1 /* 2 * Wrappers around mutex/cond/thread functions 3 * 4 * Copyright Red Hat, Inc. 2009 5 * 6 * Author: 7 * Marcelo Tosatti <mtosatti@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 * 12 */ 13 #include "qemu/osdep.h" 14 #include "qemu/thread.h" 15 #include "qemu/atomic.h" 16 #include "qemu/notify.h" 17 #include "qemu-thread-common.h" 18 #include "qemu/tsan.h" 19 20 static bool name_threads; 21 22 void qemu_thread_naming(bool enable) 23 { 24 name_threads = enable; 25 26 #ifndef CONFIG_THREAD_SETNAME_BYTHREAD 27 /* This is a debugging option, not fatal */ 28 if (enable) { 29 fprintf(stderr, "qemu: thread naming not supported on this host\n"); 30 } 31 #endif 32 } 33 34 static void error_exit(int err, const char *msg) 35 { 36 fprintf(stderr, "qemu: %s: %s\n", msg, strerror(err)); 37 abort(); 38 } 39 40 static void compute_abs_deadline(struct timespec *ts, int ms) 41 { 42 struct timeval tv; 43 gettimeofday(&tv, NULL); 44 ts->tv_nsec = tv.tv_usec * 1000 + (ms % 1000) * 1000000; 45 ts->tv_sec = tv.tv_sec + ms / 1000; 46 if (ts->tv_nsec >= 1000000000) { 47 ts->tv_sec++; 48 ts->tv_nsec -= 1000000000; 49 } 50 } 51 52 void qemu_mutex_init(QemuMutex *mutex) 53 { 54 int err; 55 56 err = pthread_mutex_init(&mutex->lock, NULL); 57 if (err) 58 error_exit(err, __func__); 59 qemu_mutex_post_init(mutex); 60 } 61 62 void qemu_mutex_destroy(QemuMutex *mutex) 63 { 64 int err; 65 66 assert(mutex->initialized); 67 mutex->initialized = false; 68 err = pthread_mutex_destroy(&mutex->lock); 69 if (err) 70 error_exit(err, __func__); 71 } 72 73 void qemu_mutex_lock_impl(QemuMutex *mutex, const char *file, const int line) 74 { 75 int err; 76 77 assert(mutex->initialized); 78 qemu_mutex_pre_lock(mutex, file, line); 79 err = pthread_mutex_lock(&mutex->lock); 80 if (err) 81 error_exit(err, __func__); 82 qemu_mutex_post_lock(mutex, file, line); 83 } 84 85 int qemu_mutex_trylock_impl(QemuMutex *mutex, const char *file, const int line) 86 { 87 int err; 88 89 assert(mutex->initialized); 90 err = pthread_mutex_trylock(&mutex->lock); 91 if (err == 0) { 92 qemu_mutex_post_lock(mutex, file, line); 93 return 0; 94 } 95 if (err != EBUSY) { 96 error_exit(err, __func__); 97 } 98 return -EBUSY; 99 } 100 101 void qemu_mutex_unlock_impl(QemuMutex *mutex, const char *file, const int line) 102 { 103 int err; 104 105 assert(mutex->initialized); 106 qemu_mutex_pre_unlock(mutex, file, line); 107 err = pthread_mutex_unlock(&mutex->lock); 108 if (err) 109 error_exit(err, __func__); 110 } 111 112 void qemu_rec_mutex_init(QemuRecMutex *mutex) 113 { 114 int err; 115 pthread_mutexattr_t attr; 116 117 pthread_mutexattr_init(&attr); 118 pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE); 119 err = pthread_mutex_init(&mutex->m.lock, &attr); 120 pthread_mutexattr_destroy(&attr); 121 if (err) { 122 error_exit(err, __func__); 123 } 124 mutex->m.initialized = true; 125 } 126 127 void qemu_rec_mutex_destroy(QemuRecMutex *mutex) 128 { 129 qemu_mutex_destroy(&mutex->m); 130 } 131 132 void qemu_rec_mutex_lock_impl(QemuRecMutex *mutex, const char *file, int line) 133 { 134 qemu_mutex_lock_impl(&mutex->m, file, line); 135 } 136 137 int qemu_rec_mutex_trylock_impl(QemuRecMutex *mutex, const char *file, int line) 138 { 139 return qemu_mutex_trylock_impl(&mutex->m, file, line); 140 } 141 142 void qemu_rec_mutex_unlock_impl(QemuRecMutex *mutex, const char *file, int line) 143 { 144 qemu_mutex_unlock_impl(&mutex->m, file, line); 145 } 146 147 void qemu_cond_init(QemuCond *cond) 148 { 149 int err; 150 151 err = pthread_cond_init(&cond->cond, NULL); 152 if (err) 153 error_exit(err, __func__); 154 cond->initialized = true; 155 } 156 157 void qemu_cond_destroy(QemuCond *cond) 158 { 159 int err; 160 161 assert(cond->initialized); 162 cond->initialized = false; 163 err = pthread_cond_destroy(&cond->cond); 164 if (err) 165 error_exit(err, __func__); 166 } 167 168 void qemu_cond_signal(QemuCond *cond) 169 { 170 int err; 171 172 assert(cond->initialized); 173 err = pthread_cond_signal(&cond->cond); 174 if (err) 175 error_exit(err, __func__); 176 } 177 178 void qemu_cond_broadcast(QemuCond *cond) 179 { 180 int err; 181 182 assert(cond->initialized); 183 err = pthread_cond_broadcast(&cond->cond); 184 if (err) 185 error_exit(err, __func__); 186 } 187 188 void qemu_cond_wait_impl(QemuCond *cond, QemuMutex *mutex, const char *file, const int line) 189 { 190 int err; 191 192 assert(cond->initialized); 193 qemu_mutex_pre_unlock(mutex, file, line); 194 err = pthread_cond_wait(&cond->cond, &mutex->lock); 195 qemu_mutex_post_lock(mutex, file, line); 196 if (err) 197 error_exit(err, __func__); 198 } 199 200 bool qemu_cond_timedwait_impl(QemuCond *cond, QemuMutex *mutex, int ms, 201 const char *file, const int line) 202 { 203 int err; 204 struct timespec ts; 205 206 assert(cond->initialized); 207 trace_qemu_mutex_unlock(mutex, file, line); 208 compute_abs_deadline(&ts, ms); 209 err = pthread_cond_timedwait(&cond->cond, &mutex->lock, &ts); 210 trace_qemu_mutex_locked(mutex, file, line); 211 if (err && err != ETIMEDOUT) { 212 error_exit(err, __func__); 213 } 214 return err != ETIMEDOUT; 215 } 216 217 void qemu_sem_init(QemuSemaphore *sem, int init) 218 { 219 int rc; 220 221 #ifndef CONFIG_SEM_TIMEDWAIT 222 rc = pthread_mutex_init(&sem->lock, NULL); 223 if (rc != 0) { 224 error_exit(rc, __func__); 225 } 226 rc = pthread_cond_init(&sem->cond, NULL); 227 if (rc != 0) { 228 error_exit(rc, __func__); 229 } 230 if (init < 0) { 231 error_exit(EINVAL, __func__); 232 } 233 sem->count = init; 234 #else 235 rc = sem_init(&sem->sem, 0, init); 236 if (rc < 0) { 237 error_exit(errno, __func__); 238 } 239 #endif 240 sem->initialized = true; 241 } 242 243 void qemu_sem_destroy(QemuSemaphore *sem) 244 { 245 int rc; 246 247 assert(sem->initialized); 248 sem->initialized = false; 249 #ifndef CONFIG_SEM_TIMEDWAIT 250 rc = pthread_cond_destroy(&sem->cond); 251 if (rc < 0) { 252 error_exit(rc, __func__); 253 } 254 rc = pthread_mutex_destroy(&sem->lock); 255 if (rc < 0) { 256 error_exit(rc, __func__); 257 } 258 #else 259 rc = sem_destroy(&sem->sem); 260 if (rc < 0) { 261 error_exit(errno, __func__); 262 } 263 #endif 264 } 265 266 void qemu_sem_post(QemuSemaphore *sem) 267 { 268 int rc; 269 270 assert(sem->initialized); 271 #ifndef CONFIG_SEM_TIMEDWAIT 272 pthread_mutex_lock(&sem->lock); 273 if (sem->count == UINT_MAX) { 274 rc = EINVAL; 275 } else { 276 sem->count++; 277 rc = pthread_cond_signal(&sem->cond); 278 } 279 pthread_mutex_unlock(&sem->lock); 280 if (rc != 0) { 281 error_exit(rc, __func__); 282 } 283 #else 284 rc = sem_post(&sem->sem); 285 if (rc < 0) { 286 error_exit(errno, __func__); 287 } 288 #endif 289 } 290 291 int qemu_sem_timedwait(QemuSemaphore *sem, int ms) 292 { 293 int rc; 294 struct timespec ts; 295 296 assert(sem->initialized); 297 #ifndef CONFIG_SEM_TIMEDWAIT 298 rc = 0; 299 compute_abs_deadline(&ts, ms); 300 pthread_mutex_lock(&sem->lock); 301 while (sem->count == 0) { 302 rc = pthread_cond_timedwait(&sem->cond, &sem->lock, &ts); 303 if (rc == ETIMEDOUT) { 304 break; 305 } 306 if (rc != 0) { 307 error_exit(rc, __func__); 308 } 309 } 310 if (rc != ETIMEDOUT) { 311 --sem->count; 312 } 313 pthread_mutex_unlock(&sem->lock); 314 return (rc == ETIMEDOUT ? -1 : 0); 315 #else 316 if (ms <= 0) { 317 /* This is cheaper than sem_timedwait. */ 318 do { 319 rc = sem_trywait(&sem->sem); 320 } while (rc == -1 && errno == EINTR); 321 if (rc == -1 && errno == EAGAIN) { 322 return -1; 323 } 324 } else { 325 compute_abs_deadline(&ts, ms); 326 do { 327 rc = sem_timedwait(&sem->sem, &ts); 328 } while (rc == -1 && errno == EINTR); 329 if (rc == -1 && errno == ETIMEDOUT) { 330 return -1; 331 } 332 } 333 if (rc < 0) { 334 error_exit(errno, __func__); 335 } 336 return 0; 337 #endif 338 } 339 340 void qemu_sem_wait(QemuSemaphore *sem) 341 { 342 int rc; 343 344 assert(sem->initialized); 345 #ifndef CONFIG_SEM_TIMEDWAIT 346 pthread_mutex_lock(&sem->lock); 347 while (sem->count == 0) { 348 rc = pthread_cond_wait(&sem->cond, &sem->lock); 349 if (rc != 0) { 350 error_exit(rc, __func__); 351 } 352 } 353 --sem->count; 354 pthread_mutex_unlock(&sem->lock); 355 #else 356 do { 357 rc = sem_wait(&sem->sem); 358 } while (rc == -1 && errno == EINTR); 359 if (rc < 0) { 360 error_exit(errno, __func__); 361 } 362 #endif 363 } 364 365 #ifdef __linux__ 366 #include "qemu/futex.h" 367 #else 368 static inline void qemu_futex_wake(QemuEvent *ev, int n) 369 { 370 assert(ev->initialized); 371 pthread_mutex_lock(&ev->lock); 372 if (n == 1) { 373 pthread_cond_signal(&ev->cond); 374 } else { 375 pthread_cond_broadcast(&ev->cond); 376 } 377 pthread_mutex_unlock(&ev->lock); 378 } 379 380 static inline void qemu_futex_wait(QemuEvent *ev, unsigned val) 381 { 382 assert(ev->initialized); 383 pthread_mutex_lock(&ev->lock); 384 if (ev->value == val) { 385 pthread_cond_wait(&ev->cond, &ev->lock); 386 } 387 pthread_mutex_unlock(&ev->lock); 388 } 389 #endif 390 391 /* Valid transitions: 392 * - free->set, when setting the event 393 * - busy->set, when setting the event, followed by qemu_futex_wake 394 * - set->free, when resetting the event 395 * - free->busy, when waiting 396 * 397 * set->busy does not happen (it can be observed from the outside but 398 * it really is set->free->busy). 399 * 400 * busy->free provably cannot happen; to enforce it, the set->free transition 401 * is done with an OR, which becomes a no-op if the event has concurrently 402 * transitioned to free or busy. 403 */ 404 405 #define EV_SET 0 406 #define EV_FREE 1 407 #define EV_BUSY -1 408 409 void qemu_event_init(QemuEvent *ev, bool init) 410 { 411 #ifndef __linux__ 412 pthread_mutex_init(&ev->lock, NULL); 413 pthread_cond_init(&ev->cond, NULL); 414 #endif 415 416 ev->value = (init ? EV_SET : EV_FREE); 417 ev->initialized = true; 418 } 419 420 void qemu_event_destroy(QemuEvent *ev) 421 { 422 assert(ev->initialized); 423 ev->initialized = false; 424 #ifndef __linux__ 425 pthread_mutex_destroy(&ev->lock); 426 pthread_cond_destroy(&ev->cond); 427 #endif 428 } 429 430 void qemu_event_set(QemuEvent *ev) 431 { 432 /* qemu_event_set has release semantics, but because it *loads* 433 * ev->value we need a full memory barrier here. 434 */ 435 assert(ev->initialized); 436 smp_mb(); 437 if (qatomic_read(&ev->value) != EV_SET) { 438 if (qatomic_xchg(&ev->value, EV_SET) == EV_BUSY) { 439 /* There were waiters, wake them up. */ 440 qemu_futex_wake(ev, INT_MAX); 441 } 442 } 443 } 444 445 void qemu_event_reset(QemuEvent *ev) 446 { 447 unsigned value; 448 449 assert(ev->initialized); 450 value = qatomic_read(&ev->value); 451 smp_mb_acquire(); 452 if (value == EV_SET) { 453 /* 454 * If there was a concurrent reset (or even reset+wait), 455 * do nothing. Otherwise change EV_SET->EV_FREE. 456 */ 457 qatomic_or(&ev->value, EV_FREE); 458 } 459 } 460 461 void qemu_event_wait(QemuEvent *ev) 462 { 463 unsigned value; 464 465 assert(ev->initialized); 466 value = qatomic_read(&ev->value); 467 smp_mb_acquire(); 468 if (value != EV_SET) { 469 if (value == EV_FREE) { 470 /* 471 * Leave the event reset and tell qemu_event_set that there 472 * are waiters. No need to retry, because there cannot be 473 * a concurrent busy->free transition. After the CAS, the 474 * event will be either set or busy. 475 */ 476 if (qatomic_cmpxchg(&ev->value, EV_FREE, EV_BUSY) == EV_SET) { 477 return; 478 } 479 } 480 qemu_futex_wait(ev, EV_BUSY); 481 } 482 } 483 484 static __thread NotifierList thread_exit; 485 486 /* 487 * Note that in this implementation you can register a thread-exit 488 * notifier for the main thread, but it will never be called. 489 * This is OK because main thread exit can only happen when the 490 * entire process is exiting, and the API allows notifiers to not 491 * be called on process exit. 492 */ 493 void qemu_thread_atexit_add(Notifier *notifier) 494 { 495 notifier_list_add(&thread_exit, notifier); 496 } 497 498 void qemu_thread_atexit_remove(Notifier *notifier) 499 { 500 notifier_remove(notifier); 501 } 502 503 static void qemu_thread_atexit_notify(void *arg) 504 { 505 /* 506 * Called when non-main thread exits (via qemu_thread_exit() 507 * or by returning from its start routine.) 508 */ 509 notifier_list_notify(&thread_exit, NULL); 510 } 511 512 typedef struct { 513 void *(*start_routine)(void *); 514 void *arg; 515 char *name; 516 } QemuThreadArgs; 517 518 static void *qemu_thread_start(void *args) 519 { 520 QemuThreadArgs *qemu_thread_args = args; 521 void *(*start_routine)(void *) = qemu_thread_args->start_routine; 522 void *arg = qemu_thread_args->arg; 523 void *r; 524 525 #ifdef CONFIG_THREAD_SETNAME_BYTHREAD 526 /* Attempt to set the threads name; note that this is for debug, so 527 * we're not going to fail if we can't set it. 528 */ 529 if (name_threads && qemu_thread_args->name) { 530 # if defined(CONFIG_PTHREAD_SETNAME_NP_W_TID) 531 pthread_setname_np(pthread_self(), qemu_thread_args->name); 532 # elif defined(CONFIG_PTHREAD_SETNAME_NP_WO_TID) 533 pthread_setname_np(qemu_thread_args->name); 534 # endif 535 } 536 #endif 537 QEMU_TSAN_ANNOTATE_THREAD_NAME(qemu_thread_args->name); 538 g_free(qemu_thread_args->name); 539 g_free(qemu_thread_args); 540 541 /* 542 * GCC 11 with glibc 2.17 on PowerPC reports 543 * 544 * qemu-thread-posix.c:540:5: error: ‘__sigsetjmp’ accessing 656 bytes 545 * in a region of size 528 [-Werror=stringop-overflow=] 546 * 540 | pthread_cleanup_push(qemu_thread_atexit_notify, NULL); 547 * | ^~~~~~~~~~~~~~~~~~~~ 548 * 549 * which is clearly nonsense. 550 */ 551 #pragma GCC diagnostic push 552 #ifndef __clang__ 553 #pragma GCC diagnostic ignored "-Wstringop-overflow" 554 #endif 555 556 pthread_cleanup_push(qemu_thread_atexit_notify, NULL); 557 r = start_routine(arg); 558 pthread_cleanup_pop(1); 559 560 #pragma GCC diagnostic pop 561 562 return r; 563 } 564 565 void qemu_thread_create(QemuThread *thread, const char *name, 566 void *(*start_routine)(void*), 567 void *arg, int mode) 568 { 569 sigset_t set, oldset; 570 int err; 571 pthread_attr_t attr; 572 QemuThreadArgs *qemu_thread_args; 573 574 err = pthread_attr_init(&attr); 575 if (err) { 576 error_exit(err, __func__); 577 } 578 579 if (mode == QEMU_THREAD_DETACHED) { 580 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); 581 } 582 583 /* Leave signal handling to the iothread. */ 584 sigfillset(&set); 585 /* Blocking the signals can result in undefined behaviour. */ 586 sigdelset(&set, SIGSEGV); 587 sigdelset(&set, SIGFPE); 588 sigdelset(&set, SIGILL); 589 /* TODO avoid SIGBUS loss on macOS */ 590 pthread_sigmask(SIG_SETMASK, &set, &oldset); 591 592 qemu_thread_args = g_new0(QemuThreadArgs, 1); 593 qemu_thread_args->name = g_strdup(name); 594 qemu_thread_args->start_routine = start_routine; 595 qemu_thread_args->arg = arg; 596 597 err = pthread_create(&thread->thread, &attr, 598 qemu_thread_start, qemu_thread_args); 599 600 if (err) 601 error_exit(err, __func__); 602 603 pthread_sigmask(SIG_SETMASK, &oldset, NULL); 604 605 pthread_attr_destroy(&attr); 606 } 607 608 void qemu_thread_get_self(QemuThread *thread) 609 { 610 thread->thread = pthread_self(); 611 } 612 613 bool qemu_thread_is_self(QemuThread *thread) 614 { 615 return pthread_equal(pthread_self(), thread->thread); 616 } 617 618 void qemu_thread_exit(void *retval) 619 { 620 pthread_exit(retval); 621 } 622 623 void *qemu_thread_join(QemuThread *thread) 624 { 625 int err; 626 void *ret; 627 628 err = pthread_join(thread->thread, &ret); 629 if (err) { 630 error_exit(err, __func__); 631 } 632 return ret; 633 } 634