xref: /openbmc/qemu/util/qemu-thread-win32.c (revision 8f0a3716)
1 /*
2  * Win32 implementation for mutex/cond/thread functions
3  *
4  * Copyright Red Hat, Inc. 2010
5  *
6  * Author:
7  *  Paolo Bonzini <pbonzini@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef _WIN32_WINNT
15 #define _WIN32_WINNT 0x0600
16 #endif
17 
18 #include "qemu/osdep.h"
19 #include "qemu-common.h"
20 #include "qemu/thread.h"
21 #include "qemu/notify.h"
22 #include "trace.h"
23 #include <process.h>
24 
25 static bool name_threads;
26 
27 void qemu_thread_naming(bool enable)
28 {
29     /* But note we don't actually name them on Windows yet */
30     name_threads = enable;
31 
32     fprintf(stderr, "qemu: thread naming not supported on this host\n");
33 }
34 
35 static void error_exit(int err, const char *msg)
36 {
37     char *pstr;
38 
39     FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER,
40                   NULL, err, 0, (LPTSTR)&pstr, 2, NULL);
41     fprintf(stderr, "qemu: %s: %s\n", msg, pstr);
42     LocalFree(pstr);
43     abort();
44 }
45 
46 void qemu_mutex_init(QemuMutex *mutex)
47 {
48     InitializeSRWLock(&mutex->lock);
49     mutex->initialized = true;
50 }
51 
52 void qemu_mutex_destroy(QemuMutex *mutex)
53 {
54     assert(mutex->initialized);
55     mutex->initialized = false;
56     InitializeSRWLock(&mutex->lock);
57 }
58 
59 void qemu_mutex_lock_impl(QemuMutex *mutex, const char *file, const int line)
60 {
61     assert(mutex->initialized);
62     trace_qemu_mutex_lock(mutex, file, line);
63 
64     AcquireSRWLockExclusive(&mutex->lock);
65     trace_qemu_mutex_locked(mutex, file, line);
66 }
67 
68 int qemu_mutex_trylock_impl(QemuMutex *mutex, const char *file, const int line)
69 {
70     int owned;
71 
72     assert(mutex->initialized);
73     owned = TryAcquireSRWLockExclusive(&mutex->lock);
74     if (owned) {
75         trace_qemu_mutex_locked(mutex, file, line);
76         return 0;
77     }
78     return -EBUSY;
79 }
80 
81 void qemu_mutex_unlock_impl(QemuMutex *mutex, const char *file, const int line)
82 {
83     assert(mutex->initialized);
84     trace_qemu_mutex_unlock(mutex, file, line);
85     ReleaseSRWLockExclusive(&mutex->lock);
86 }
87 
88 void qemu_rec_mutex_init(QemuRecMutex *mutex)
89 {
90     InitializeCriticalSection(&mutex->lock);
91     mutex->initialized = true;
92 }
93 
94 void qemu_rec_mutex_destroy(QemuRecMutex *mutex)
95 {
96     assert(mutex->initialized);
97     mutex->initialized = false;
98     DeleteCriticalSection(&mutex->lock);
99 }
100 
101 void qemu_rec_mutex_lock(QemuRecMutex *mutex)
102 {
103     assert(mutex->initialized);
104     EnterCriticalSection(&mutex->lock);
105 }
106 
107 int qemu_rec_mutex_trylock(QemuRecMutex *mutex)
108 {
109     assert(mutex->initialized);
110     return !TryEnterCriticalSection(&mutex->lock);
111 }
112 
113 void qemu_rec_mutex_unlock(QemuRecMutex *mutex)
114 {
115     assert(mutex->initialized);
116     LeaveCriticalSection(&mutex->lock);
117 }
118 
119 void qemu_cond_init(QemuCond *cond)
120 {
121     memset(cond, 0, sizeof(*cond));
122     InitializeConditionVariable(&cond->var);
123     cond->initialized = true;
124 }
125 
126 void qemu_cond_destroy(QemuCond *cond)
127 {
128     assert(cond->initialized);
129     cond->initialized = false;
130     InitializeConditionVariable(&cond->var);
131 }
132 
133 void qemu_cond_signal(QemuCond *cond)
134 {
135     assert(cond->initialized);
136     WakeConditionVariable(&cond->var);
137 }
138 
139 void qemu_cond_broadcast(QemuCond *cond)
140 {
141     assert(cond->initialized);
142     WakeAllConditionVariable(&cond->var);
143 }
144 
145 void qemu_cond_wait_impl(QemuCond *cond, QemuMutex *mutex, const char *file, const int line)
146 {
147     assert(cond->initialized);
148     trace_qemu_mutex_unlock(mutex, file, line);
149     SleepConditionVariableSRW(&cond->var, &mutex->lock, INFINITE, 0);
150     trace_qemu_mutex_locked(mutex, file, line);
151 }
152 
153 void qemu_sem_init(QemuSemaphore *sem, int init)
154 {
155     /* Manual reset.  */
156     sem->sema = CreateSemaphore(NULL, init, LONG_MAX, NULL);
157     sem->initialized = true;
158 }
159 
160 void qemu_sem_destroy(QemuSemaphore *sem)
161 {
162     assert(sem->initialized);
163     sem->initialized = false;
164     CloseHandle(sem->sema);
165 }
166 
167 void qemu_sem_post(QemuSemaphore *sem)
168 {
169     assert(sem->initialized);
170     ReleaseSemaphore(sem->sema, 1, NULL);
171 }
172 
173 int qemu_sem_timedwait(QemuSemaphore *sem, int ms)
174 {
175     int rc;
176 
177     assert(sem->initialized);
178     rc = WaitForSingleObject(sem->sema, ms);
179     if (rc == WAIT_OBJECT_0) {
180         return 0;
181     }
182     if (rc != WAIT_TIMEOUT) {
183         error_exit(GetLastError(), __func__);
184     }
185     return -1;
186 }
187 
188 void qemu_sem_wait(QemuSemaphore *sem)
189 {
190     assert(sem->initialized);
191     if (WaitForSingleObject(sem->sema, INFINITE) != WAIT_OBJECT_0) {
192         error_exit(GetLastError(), __func__);
193     }
194 }
195 
196 /* Wrap a Win32 manual-reset event with a fast userspace path.  The idea
197  * is to reset the Win32 event lazily, as part of a test-reset-test-wait
198  * sequence.  Such a sequence is, indeed, how QemuEvents are used by
199  * RCU and other subsystems!
200  *
201  * Valid transitions:
202  * - free->set, when setting the event
203  * - busy->set, when setting the event, followed by SetEvent
204  * - set->free, when resetting the event
205  * - free->busy, when waiting
206  *
207  * set->busy does not happen (it can be observed from the outside but
208  * it really is set->free->busy).
209  *
210  * busy->free provably cannot happen; to enforce it, the set->free transition
211  * is done with an OR, which becomes a no-op if the event has concurrently
212  * transitioned to free or busy (and is faster than cmpxchg).
213  */
214 
215 #define EV_SET         0
216 #define EV_FREE        1
217 #define EV_BUSY       -1
218 
219 void qemu_event_init(QemuEvent *ev, bool init)
220 {
221     /* Manual reset.  */
222     ev->event = CreateEvent(NULL, TRUE, TRUE, NULL);
223     ev->value = (init ? EV_SET : EV_FREE);
224     ev->initialized = true;
225 }
226 
227 void qemu_event_destroy(QemuEvent *ev)
228 {
229     assert(ev->initialized);
230     ev->initialized = false;
231     CloseHandle(ev->event);
232 }
233 
234 void qemu_event_set(QemuEvent *ev)
235 {
236     assert(ev->initialized);
237     /* qemu_event_set has release semantics, but because it *loads*
238      * ev->value we need a full memory barrier here.
239      */
240     smp_mb();
241     if (atomic_read(&ev->value) != EV_SET) {
242         if (atomic_xchg(&ev->value, EV_SET) == EV_BUSY) {
243             /* There were waiters, wake them up.  */
244             SetEvent(ev->event);
245         }
246     }
247 }
248 
249 void qemu_event_reset(QemuEvent *ev)
250 {
251     unsigned value;
252 
253     assert(ev->initialized);
254     value = atomic_read(&ev->value);
255     smp_mb_acquire();
256     if (value == EV_SET) {
257         /* If there was a concurrent reset (or even reset+wait),
258          * do nothing.  Otherwise change EV_SET->EV_FREE.
259          */
260         atomic_or(&ev->value, EV_FREE);
261     }
262 }
263 
264 void qemu_event_wait(QemuEvent *ev)
265 {
266     unsigned value;
267 
268     assert(ev->initialized);
269     value = atomic_read(&ev->value);
270     smp_mb_acquire();
271     if (value != EV_SET) {
272         if (value == EV_FREE) {
273             /* qemu_event_set is not yet going to call SetEvent, but we are
274              * going to do another check for EV_SET below when setting EV_BUSY.
275              * At that point it is safe to call WaitForSingleObject.
276              */
277             ResetEvent(ev->event);
278 
279             /* Tell qemu_event_set that there are waiters.  No need to retry
280              * because there cannot be a concurent busy->free transition.
281              * After the CAS, the event will be either set or busy.
282              */
283             if (atomic_cmpxchg(&ev->value, EV_FREE, EV_BUSY) == EV_SET) {
284                 value = EV_SET;
285             } else {
286                 value = EV_BUSY;
287             }
288         }
289         if (value == EV_BUSY) {
290             WaitForSingleObject(ev->event, INFINITE);
291         }
292     }
293 }
294 
295 struct QemuThreadData {
296     /* Passed to win32_start_routine.  */
297     void             *(*start_routine)(void *);
298     void             *arg;
299     short             mode;
300     NotifierList      exit;
301 
302     /* Only used for joinable threads. */
303     bool              exited;
304     void             *ret;
305     CRITICAL_SECTION  cs;
306 };
307 
308 static bool atexit_registered;
309 static NotifierList main_thread_exit;
310 
311 static __thread QemuThreadData *qemu_thread_data;
312 
313 static void run_main_thread_exit(void)
314 {
315     notifier_list_notify(&main_thread_exit, NULL);
316 }
317 
318 void qemu_thread_atexit_add(Notifier *notifier)
319 {
320     if (!qemu_thread_data) {
321         if (!atexit_registered) {
322             atexit_registered = true;
323             atexit(run_main_thread_exit);
324         }
325         notifier_list_add(&main_thread_exit, notifier);
326     } else {
327         notifier_list_add(&qemu_thread_data->exit, notifier);
328     }
329 }
330 
331 void qemu_thread_atexit_remove(Notifier *notifier)
332 {
333     notifier_remove(notifier);
334 }
335 
336 static unsigned __stdcall win32_start_routine(void *arg)
337 {
338     QemuThreadData *data = (QemuThreadData *) arg;
339     void *(*start_routine)(void *) = data->start_routine;
340     void *thread_arg = data->arg;
341 
342     qemu_thread_data = data;
343     qemu_thread_exit(start_routine(thread_arg));
344     abort();
345 }
346 
347 void qemu_thread_exit(void *arg)
348 {
349     QemuThreadData *data = qemu_thread_data;
350 
351     notifier_list_notify(&data->exit, NULL);
352     if (data->mode == QEMU_THREAD_JOINABLE) {
353         data->ret = arg;
354         EnterCriticalSection(&data->cs);
355         data->exited = true;
356         LeaveCriticalSection(&data->cs);
357     } else {
358         g_free(data);
359     }
360     _endthreadex(0);
361 }
362 
363 void *qemu_thread_join(QemuThread *thread)
364 {
365     QemuThreadData *data;
366     void *ret;
367     HANDLE handle;
368 
369     data = thread->data;
370     if (data->mode == QEMU_THREAD_DETACHED) {
371         return NULL;
372     }
373 
374     /*
375      * Because multiple copies of the QemuThread can exist via
376      * qemu_thread_get_self, we need to store a value that cannot
377      * leak there.  The simplest, non racy way is to store the TID,
378      * discard the handle that _beginthreadex gives back, and
379      * get another copy of the handle here.
380      */
381     handle = qemu_thread_get_handle(thread);
382     if (handle) {
383         WaitForSingleObject(handle, INFINITE);
384         CloseHandle(handle);
385     }
386     ret = data->ret;
387     DeleteCriticalSection(&data->cs);
388     g_free(data);
389     return ret;
390 }
391 
392 void qemu_thread_create(QemuThread *thread, const char *name,
393                        void *(*start_routine)(void *),
394                        void *arg, int mode)
395 {
396     HANDLE hThread;
397     struct QemuThreadData *data;
398 
399     data = g_malloc(sizeof *data);
400     data->start_routine = start_routine;
401     data->arg = arg;
402     data->mode = mode;
403     data->exited = false;
404     notifier_list_init(&data->exit);
405 
406     if (data->mode != QEMU_THREAD_DETACHED) {
407         InitializeCriticalSection(&data->cs);
408     }
409 
410     hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine,
411                                       data, 0, &thread->tid);
412     if (!hThread) {
413         error_exit(GetLastError(), __func__);
414     }
415     CloseHandle(hThread);
416     thread->data = data;
417 }
418 
419 void qemu_thread_get_self(QemuThread *thread)
420 {
421     thread->data = qemu_thread_data;
422     thread->tid = GetCurrentThreadId();
423 }
424 
425 HANDLE qemu_thread_get_handle(QemuThread *thread)
426 {
427     QemuThreadData *data;
428     HANDLE handle;
429 
430     data = thread->data;
431     if (data->mode == QEMU_THREAD_DETACHED) {
432         return NULL;
433     }
434 
435     EnterCriticalSection(&data->cs);
436     if (!data->exited) {
437         handle = OpenThread(SYNCHRONIZE | THREAD_SUSPEND_RESUME |
438                             THREAD_SET_CONTEXT, FALSE, thread->tid);
439     } else {
440         handle = NULL;
441     }
442     LeaveCriticalSection(&data->cs);
443     return handle;
444 }
445 
446 bool qemu_thread_is_self(QemuThread *thread)
447 {
448     return GetCurrentThreadId() == thread->tid;
449 }
450