1 /* 2 * Wrappers around mutex/cond/thread functions 3 * 4 * Copyright Red Hat, Inc. 2009 5 * 6 * Author: 7 * Marcelo Tosatti <mtosatti@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 #include "qemu/osdep.h" 14 #ifdef __linux__ 15 #include <sys/syscall.h> 16 #include <linux/futex.h> 17 #endif 18 #include "qemu/thread.h" 19 #include "qemu/atomic.h" 20 #include "qemu/notify.h" 21 22 static bool name_threads; 23 24 void qemu_thread_naming(bool enable) 25 { 26 name_threads = enable; 27 28 #ifndef CONFIG_THREAD_SETNAME_BYTHREAD 29 /* This is a debugging option, not fatal */ 30 if (enable) { 31 fprintf(stderr, "qemu: thread naming not supported on this host\n"); 32 } 33 #endif 34 } 35 36 static void error_exit(int err, const char *msg) 37 { 38 fprintf(stderr, "qemu: %s: %s\n", msg, strerror(err)); 39 abort(); 40 } 41 42 void qemu_mutex_init(QemuMutex *mutex) 43 { 44 int err; 45 46 err = pthread_mutex_init(&mutex->lock, NULL); 47 if (err) 48 error_exit(err, __func__); 49 } 50 51 void qemu_mutex_destroy(QemuMutex *mutex) 52 { 53 int err; 54 55 err = pthread_mutex_destroy(&mutex->lock); 56 if (err) 57 error_exit(err, __func__); 58 } 59 60 void qemu_mutex_lock(QemuMutex *mutex) 61 { 62 int err; 63 64 err = pthread_mutex_lock(&mutex->lock); 65 if (err) 66 error_exit(err, __func__); 67 } 68 69 int qemu_mutex_trylock(QemuMutex *mutex) 70 { 71 return pthread_mutex_trylock(&mutex->lock); 72 } 73 74 void qemu_mutex_unlock(QemuMutex *mutex) 75 { 76 int err; 77 78 err = pthread_mutex_unlock(&mutex->lock); 79 if (err) 80 error_exit(err, __func__); 81 } 82 83 void qemu_rec_mutex_init(QemuRecMutex *mutex) 84 { 85 int err; 86 pthread_mutexattr_t attr; 87 88 pthread_mutexattr_init(&attr); 89 pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE); 90 err = pthread_mutex_init(&mutex->lock, &attr); 91 pthread_mutexattr_destroy(&attr); 92 if (err) { 93 error_exit(err, __func__); 94 } 95 } 96 97 void qemu_cond_init(QemuCond *cond) 98 { 99 int err; 100 101 err = pthread_cond_init(&cond->cond, NULL); 102 if (err) 103 error_exit(err, __func__); 104 } 105 106 void qemu_cond_destroy(QemuCond *cond) 107 { 108 int err; 109 110 err = pthread_cond_destroy(&cond->cond); 111 if (err) 112 error_exit(err, __func__); 113 } 114 115 void qemu_cond_signal(QemuCond *cond) 116 { 117 int err; 118 119 err = pthread_cond_signal(&cond->cond); 120 if (err) 121 error_exit(err, __func__); 122 } 123 124 void qemu_cond_broadcast(QemuCond *cond) 125 { 126 int err; 127 128 err = pthread_cond_broadcast(&cond->cond); 129 if (err) 130 error_exit(err, __func__); 131 } 132 133 void qemu_cond_wait(QemuCond *cond, QemuMutex *mutex) 134 { 135 int err; 136 137 err = pthread_cond_wait(&cond->cond, &mutex->lock); 138 if (err) 139 error_exit(err, __func__); 140 } 141 142 void qemu_sem_init(QemuSemaphore *sem, int init) 143 { 144 int rc; 145 146 #if defined(__APPLE__) || defined(__NetBSD__) 147 rc = pthread_mutex_init(&sem->lock, NULL); 148 if (rc != 0) { 149 error_exit(rc, __func__); 150 } 151 rc = pthread_cond_init(&sem->cond, NULL); 152 if (rc != 0) { 153 error_exit(rc, __func__); 154 } 155 if (init < 0) { 156 error_exit(EINVAL, __func__); 157 } 158 sem->count = init; 159 #else 160 rc = sem_init(&sem->sem, 0, init); 161 if (rc < 0) { 162 error_exit(errno, __func__); 163 } 164 #endif 165 } 166 167 void qemu_sem_destroy(QemuSemaphore *sem) 168 { 169 int rc; 170 171 #if defined(__APPLE__) || defined(__NetBSD__) 172 rc = pthread_cond_destroy(&sem->cond); 173 if (rc < 0) { 174 error_exit(rc, __func__); 175 } 176 rc = pthread_mutex_destroy(&sem->lock); 177 if (rc < 0) { 178 error_exit(rc, __func__); 179 } 180 #else 181 rc = sem_destroy(&sem->sem); 182 if (rc < 0) { 183 error_exit(errno, __func__); 184 } 185 #endif 186 } 187 188 void qemu_sem_post(QemuSemaphore *sem) 189 { 190 int rc; 191 192 #if defined(__APPLE__) || defined(__NetBSD__) 193 pthread_mutex_lock(&sem->lock); 194 if (sem->count == UINT_MAX) { 195 rc = EINVAL; 196 } else { 197 sem->count++; 198 rc = pthread_cond_signal(&sem->cond); 199 } 200 pthread_mutex_unlock(&sem->lock); 201 if (rc != 0) { 202 error_exit(rc, __func__); 203 } 204 #else 205 rc = sem_post(&sem->sem); 206 if (rc < 0) { 207 error_exit(errno, __func__); 208 } 209 #endif 210 } 211 212 static void compute_abs_deadline(struct timespec *ts, int ms) 213 { 214 struct timeval tv; 215 gettimeofday(&tv, NULL); 216 ts->tv_nsec = tv.tv_usec * 1000 + (ms % 1000) * 1000000; 217 ts->tv_sec = tv.tv_sec + ms / 1000; 218 if (ts->tv_nsec >= 1000000000) { 219 ts->tv_sec++; 220 ts->tv_nsec -= 1000000000; 221 } 222 } 223 224 int qemu_sem_timedwait(QemuSemaphore *sem, int ms) 225 { 226 int rc; 227 struct timespec ts; 228 229 #if defined(__APPLE__) || defined(__NetBSD__) 230 rc = 0; 231 compute_abs_deadline(&ts, ms); 232 pthread_mutex_lock(&sem->lock); 233 while (sem->count == 0) { 234 rc = pthread_cond_timedwait(&sem->cond, &sem->lock, &ts); 235 if (rc == ETIMEDOUT) { 236 break; 237 } 238 if (rc != 0) { 239 error_exit(rc, __func__); 240 } 241 } 242 if (rc != ETIMEDOUT) { 243 --sem->count; 244 } 245 pthread_mutex_unlock(&sem->lock); 246 return (rc == ETIMEDOUT ? -1 : 0); 247 #else 248 if (ms <= 0) { 249 /* This is cheaper than sem_timedwait. */ 250 do { 251 rc = sem_trywait(&sem->sem); 252 } while (rc == -1 && errno == EINTR); 253 if (rc == -1 && errno == EAGAIN) { 254 return -1; 255 } 256 } else { 257 compute_abs_deadline(&ts, ms); 258 do { 259 rc = sem_timedwait(&sem->sem, &ts); 260 } while (rc == -1 && errno == EINTR); 261 if (rc == -1 && errno == ETIMEDOUT) { 262 return -1; 263 } 264 } 265 if (rc < 0) { 266 error_exit(errno, __func__); 267 } 268 return 0; 269 #endif 270 } 271 272 void qemu_sem_wait(QemuSemaphore *sem) 273 { 274 int rc; 275 276 #if defined(__APPLE__) || defined(__NetBSD__) 277 pthread_mutex_lock(&sem->lock); 278 while (sem->count == 0) { 279 rc = pthread_cond_wait(&sem->cond, &sem->lock); 280 if (rc != 0) { 281 error_exit(rc, __func__); 282 } 283 } 284 --sem->count; 285 pthread_mutex_unlock(&sem->lock); 286 #else 287 do { 288 rc = sem_wait(&sem->sem); 289 } while (rc == -1 && errno == EINTR); 290 if (rc < 0) { 291 error_exit(errno, __func__); 292 } 293 #endif 294 } 295 296 #ifdef __linux__ 297 #define futex(...) syscall(__NR_futex, __VA_ARGS__) 298 299 static inline void futex_wake(QemuEvent *ev, int n) 300 { 301 futex(ev, FUTEX_WAKE, n, NULL, NULL, 0); 302 } 303 304 static inline void futex_wait(QemuEvent *ev, unsigned val) 305 { 306 while (futex(ev, FUTEX_WAIT, (int) val, NULL, NULL, 0)) { 307 switch (errno) { 308 case EWOULDBLOCK: 309 return; 310 case EINTR: 311 break; /* get out of switch and retry */ 312 default: 313 abort(); 314 } 315 } 316 } 317 #else 318 static inline void futex_wake(QemuEvent *ev, int n) 319 { 320 pthread_mutex_lock(&ev->lock); 321 if (n == 1) { 322 pthread_cond_signal(&ev->cond); 323 } else { 324 pthread_cond_broadcast(&ev->cond); 325 } 326 pthread_mutex_unlock(&ev->lock); 327 } 328 329 static inline void futex_wait(QemuEvent *ev, unsigned val) 330 { 331 pthread_mutex_lock(&ev->lock); 332 if (ev->value == val) { 333 pthread_cond_wait(&ev->cond, &ev->lock); 334 } 335 pthread_mutex_unlock(&ev->lock); 336 } 337 #endif 338 339 /* Valid transitions: 340 * - free->set, when setting the event 341 * - busy->set, when setting the event, followed by futex_wake 342 * - set->free, when resetting the event 343 * - free->busy, when waiting 344 * 345 * set->busy does not happen (it can be observed from the outside but 346 * it really is set->free->busy). 347 * 348 * busy->free provably cannot happen; to enforce it, the set->free transition 349 * is done with an OR, which becomes a no-op if the event has concurrently 350 * transitioned to free or busy. 351 */ 352 353 #define EV_SET 0 354 #define EV_FREE 1 355 #define EV_BUSY -1 356 357 void qemu_event_init(QemuEvent *ev, bool init) 358 { 359 #ifndef __linux__ 360 pthread_mutex_init(&ev->lock, NULL); 361 pthread_cond_init(&ev->cond, NULL); 362 #endif 363 364 ev->value = (init ? EV_SET : EV_FREE); 365 } 366 367 void qemu_event_destroy(QemuEvent *ev) 368 { 369 #ifndef __linux__ 370 pthread_mutex_destroy(&ev->lock); 371 pthread_cond_destroy(&ev->cond); 372 #endif 373 } 374 375 void qemu_event_set(QemuEvent *ev) 376 { 377 /* qemu_event_set has release semantics, but because it *loads* 378 * ev->value we need a full memory barrier here. 379 */ 380 smp_mb(); 381 if (atomic_read(&ev->value) != EV_SET) { 382 if (atomic_xchg(&ev->value, EV_SET) == EV_BUSY) { 383 /* There were waiters, wake them up. */ 384 futex_wake(ev, INT_MAX); 385 } 386 } 387 } 388 389 void qemu_event_reset(QemuEvent *ev) 390 { 391 unsigned value; 392 393 value = atomic_read(&ev->value); 394 smp_mb_acquire(); 395 if (value == EV_SET) { 396 /* 397 * If there was a concurrent reset (or even reset+wait), 398 * do nothing. Otherwise change EV_SET->EV_FREE. 399 */ 400 atomic_or(&ev->value, EV_FREE); 401 } 402 } 403 404 void qemu_event_wait(QemuEvent *ev) 405 { 406 unsigned value; 407 408 value = atomic_read(&ev->value); 409 smp_mb_acquire(); 410 if (value != EV_SET) { 411 if (value == EV_FREE) { 412 /* 413 * Leave the event reset and tell qemu_event_set that there 414 * are waiters. No need to retry, because there cannot be 415 * a concurrent busy->free transition. After the CAS, the 416 * event will be either set or busy. 417 */ 418 if (atomic_cmpxchg(&ev->value, EV_FREE, EV_BUSY) == EV_SET) { 419 return; 420 } 421 } 422 futex_wait(ev, EV_BUSY); 423 } 424 } 425 426 static pthread_key_t exit_key; 427 428 union NotifierThreadData { 429 void *ptr; 430 NotifierList list; 431 }; 432 QEMU_BUILD_BUG_ON(sizeof(union NotifierThreadData) != sizeof(void *)); 433 434 void qemu_thread_atexit_add(Notifier *notifier) 435 { 436 union NotifierThreadData ntd; 437 ntd.ptr = pthread_getspecific(exit_key); 438 notifier_list_add(&ntd.list, notifier); 439 pthread_setspecific(exit_key, ntd.ptr); 440 } 441 442 void qemu_thread_atexit_remove(Notifier *notifier) 443 { 444 union NotifierThreadData ntd; 445 ntd.ptr = pthread_getspecific(exit_key); 446 notifier_remove(notifier); 447 pthread_setspecific(exit_key, ntd.ptr); 448 } 449 450 static void qemu_thread_atexit_run(void *arg) 451 { 452 union NotifierThreadData ntd = { .ptr = arg }; 453 notifier_list_notify(&ntd.list, NULL); 454 } 455 456 static void __attribute__((constructor)) qemu_thread_atexit_init(void) 457 { 458 pthread_key_create(&exit_key, qemu_thread_atexit_run); 459 } 460 461 462 /* Attempt to set the threads name; note that this is for debug, so 463 * we're not going to fail if we can't set it. 464 */ 465 static void qemu_thread_set_name(QemuThread *thread, const char *name) 466 { 467 #ifdef CONFIG_PTHREAD_SETNAME_NP 468 pthread_setname_np(thread->thread, name); 469 #endif 470 } 471 472 void qemu_thread_create(QemuThread *thread, const char *name, 473 void *(*start_routine)(void*), 474 void *arg, int mode) 475 { 476 sigset_t set, oldset; 477 int err; 478 pthread_attr_t attr; 479 480 err = pthread_attr_init(&attr); 481 if (err) { 482 error_exit(err, __func__); 483 } 484 if (mode == QEMU_THREAD_DETACHED) { 485 err = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); 486 if (err) { 487 error_exit(err, __func__); 488 } 489 } 490 491 /* Leave signal handling to the iothread. */ 492 sigfillset(&set); 493 pthread_sigmask(SIG_SETMASK, &set, &oldset); 494 err = pthread_create(&thread->thread, &attr, start_routine, arg); 495 if (err) 496 error_exit(err, __func__); 497 498 if (name_threads) { 499 qemu_thread_set_name(thread, name); 500 } 501 502 pthread_sigmask(SIG_SETMASK, &oldset, NULL); 503 504 pthread_attr_destroy(&attr); 505 } 506 507 void qemu_thread_get_self(QemuThread *thread) 508 { 509 thread->thread = pthread_self(); 510 } 511 512 bool qemu_thread_is_self(QemuThread *thread) 513 { 514 return pthread_equal(pthread_self(), thread->thread); 515 } 516 517 void qemu_thread_exit(void *retval) 518 { 519 pthread_exit(retval); 520 } 521 522 void *qemu_thread_join(QemuThread *thread) 523 { 524 int err; 525 void *ret; 526 527 err = pthread_join(thread->thread, &ret); 528 if (err) { 529 error_exit(err, __func__); 530 } 531 return ret; 532 } 533