xref: /openbmc/qemu/util/qemu-thread-win32.c (revision 9739b11a)
1 /*
2  * Win32 implementation for mutex/cond/thread functions
3  *
4  * Copyright Red Hat, Inc. 2010
5  *
6  * Author:
7  *  Paolo Bonzini <pbonzini@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 #include "qemu/osdep.h"
15 #include "qemu-common.h"
16 #include "qemu/thread.h"
17 #include "qemu/notify.h"
18 #include "qemu-thread-common.h"
19 #include <process.h>
20 
21 static bool name_threads;
22 
23 void qemu_thread_naming(bool enable)
24 {
25     /* But note we don't actually name them on Windows yet */
26     name_threads = enable;
27 
28     fprintf(stderr, "qemu: thread naming not supported on this host\n");
29 }
30 
31 static void error_exit(int err, const char *msg)
32 {
33     char *pstr;
34 
35     FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER,
36                   NULL, err, 0, (LPTSTR)&pstr, 2, NULL);
37     fprintf(stderr, "qemu: %s: %s\n", msg, pstr);
38     LocalFree(pstr);
39     abort();
40 }
41 
42 void qemu_mutex_init(QemuMutex *mutex)
43 {
44     InitializeSRWLock(&mutex->lock);
45     qemu_mutex_post_init(mutex);
46 }
47 
48 void qemu_mutex_destroy(QemuMutex *mutex)
49 {
50     assert(mutex->initialized);
51     mutex->initialized = false;
52     InitializeSRWLock(&mutex->lock);
53 }
54 
55 void qemu_mutex_lock_impl(QemuMutex *mutex, const char *file, const int line)
56 {
57     assert(mutex->initialized);
58     qemu_mutex_pre_lock(mutex, file, line);
59     AcquireSRWLockExclusive(&mutex->lock);
60     qemu_mutex_post_lock(mutex, file, line);
61 }
62 
63 int qemu_mutex_trylock_impl(QemuMutex *mutex, const char *file, const int line)
64 {
65     int owned;
66 
67     assert(mutex->initialized);
68     owned = TryAcquireSRWLockExclusive(&mutex->lock);
69     if (owned) {
70         qemu_mutex_post_lock(mutex, file, line);
71         return 0;
72     }
73     return -EBUSY;
74 }
75 
76 void qemu_mutex_unlock_impl(QemuMutex *mutex, const char *file, const int line)
77 {
78     assert(mutex->initialized);
79     qemu_mutex_pre_unlock(mutex, file, line);
80     ReleaseSRWLockExclusive(&mutex->lock);
81 }
82 
83 void qemu_rec_mutex_init(QemuRecMutex *mutex)
84 {
85     InitializeCriticalSection(&mutex->lock);
86     mutex->initialized = true;
87 }
88 
89 void qemu_rec_mutex_destroy(QemuRecMutex *mutex)
90 {
91     assert(mutex->initialized);
92     mutex->initialized = false;
93     DeleteCriticalSection(&mutex->lock);
94 }
95 
96 void qemu_rec_mutex_lock_impl(QemuRecMutex *mutex, const char *file, int line)
97 {
98     assert(mutex->initialized);
99     EnterCriticalSection(&mutex->lock);
100 }
101 
102 int qemu_rec_mutex_trylock_impl(QemuRecMutex *mutex, const char *file, int line)
103 {
104     assert(mutex->initialized);
105     return !TryEnterCriticalSection(&mutex->lock);
106 }
107 
108 void qemu_rec_mutex_unlock(QemuRecMutex *mutex)
109 {
110     assert(mutex->initialized);
111     LeaveCriticalSection(&mutex->lock);
112 }
113 
114 void qemu_cond_init(QemuCond *cond)
115 {
116     memset(cond, 0, sizeof(*cond));
117     InitializeConditionVariable(&cond->var);
118     cond->initialized = true;
119 }
120 
121 void qemu_cond_destroy(QemuCond *cond)
122 {
123     assert(cond->initialized);
124     cond->initialized = false;
125     InitializeConditionVariable(&cond->var);
126 }
127 
128 void qemu_cond_signal(QemuCond *cond)
129 {
130     assert(cond->initialized);
131     WakeConditionVariable(&cond->var);
132 }
133 
134 void qemu_cond_broadcast(QemuCond *cond)
135 {
136     assert(cond->initialized);
137     WakeAllConditionVariable(&cond->var);
138 }
139 
140 void qemu_cond_wait_impl(QemuCond *cond, QemuMutex *mutex, const char *file, const int line)
141 {
142     assert(cond->initialized);
143     qemu_mutex_pre_unlock(mutex, file, line);
144     SleepConditionVariableSRW(&cond->var, &mutex->lock, INFINITE, 0);
145     qemu_mutex_post_lock(mutex, file, line);
146 }
147 
148 bool qemu_cond_timedwait_impl(QemuCond *cond, QemuMutex *mutex, int ms,
149                               const char *file, const int line)
150 {
151     int rc = 0;
152 
153     assert(cond->initialized);
154     trace_qemu_mutex_unlock(mutex, file, line);
155     if (!SleepConditionVariableSRW(&cond->var, &mutex->lock, ms, 0)) {
156         rc = GetLastError();
157     }
158     trace_qemu_mutex_locked(mutex, file, line);
159     if (rc && rc != ERROR_TIMEOUT) {
160         error_exit(rc, __func__);
161     }
162     return rc != ERROR_TIMEOUT;
163 }
164 
165 void qemu_sem_init(QemuSemaphore *sem, int init)
166 {
167     /* Manual reset.  */
168     sem->sema = CreateSemaphore(NULL, init, LONG_MAX, NULL);
169     sem->initialized = true;
170 }
171 
172 void qemu_sem_destroy(QemuSemaphore *sem)
173 {
174     assert(sem->initialized);
175     sem->initialized = false;
176     CloseHandle(sem->sema);
177 }
178 
179 void qemu_sem_post(QemuSemaphore *sem)
180 {
181     assert(sem->initialized);
182     ReleaseSemaphore(sem->sema, 1, NULL);
183 }
184 
185 int qemu_sem_timedwait(QemuSemaphore *sem, int ms)
186 {
187     int rc;
188 
189     assert(sem->initialized);
190     rc = WaitForSingleObject(sem->sema, ms);
191     if (rc == WAIT_OBJECT_0) {
192         return 0;
193     }
194     if (rc != WAIT_TIMEOUT) {
195         error_exit(GetLastError(), __func__);
196     }
197     return -1;
198 }
199 
200 void qemu_sem_wait(QemuSemaphore *sem)
201 {
202     assert(sem->initialized);
203     if (WaitForSingleObject(sem->sema, INFINITE) != WAIT_OBJECT_0) {
204         error_exit(GetLastError(), __func__);
205     }
206 }
207 
208 /* Wrap a Win32 manual-reset event with a fast userspace path.  The idea
209  * is to reset the Win32 event lazily, as part of a test-reset-test-wait
210  * sequence.  Such a sequence is, indeed, how QemuEvents are used by
211  * RCU and other subsystems!
212  *
213  * Valid transitions:
214  * - free->set, when setting the event
215  * - busy->set, when setting the event, followed by SetEvent
216  * - set->free, when resetting the event
217  * - free->busy, when waiting
218  *
219  * set->busy does not happen (it can be observed from the outside but
220  * it really is set->free->busy).
221  *
222  * busy->free provably cannot happen; to enforce it, the set->free transition
223  * is done with an OR, which becomes a no-op if the event has concurrently
224  * transitioned to free or busy (and is faster than cmpxchg).
225  */
226 
227 #define EV_SET         0
228 #define EV_FREE        1
229 #define EV_BUSY       -1
230 
231 void qemu_event_init(QemuEvent *ev, bool init)
232 {
233     /* Manual reset.  */
234     ev->event = CreateEvent(NULL, TRUE, TRUE, NULL);
235     ev->value = (init ? EV_SET : EV_FREE);
236     ev->initialized = true;
237 }
238 
239 void qemu_event_destroy(QemuEvent *ev)
240 {
241     assert(ev->initialized);
242     ev->initialized = false;
243     CloseHandle(ev->event);
244 }
245 
246 void qemu_event_set(QemuEvent *ev)
247 {
248     assert(ev->initialized);
249     /* qemu_event_set has release semantics, but because it *loads*
250      * ev->value we need a full memory barrier here.
251      */
252     smp_mb();
253     if (atomic_read(&ev->value) != EV_SET) {
254         if (atomic_xchg(&ev->value, EV_SET) == EV_BUSY) {
255             /* There were waiters, wake them up.  */
256             SetEvent(ev->event);
257         }
258     }
259 }
260 
261 void qemu_event_reset(QemuEvent *ev)
262 {
263     unsigned value;
264 
265     assert(ev->initialized);
266     value = atomic_read(&ev->value);
267     smp_mb_acquire();
268     if (value == EV_SET) {
269         /* If there was a concurrent reset (or even reset+wait),
270          * do nothing.  Otherwise change EV_SET->EV_FREE.
271          */
272         atomic_or(&ev->value, EV_FREE);
273     }
274 }
275 
276 void qemu_event_wait(QemuEvent *ev)
277 {
278     unsigned value;
279 
280     assert(ev->initialized);
281     value = atomic_read(&ev->value);
282     smp_mb_acquire();
283     if (value != EV_SET) {
284         if (value == EV_FREE) {
285             /* qemu_event_set is not yet going to call SetEvent, but we are
286              * going to do another check for EV_SET below when setting EV_BUSY.
287              * At that point it is safe to call WaitForSingleObject.
288              */
289             ResetEvent(ev->event);
290 
291             /* Tell qemu_event_set that there are waiters.  No need to retry
292              * because there cannot be a concurent busy->free transition.
293              * After the CAS, the event will be either set or busy.
294              */
295             if (atomic_cmpxchg(&ev->value, EV_FREE, EV_BUSY) == EV_SET) {
296                 value = EV_SET;
297             } else {
298                 value = EV_BUSY;
299             }
300         }
301         if (value == EV_BUSY) {
302             WaitForSingleObject(ev->event, INFINITE);
303         }
304     }
305 }
306 
307 struct QemuThreadData {
308     /* Passed to win32_start_routine.  */
309     void             *(*start_routine)(void *);
310     void             *arg;
311     short             mode;
312     NotifierList      exit;
313 
314     /* Only used for joinable threads. */
315     bool              exited;
316     void             *ret;
317     CRITICAL_SECTION  cs;
318 };
319 
320 static bool atexit_registered;
321 static NotifierList main_thread_exit;
322 
323 static __thread QemuThreadData *qemu_thread_data;
324 
325 static void run_main_thread_exit(void)
326 {
327     notifier_list_notify(&main_thread_exit, NULL);
328 }
329 
330 void qemu_thread_atexit_add(Notifier *notifier)
331 {
332     if (!qemu_thread_data) {
333         if (!atexit_registered) {
334             atexit_registered = true;
335             atexit(run_main_thread_exit);
336         }
337         notifier_list_add(&main_thread_exit, notifier);
338     } else {
339         notifier_list_add(&qemu_thread_data->exit, notifier);
340     }
341 }
342 
343 void qemu_thread_atexit_remove(Notifier *notifier)
344 {
345     notifier_remove(notifier);
346 }
347 
348 static unsigned __stdcall win32_start_routine(void *arg)
349 {
350     QemuThreadData *data = (QemuThreadData *) arg;
351     void *(*start_routine)(void *) = data->start_routine;
352     void *thread_arg = data->arg;
353 
354     qemu_thread_data = data;
355     qemu_thread_exit(start_routine(thread_arg));
356     abort();
357 }
358 
359 void qemu_thread_exit(void *arg)
360 {
361     QemuThreadData *data = qemu_thread_data;
362 
363     notifier_list_notify(&data->exit, NULL);
364     if (data->mode == QEMU_THREAD_JOINABLE) {
365         data->ret = arg;
366         EnterCriticalSection(&data->cs);
367         data->exited = true;
368         LeaveCriticalSection(&data->cs);
369     } else {
370         g_free(data);
371     }
372     _endthreadex(0);
373 }
374 
375 void *qemu_thread_join(QemuThread *thread)
376 {
377     QemuThreadData *data;
378     void *ret;
379     HANDLE handle;
380 
381     data = thread->data;
382     if (data->mode == QEMU_THREAD_DETACHED) {
383         return NULL;
384     }
385 
386     /*
387      * Because multiple copies of the QemuThread can exist via
388      * qemu_thread_get_self, we need to store a value that cannot
389      * leak there.  The simplest, non racy way is to store the TID,
390      * discard the handle that _beginthreadex gives back, and
391      * get another copy of the handle here.
392      */
393     handle = qemu_thread_get_handle(thread);
394     if (handle) {
395         WaitForSingleObject(handle, INFINITE);
396         CloseHandle(handle);
397     }
398     ret = data->ret;
399     DeleteCriticalSection(&data->cs);
400     g_free(data);
401     return ret;
402 }
403 
404 void qemu_thread_create(QemuThread *thread, const char *name,
405                        void *(*start_routine)(void *),
406                        void *arg, int mode)
407 {
408     HANDLE hThread;
409     struct QemuThreadData *data;
410 
411     data = g_malloc(sizeof *data);
412     data->start_routine = start_routine;
413     data->arg = arg;
414     data->mode = mode;
415     data->exited = false;
416     notifier_list_init(&data->exit);
417 
418     if (data->mode != QEMU_THREAD_DETACHED) {
419         InitializeCriticalSection(&data->cs);
420     }
421 
422     hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine,
423                                       data, 0, &thread->tid);
424     if (!hThread) {
425         error_exit(GetLastError(), __func__);
426     }
427     CloseHandle(hThread);
428     thread->data = data;
429 }
430 
431 void qemu_thread_get_self(QemuThread *thread)
432 {
433     thread->data = qemu_thread_data;
434     thread->tid = GetCurrentThreadId();
435 }
436 
437 HANDLE qemu_thread_get_handle(QemuThread *thread)
438 {
439     QemuThreadData *data;
440     HANDLE handle;
441 
442     data = thread->data;
443     if (data->mode == QEMU_THREAD_DETACHED) {
444         return NULL;
445     }
446 
447     EnterCriticalSection(&data->cs);
448     if (!data->exited) {
449         handle = OpenThread(SYNCHRONIZE | THREAD_SUSPEND_RESUME |
450                             THREAD_SET_CONTEXT, FALSE, thread->tid);
451     } else {
452         handle = NULL;
453     }
454     LeaveCriticalSection(&data->cs);
455     return handle;
456 }
457 
458 bool qemu_thread_is_self(QemuThread *thread)
459 {
460     return GetCurrentThreadId() == thread->tid;
461 }
462