xref: /openbmc/qemu/util/qemu-thread-win32.c (revision 2038f8c8)
1 /*
2  * Win32 implementation for mutex/cond/thread functions
3  *
4  * Copyright Red Hat, Inc. 2010
5  *
6  * Author:
7  *  Paolo Bonzini <pbonzini@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 #include "qemu/osdep.h"
15 #include "qemu-common.h"
16 #include "qemu/thread.h"
17 #include "qemu/notify.h"
18 #include "qemu-thread-common.h"
19 #include <process.h>
20 
21 static bool name_threads;
22 
23 void qemu_thread_naming(bool enable)
24 {
25     /* But note we don't actually name them on Windows yet */
26     name_threads = enable;
27 
28     fprintf(stderr, "qemu: thread naming not supported on this host\n");
29 }
30 
31 static void error_exit(int err, const char *msg)
32 {
33     char *pstr;
34 
35     FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER,
36                   NULL, err, 0, (LPTSTR)&pstr, 2, NULL);
37     fprintf(stderr, "qemu: %s: %s\n", msg, pstr);
38     LocalFree(pstr);
39     abort();
40 }
41 
42 void qemu_mutex_init(QemuMutex *mutex)
43 {
44     InitializeSRWLock(&mutex->lock);
45     qemu_mutex_post_init(mutex);
46 }
47 
48 void qemu_mutex_destroy(QemuMutex *mutex)
49 {
50     assert(mutex->initialized);
51     mutex->initialized = false;
52     InitializeSRWLock(&mutex->lock);
53 }
54 
55 void qemu_mutex_lock_impl(QemuMutex *mutex, const char *file, const int line)
56 {
57     assert(mutex->initialized);
58     qemu_mutex_pre_lock(mutex, file, line);
59     AcquireSRWLockExclusive(&mutex->lock);
60     qemu_mutex_post_lock(mutex, file, line);
61 }
62 
63 int qemu_mutex_trylock_impl(QemuMutex *mutex, const char *file, const int line)
64 {
65     int owned;
66 
67     assert(mutex->initialized);
68     owned = TryAcquireSRWLockExclusive(&mutex->lock);
69     if (owned) {
70         qemu_mutex_post_lock(mutex, file, line);
71         return 0;
72     }
73     return -EBUSY;
74 }
75 
76 void qemu_mutex_unlock_impl(QemuMutex *mutex, const char *file, const int line)
77 {
78     assert(mutex->initialized);
79     qemu_mutex_pre_unlock(mutex, file, line);
80     ReleaseSRWLockExclusive(&mutex->lock);
81 }
82 
83 void qemu_rec_mutex_init(QemuRecMutex *mutex)
84 {
85     InitializeCriticalSection(&mutex->lock);
86     mutex->initialized = true;
87 }
88 
89 void qemu_rec_mutex_destroy(QemuRecMutex *mutex)
90 {
91     assert(mutex->initialized);
92     mutex->initialized = false;
93     DeleteCriticalSection(&mutex->lock);
94 }
95 
96 void qemu_rec_mutex_lock_impl(QemuRecMutex *mutex, const char *file, int line)
97 {
98     assert(mutex->initialized);
99     EnterCriticalSection(&mutex->lock);
100 }
101 
102 int qemu_rec_mutex_trylock_impl(QemuRecMutex *mutex, const char *file, int line)
103 {
104     assert(mutex->initialized);
105     return !TryEnterCriticalSection(&mutex->lock);
106 }
107 
108 void qemu_rec_mutex_unlock(QemuRecMutex *mutex)
109 {
110     assert(mutex->initialized);
111     LeaveCriticalSection(&mutex->lock);
112 }
113 
114 void qemu_cond_init(QemuCond *cond)
115 {
116     memset(cond, 0, sizeof(*cond));
117     InitializeConditionVariable(&cond->var);
118     cond->initialized = true;
119 }
120 
121 void qemu_cond_destroy(QemuCond *cond)
122 {
123     assert(cond->initialized);
124     cond->initialized = false;
125     InitializeConditionVariable(&cond->var);
126 }
127 
128 void qemu_cond_signal(QemuCond *cond)
129 {
130     assert(cond->initialized);
131     WakeConditionVariable(&cond->var);
132 }
133 
134 void qemu_cond_broadcast(QemuCond *cond)
135 {
136     assert(cond->initialized);
137     WakeAllConditionVariable(&cond->var);
138 }
139 
140 void qemu_cond_wait_impl(QemuCond *cond, QemuMutex *mutex, const char *file, const int line)
141 {
142     assert(cond->initialized);
143     qemu_mutex_pre_unlock(mutex, file, line);
144     SleepConditionVariableSRW(&cond->var, &mutex->lock, INFINITE, 0);
145     qemu_mutex_post_lock(mutex, file, line);
146 }
147 
148 void qemu_sem_init(QemuSemaphore *sem, int init)
149 {
150     /* Manual reset.  */
151     sem->sema = CreateSemaphore(NULL, init, LONG_MAX, NULL);
152     sem->initialized = true;
153 }
154 
155 void qemu_sem_destroy(QemuSemaphore *sem)
156 {
157     assert(sem->initialized);
158     sem->initialized = false;
159     CloseHandle(sem->sema);
160 }
161 
162 void qemu_sem_post(QemuSemaphore *sem)
163 {
164     assert(sem->initialized);
165     ReleaseSemaphore(sem->sema, 1, NULL);
166 }
167 
168 int qemu_sem_timedwait(QemuSemaphore *sem, int ms)
169 {
170     int rc;
171 
172     assert(sem->initialized);
173     rc = WaitForSingleObject(sem->sema, ms);
174     if (rc == WAIT_OBJECT_0) {
175         return 0;
176     }
177     if (rc != WAIT_TIMEOUT) {
178         error_exit(GetLastError(), __func__);
179     }
180     return -1;
181 }
182 
183 void qemu_sem_wait(QemuSemaphore *sem)
184 {
185     assert(sem->initialized);
186     if (WaitForSingleObject(sem->sema, INFINITE) != WAIT_OBJECT_0) {
187         error_exit(GetLastError(), __func__);
188     }
189 }
190 
191 /* Wrap a Win32 manual-reset event with a fast userspace path.  The idea
192  * is to reset the Win32 event lazily, as part of a test-reset-test-wait
193  * sequence.  Such a sequence is, indeed, how QemuEvents are used by
194  * RCU and other subsystems!
195  *
196  * Valid transitions:
197  * - free->set, when setting the event
198  * - busy->set, when setting the event, followed by SetEvent
199  * - set->free, when resetting the event
200  * - free->busy, when waiting
201  *
202  * set->busy does not happen (it can be observed from the outside but
203  * it really is set->free->busy).
204  *
205  * busy->free provably cannot happen; to enforce it, the set->free transition
206  * is done with an OR, which becomes a no-op if the event has concurrently
207  * transitioned to free or busy (and is faster than cmpxchg).
208  */
209 
210 #define EV_SET         0
211 #define EV_FREE        1
212 #define EV_BUSY       -1
213 
214 void qemu_event_init(QemuEvent *ev, bool init)
215 {
216     /* Manual reset.  */
217     ev->event = CreateEvent(NULL, TRUE, TRUE, NULL);
218     ev->value = (init ? EV_SET : EV_FREE);
219     ev->initialized = true;
220 }
221 
222 void qemu_event_destroy(QemuEvent *ev)
223 {
224     assert(ev->initialized);
225     ev->initialized = false;
226     CloseHandle(ev->event);
227 }
228 
229 void qemu_event_set(QemuEvent *ev)
230 {
231     assert(ev->initialized);
232     /* qemu_event_set has release semantics, but because it *loads*
233      * ev->value we need a full memory barrier here.
234      */
235     smp_mb();
236     if (atomic_read(&ev->value) != EV_SET) {
237         if (atomic_xchg(&ev->value, EV_SET) == EV_BUSY) {
238             /* There were waiters, wake them up.  */
239             SetEvent(ev->event);
240         }
241     }
242 }
243 
244 void qemu_event_reset(QemuEvent *ev)
245 {
246     unsigned value;
247 
248     assert(ev->initialized);
249     value = atomic_read(&ev->value);
250     smp_mb_acquire();
251     if (value == EV_SET) {
252         /* If there was a concurrent reset (or even reset+wait),
253          * do nothing.  Otherwise change EV_SET->EV_FREE.
254          */
255         atomic_or(&ev->value, EV_FREE);
256     }
257 }
258 
259 void qemu_event_wait(QemuEvent *ev)
260 {
261     unsigned value;
262 
263     assert(ev->initialized);
264     value = atomic_read(&ev->value);
265     smp_mb_acquire();
266     if (value != EV_SET) {
267         if (value == EV_FREE) {
268             /* qemu_event_set is not yet going to call SetEvent, but we are
269              * going to do another check for EV_SET below when setting EV_BUSY.
270              * At that point it is safe to call WaitForSingleObject.
271              */
272             ResetEvent(ev->event);
273 
274             /* Tell qemu_event_set that there are waiters.  No need to retry
275              * because there cannot be a concurent busy->free transition.
276              * After the CAS, the event will be either set or busy.
277              */
278             if (atomic_cmpxchg(&ev->value, EV_FREE, EV_BUSY) == EV_SET) {
279                 value = EV_SET;
280             } else {
281                 value = EV_BUSY;
282             }
283         }
284         if (value == EV_BUSY) {
285             WaitForSingleObject(ev->event, INFINITE);
286         }
287     }
288 }
289 
290 struct QemuThreadData {
291     /* Passed to win32_start_routine.  */
292     void             *(*start_routine)(void *);
293     void             *arg;
294     short             mode;
295     NotifierList      exit;
296 
297     /* Only used for joinable threads. */
298     bool              exited;
299     void             *ret;
300     CRITICAL_SECTION  cs;
301 };
302 
303 static bool atexit_registered;
304 static NotifierList main_thread_exit;
305 
306 static __thread QemuThreadData *qemu_thread_data;
307 
308 static void run_main_thread_exit(void)
309 {
310     notifier_list_notify(&main_thread_exit, NULL);
311 }
312 
313 void qemu_thread_atexit_add(Notifier *notifier)
314 {
315     if (!qemu_thread_data) {
316         if (!atexit_registered) {
317             atexit_registered = true;
318             atexit(run_main_thread_exit);
319         }
320         notifier_list_add(&main_thread_exit, notifier);
321     } else {
322         notifier_list_add(&qemu_thread_data->exit, notifier);
323     }
324 }
325 
326 void qemu_thread_atexit_remove(Notifier *notifier)
327 {
328     notifier_remove(notifier);
329 }
330 
331 static unsigned __stdcall win32_start_routine(void *arg)
332 {
333     QemuThreadData *data = (QemuThreadData *) arg;
334     void *(*start_routine)(void *) = data->start_routine;
335     void *thread_arg = data->arg;
336 
337     qemu_thread_data = data;
338     qemu_thread_exit(start_routine(thread_arg));
339     abort();
340 }
341 
342 void qemu_thread_exit(void *arg)
343 {
344     QemuThreadData *data = qemu_thread_data;
345 
346     notifier_list_notify(&data->exit, NULL);
347     if (data->mode == QEMU_THREAD_JOINABLE) {
348         data->ret = arg;
349         EnterCriticalSection(&data->cs);
350         data->exited = true;
351         LeaveCriticalSection(&data->cs);
352     } else {
353         g_free(data);
354     }
355     _endthreadex(0);
356 }
357 
358 void *qemu_thread_join(QemuThread *thread)
359 {
360     QemuThreadData *data;
361     void *ret;
362     HANDLE handle;
363 
364     data = thread->data;
365     if (data->mode == QEMU_THREAD_DETACHED) {
366         return NULL;
367     }
368 
369     /*
370      * Because multiple copies of the QemuThread can exist via
371      * qemu_thread_get_self, we need to store a value that cannot
372      * leak there.  The simplest, non racy way is to store the TID,
373      * discard the handle that _beginthreadex gives back, and
374      * get another copy of the handle here.
375      */
376     handle = qemu_thread_get_handle(thread);
377     if (handle) {
378         WaitForSingleObject(handle, INFINITE);
379         CloseHandle(handle);
380     }
381     ret = data->ret;
382     DeleteCriticalSection(&data->cs);
383     g_free(data);
384     return ret;
385 }
386 
387 void qemu_thread_create(QemuThread *thread, const char *name,
388                        void *(*start_routine)(void *),
389                        void *arg, int mode)
390 {
391     HANDLE hThread;
392     struct QemuThreadData *data;
393 
394     data = g_malloc(sizeof *data);
395     data->start_routine = start_routine;
396     data->arg = arg;
397     data->mode = mode;
398     data->exited = false;
399     notifier_list_init(&data->exit);
400 
401     if (data->mode != QEMU_THREAD_DETACHED) {
402         InitializeCriticalSection(&data->cs);
403     }
404 
405     hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine,
406                                       data, 0, &thread->tid);
407     if (!hThread) {
408         error_exit(GetLastError(), __func__);
409     }
410     CloseHandle(hThread);
411     thread->data = data;
412 }
413 
414 void qemu_thread_get_self(QemuThread *thread)
415 {
416     thread->data = qemu_thread_data;
417     thread->tid = GetCurrentThreadId();
418 }
419 
420 HANDLE qemu_thread_get_handle(QemuThread *thread)
421 {
422     QemuThreadData *data;
423     HANDLE handle;
424 
425     data = thread->data;
426     if (data->mode == QEMU_THREAD_DETACHED) {
427         return NULL;
428     }
429 
430     EnterCriticalSection(&data->cs);
431     if (!data->exited) {
432         handle = OpenThread(SYNCHRONIZE | THREAD_SUSPEND_RESUME |
433                             THREAD_SET_CONTEXT, FALSE, thread->tid);
434     } else {
435         handle = NULL;
436     }
437     LeaveCriticalSection(&data->cs);
438     return handle;
439 }
440 
441 bool qemu_thread_is_self(QemuThread *thread)
442 {
443     return GetCurrentThreadId() == thread->tid;
444 }
445