xref: /openbmc/qemu/util/qemu-thread-win32.c (revision 14a650ec)
1 /*
2  * Win32 implementation for mutex/cond/thread functions
3  *
4  * Copyright Red Hat, Inc. 2010
5  *
6  * Author:
7  *  Paolo Bonzini <pbonzini@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 #include "qemu-common.h"
14 #include "qemu/thread.h"
15 #include <process.h>
16 #include <assert.h>
17 #include <limits.h>
18 
19 static void error_exit(int err, const char *msg)
20 {
21     char *pstr;
22 
23     FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER,
24                   NULL, err, 0, (LPTSTR)&pstr, 2, NULL);
25     fprintf(stderr, "qemu: %s: %s\n", msg, pstr);
26     LocalFree(pstr);
27     abort();
28 }
29 
30 void qemu_mutex_init(QemuMutex *mutex)
31 {
32     mutex->owner = 0;
33     InitializeCriticalSection(&mutex->lock);
34 }
35 
36 void qemu_mutex_destroy(QemuMutex *mutex)
37 {
38     assert(mutex->owner == 0);
39     DeleteCriticalSection(&mutex->lock);
40 }
41 
42 void qemu_mutex_lock(QemuMutex *mutex)
43 {
44     EnterCriticalSection(&mutex->lock);
45 
46     /* Win32 CRITICAL_SECTIONs are recursive.  Assert that we're not
47      * using them as such.
48      */
49     assert(mutex->owner == 0);
50     mutex->owner = GetCurrentThreadId();
51 }
52 
53 int qemu_mutex_trylock(QemuMutex *mutex)
54 {
55     int owned;
56 
57     owned = TryEnterCriticalSection(&mutex->lock);
58     if (owned) {
59         assert(mutex->owner == 0);
60         mutex->owner = GetCurrentThreadId();
61     }
62     return !owned;
63 }
64 
65 void qemu_mutex_unlock(QemuMutex *mutex)
66 {
67     assert(mutex->owner == GetCurrentThreadId());
68     mutex->owner = 0;
69     LeaveCriticalSection(&mutex->lock);
70 }
71 
72 void qemu_cond_init(QemuCond *cond)
73 {
74     memset(cond, 0, sizeof(*cond));
75 
76     cond->sema = CreateSemaphore(NULL, 0, LONG_MAX, NULL);
77     if (!cond->sema) {
78         error_exit(GetLastError(), __func__);
79     }
80     cond->continue_event = CreateEvent(NULL,    /* security */
81                                        FALSE,   /* auto-reset */
82                                        FALSE,   /* not signaled */
83                                        NULL);   /* name */
84     if (!cond->continue_event) {
85         error_exit(GetLastError(), __func__);
86     }
87 }
88 
89 void qemu_cond_destroy(QemuCond *cond)
90 {
91     BOOL result;
92     result = CloseHandle(cond->continue_event);
93     if (!result) {
94         error_exit(GetLastError(), __func__);
95     }
96     cond->continue_event = 0;
97     result = CloseHandle(cond->sema);
98     if (!result) {
99         error_exit(GetLastError(), __func__);
100     }
101     cond->sema = 0;
102 }
103 
104 void qemu_cond_signal(QemuCond *cond)
105 {
106     DWORD result;
107 
108     /*
109      * Signal only when there are waiters.  cond->waiters is
110      * incremented by pthread_cond_wait under the external lock,
111      * so we are safe about that.
112      */
113     if (cond->waiters == 0) {
114         return;
115     }
116 
117     /*
118      * Waiting threads decrement it outside the external lock, but
119      * only if another thread is executing pthread_cond_broadcast and
120      * has the mutex.  So, it also cannot be decremented concurrently
121      * with this particular access.
122      */
123     cond->target = cond->waiters - 1;
124     result = SignalObjectAndWait(cond->sema, cond->continue_event,
125                                  INFINITE, FALSE);
126     if (result == WAIT_ABANDONED || result == WAIT_FAILED) {
127         error_exit(GetLastError(), __func__);
128     }
129 }
130 
131 void qemu_cond_broadcast(QemuCond *cond)
132 {
133     BOOLEAN result;
134     /*
135      * As in pthread_cond_signal, access to cond->waiters and
136      * cond->target is locked via the external mutex.
137      */
138     if (cond->waiters == 0) {
139         return;
140     }
141 
142     cond->target = 0;
143     result = ReleaseSemaphore(cond->sema, cond->waiters, NULL);
144     if (!result) {
145         error_exit(GetLastError(), __func__);
146     }
147 
148     /*
149      * At this point all waiters continue. Each one takes its
150      * slice of the semaphore. Now it's our turn to wait: Since
151      * the external mutex is held, no thread can leave cond_wait,
152      * yet. For this reason, we can be sure that no thread gets
153      * a chance to eat *more* than one slice. OTOH, it means
154      * that the last waiter must send us a wake-up.
155      */
156     WaitForSingleObject(cond->continue_event, INFINITE);
157 }
158 
159 void qemu_cond_wait(QemuCond *cond, QemuMutex *mutex)
160 {
161     /*
162      * This access is protected under the mutex.
163      */
164     cond->waiters++;
165 
166     /*
167      * Unlock external mutex and wait for signal.
168      * NOTE: we've held mutex locked long enough to increment
169      * waiters count above, so there's no problem with
170      * leaving mutex unlocked before we wait on semaphore.
171      */
172     qemu_mutex_unlock(mutex);
173     WaitForSingleObject(cond->sema, INFINITE);
174 
175     /* Now waiters must rendez-vous with the signaling thread and
176      * let it continue.  For cond_broadcast this has heavy contention
177      * and triggers thundering herd.  So goes life.
178      *
179      * Decrease waiters count.  The mutex is not taken, so we have
180      * to do this atomically.
181      *
182      * All waiters contend for the mutex at the end of this function
183      * until the signaling thread relinquishes it.  To ensure
184      * each waiter consumes exactly one slice of the semaphore,
185      * the signaling thread stops until it is told by the last
186      * waiter that it can go on.
187      */
188     if (InterlockedDecrement(&cond->waiters) == cond->target) {
189         SetEvent(cond->continue_event);
190     }
191 
192     qemu_mutex_lock(mutex);
193 }
194 
195 void qemu_sem_init(QemuSemaphore *sem, int init)
196 {
197     /* Manual reset.  */
198     sem->sema = CreateSemaphore(NULL, init, LONG_MAX, NULL);
199 }
200 
201 void qemu_sem_destroy(QemuSemaphore *sem)
202 {
203     CloseHandle(sem->sema);
204 }
205 
206 void qemu_sem_post(QemuSemaphore *sem)
207 {
208     ReleaseSemaphore(sem->sema, 1, NULL);
209 }
210 
211 int qemu_sem_timedwait(QemuSemaphore *sem, int ms)
212 {
213     int rc = WaitForSingleObject(sem->sema, ms);
214     if (rc == WAIT_OBJECT_0) {
215         return 0;
216     }
217     if (rc != WAIT_TIMEOUT) {
218         error_exit(GetLastError(), __func__);
219     }
220     return -1;
221 }
222 
223 void qemu_sem_wait(QemuSemaphore *sem)
224 {
225     if (WaitForSingleObject(sem->sema, INFINITE) != WAIT_OBJECT_0) {
226         error_exit(GetLastError(), __func__);
227     }
228 }
229 
230 void qemu_event_init(QemuEvent *ev, bool init)
231 {
232     /* Manual reset.  */
233     ev->event = CreateEvent(NULL, TRUE, init, NULL);
234 }
235 
236 void qemu_event_destroy(QemuEvent *ev)
237 {
238     CloseHandle(ev->event);
239 }
240 
241 void qemu_event_set(QemuEvent *ev)
242 {
243     SetEvent(ev->event);
244 }
245 
246 void qemu_event_reset(QemuEvent *ev)
247 {
248     ResetEvent(ev->event);
249 }
250 
251 void qemu_event_wait(QemuEvent *ev)
252 {
253     WaitForSingleObject(ev->event, INFINITE);
254 }
255 
256 struct QemuThreadData {
257     /* Passed to win32_start_routine.  */
258     void             *(*start_routine)(void *);
259     void             *arg;
260     short             mode;
261 
262     /* Only used for joinable threads. */
263     bool              exited;
264     void             *ret;
265     CRITICAL_SECTION  cs;
266 };
267 
268 static __thread QemuThreadData *qemu_thread_data;
269 
270 static unsigned __stdcall win32_start_routine(void *arg)
271 {
272     QemuThreadData *data = (QemuThreadData *) arg;
273     void *(*start_routine)(void *) = data->start_routine;
274     void *thread_arg = data->arg;
275 
276     if (data->mode == QEMU_THREAD_DETACHED) {
277         g_free(data);
278         data = NULL;
279     }
280     qemu_thread_data = data;
281     qemu_thread_exit(start_routine(thread_arg));
282     abort();
283 }
284 
285 void qemu_thread_exit(void *arg)
286 {
287     QemuThreadData *data = qemu_thread_data;
288 
289     if (data) {
290         assert(data->mode != QEMU_THREAD_DETACHED);
291         data->ret = arg;
292         EnterCriticalSection(&data->cs);
293         data->exited = true;
294         LeaveCriticalSection(&data->cs);
295     }
296     _endthreadex(0);
297 }
298 
299 void *qemu_thread_join(QemuThread *thread)
300 {
301     QemuThreadData *data;
302     void *ret;
303     HANDLE handle;
304 
305     data = thread->data;
306     if (!data) {
307         return NULL;
308     }
309     /*
310      * Because multiple copies of the QemuThread can exist via
311      * qemu_thread_get_self, we need to store a value that cannot
312      * leak there.  The simplest, non racy way is to store the TID,
313      * discard the handle that _beginthreadex gives back, and
314      * get another copy of the handle here.
315      */
316     handle = qemu_thread_get_handle(thread);
317     if (handle) {
318         WaitForSingleObject(handle, INFINITE);
319         CloseHandle(handle);
320     }
321     ret = data->ret;
322     assert(data->mode != QEMU_THREAD_DETACHED);
323     DeleteCriticalSection(&data->cs);
324     g_free(data);
325     return ret;
326 }
327 
328 void qemu_thread_create(QemuThread *thread,
329                        void *(*start_routine)(void *),
330                        void *arg, int mode)
331 {
332     HANDLE hThread;
333     struct QemuThreadData *data;
334 
335     data = g_malloc(sizeof *data);
336     data->start_routine = start_routine;
337     data->arg = arg;
338     data->mode = mode;
339     data->exited = false;
340 
341     if (data->mode != QEMU_THREAD_DETACHED) {
342         InitializeCriticalSection(&data->cs);
343     }
344 
345     hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine,
346                                       data, 0, &thread->tid);
347     if (!hThread) {
348         error_exit(GetLastError(), __func__);
349     }
350     CloseHandle(hThread);
351     thread->data = (mode == QEMU_THREAD_DETACHED) ? NULL : data;
352 }
353 
354 void qemu_thread_get_self(QemuThread *thread)
355 {
356     thread->data = qemu_thread_data;
357     thread->tid = GetCurrentThreadId();
358 }
359 
360 HANDLE qemu_thread_get_handle(QemuThread *thread)
361 {
362     QemuThreadData *data;
363     HANDLE handle;
364 
365     data = thread->data;
366     if (!data) {
367         return NULL;
368     }
369 
370     assert(data->mode != QEMU_THREAD_DETACHED);
371     EnterCriticalSection(&data->cs);
372     if (!data->exited) {
373         handle = OpenThread(SYNCHRONIZE | THREAD_SUSPEND_RESUME, FALSE,
374                             thread->tid);
375     } else {
376         handle = NULL;
377     }
378     LeaveCriticalSection(&data->cs);
379     return handle;
380 }
381 
382 bool qemu_thread_is_self(QemuThread *thread)
383 {
384     return GetCurrentThreadId() == thread->tid;
385 }
386