195     }
196     return -1;
197 }
198 
199 void qemu_sem_wait(QemuSemaphore *sem)
200 {
201     assert(sem->initialized);
202     if (WaitForSingleObject(sem->sema, INFINITE) != WAIT_OBJECT_0) {
203         error_exit(GetLastError(), __func__);
204     }
205 }
206 
207 /* Wrap a Win32 manual-reset event with a fast userspace path.  The idea
208  * is to reset the Win32 event lazily, as part of a test-reset-test-wait
209  * sequence.  Such a sequence is, indeed, how QemuEvents are used by
210  * RCU and other subsystems!
211  *
212  * Valid transitions:
213  * - free->set, when setting the event
214  * - busy->set, when setting the event, followed by SetEvent
215  * - set->free, when resetting the event
216  * - free->busy, when waiting
217  *
218  * set->busy does not happen (it can be observed from the outside but
219  * it really is set->free->busy).
220  *
221  * busy->free provably cannot happen; to enforce it, the set->free transition
222  * is done with an OR, which becomes a no-op if the event has concurrently
223  * transitioned to free or busy (and is faster than cmpxchg).
224  */
225 
226 #define EV_SET         0
227 #define EV_FREE        1
228 #define EV_BUSY       -1
229 
230 void qemu_event_init(QemuEvent *ev, bool init)
231 {
232     /* Manual reset.  */
233     ev->event = CreateEvent(NULL, TRUE, TRUE, NULL);
234     ev->value = (init ? EV_SET : EV_FREE);
235     ev->initialized = true;
236 }
237 
238 void qemu_event_destroy(QemuEvent *ev)
239 {
240     assert(ev->initialized);
241     ev->initialized = false;
242     CloseHandle(ev->event);
243 }
244 
245 void qemu_event_set(QemuEvent *ev)
246 {
247     assert(ev->initialized);
248     /* qemu_event_set has release semantics, but because it *loads*
249      * ev->value we need a full memory barrier here.
250      */
251     smp_mb();
252     if (qatomic_read(&ev->value) != EV_SET) {
253         if (qatomic_xchg(&ev->value, EV_SET) == EV_BUSY) {
254             /* There were waiters, wake them up.  */
255             SetEvent(ev->event);
256         }
257     }
258 }
259 
260 void qemu_event_reset(QemuEvent *ev)
261 {
262     unsigned value;
263 
264     assert(ev->initialized);
265     value = qatomic_read(&ev->value);
266     smp_mb_acquire();
267     if (value == EV_SET) {
268         /* If there was a concurrent reset (or even reset+wait),
269          * do nothing.  Otherwise change EV_SET->EV_FREE.
270          */
271         qatomic_or(&ev->value, EV_FREE);
272     }
273 }
274 
275 void qemu_event_wait(QemuEvent *ev)
276 {
277     unsigned value;
278 
279     assert(ev->initialized);
280     value = qatomic_read(&ev->value);
281     smp_mb_acquire();
282     if (value != EV_SET) {
283         if (value == EV_FREE) {
284             /* qemu_event_set is not yet going to call SetEvent, but we are
285              * going to do another check for EV_SET below when setting EV_BUSY.
286              * At that point it is safe to call WaitForSingleObject.
287              */
288             ResetEvent(ev->event);
289 
290             /* Tell qemu_event_set that there are waiters.  No need to retry
291              * because there cannot be a concurrent busy->free transition.
292              * After the CAS, the event will be either set or busy.
293              */
294             if (qatomic_cmpxchg(&ev->value, EV_FREE, EV_BUSY) == EV_SET) {
295                 value = EV_SET;
296             } else {
297                 value = EV_BUSY;
298             }
299         }
300         if (value == EV_BUSY) {
301             WaitForSingleObject(ev->event, INFINITE);
302         }
303     }
304 }
305 
306 struct QemuThreadData {
307     /* Passed to win32_start_routine.  */
308     void             *(*start_routine)(void *);
309     void             *arg;
310     short             mode;
311     NotifierList      exit;
312 
313     /* Only used for joinable threads. */
314     bool              exited;
315     void             *ret;
316     CRITICAL_SECTION  cs;
317 };
318 
319 static bool atexit_registered;
320 static NotifierList main_thread_exit;
321 
322 static __thread QemuThreadData *qemu_thread_data;
323 
324 static void run_main_thread_exit(void)
325 {
326     notifier_list_notify(&main_thread_exit, NULL);
327 }
328 
329 void qemu_thread_atexit_add(Notifier *notifier)
330 {
331     if (!qemu_thread_data) {
332         if (!atexit_registered) {
333             atexit_registered = true;
334             atexit(run_main_thread_exit);
335         }
336         notifier_list_add(&main_thread_exit, notifier);
337     } else {
338         notifier_list_add(&qemu_thread_data->exit, notifier);
339     }
340 }
341 
342 void qemu_thread_atexit_remove(Notifier *notifier)
343 {
344     notifier_remove(notifier);
345 }
346 
347 static unsigned __stdcall win32_start_routine(void *arg)
348 {
349     QemuThreadData *data = (QemuThreadData *) arg;
350     void *(*start_routine)(void *) = data->start_routine;
351     void *thread_arg = data->arg;
352 
353     qemu_thread_data = data;
354     qemu_thread_exit(start_routine(thread_arg));
355     abort();
356 }
357 
358 void qemu_thread_exit(void *arg)
359 {
360     QemuThreadData *data = qemu_thread_data;
361 
362     notifier_list_notify(&data->exit, NULL);
363     if (data->mode == QEMU_THREAD_JOINABLE) {
364         data->ret = arg;
365         EnterCriticalSection(&data->cs);
366         data->exited = true;
367         LeaveCriticalSection(&data->cs);
368     } else {
369         g_free(data);
370     }
371     _endthreadex(0);
372 }
373 
374 void *qemu_thread_join(QemuThread *thread)
375 {
376     QemuThreadData *data;
377     void *ret;
378     HANDLE handle;
379 
380     data = thread->data;
381     if (data->mode == QEMU_THREAD_DETACHED) {
382         return NULL;
383     }
384 
385     /*
386      * Because multiple copies of the QemuThread can exist via
387      * qemu_thread_get_self, we need to store a value that cannot
388      * leak there.  The simplest, non racy way is to store the TID,
389      * discard the handle that _beginthreadex gives back, and
390      * get another copy of the handle here.
391      */
392     handle = qemu_thread_get_handle(thread);
393     if (handle) {
394         WaitForSingleObject(handle, INFINITE);
395         CloseHandle(handle);
396     }
397     ret = data->ret;
398     DeleteCriticalSection(&data->cs);
399     g_free(data);
400     return ret;
401 }
402 
403 void qemu_thread_create(QemuThread *thread, const char *name,
404                        void *(*start_routine)(void *),
405                        void *arg, int mode)
406 {
407     HANDLE hThread;
408     struct QemuThreadData *data;
409 
410     data = g_malloc(sizeof *data);
411     data->start_routine = start_routine;
412     data->arg = arg;
413     data->mode = mode;
414     data->exited = false;
415     notifier_list_init(&data->exit);
416 
417     if (data->mode != QEMU_THREAD_DETACHED) {
418         InitializeCriticalSection(&data->cs);
419     }
420 
421     hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine,
422                                       data, 0, &thread->tid);
423     if (!hThread) {
424         error_exit(GetLastError(), __func__);
425     }
426     CloseHandle(hThread);
427     thread->data = data;
428 }
429 
430 void qemu_thread_get_self(QemuThread *thread)
431 {
432     thread->data = qemu_thread_data;
433     thread->tid = GetCurrentThreadId();
434 }
435 
436 HANDLE qemu_thread_get_handle(QemuThread *thread)
437 {
438     QemuThreadData *data;
439     HANDLE handle;
440 
441     data = thread->data;
442     if (data->mode == QEMU_THREAD_DETACHED) {
443         return NULL;
444     }
445 
446     EnterCriticalSection(&data->cs);
447     if (!data->exited) {
448         handle = OpenThread(SYNCHRONIZE | THREAD_SUSPEND_RESUME |
449                             THREAD_SET_CONTEXT, FALSE, thread->tid);
450     } else {
451         handle = NULL;
452     }
453     LeaveCriticalSection(&data->cs);
454     return handle;
455 }
456 
457 bool qemu_thread_is_self(QemuThread *thread)
458 {
459     return GetCurrentThreadId() == thread->tid;
460 }
461