1 /* 2 * coroutine queues and locks 3 * 4 * Copyright (c) 2011 Kevin Wolf <kwolf@redhat.com> 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * The lock-free mutex implementation is based on OSv 25 * (core/lfmutex.cc, include/lockfree/mutex.hh). 26 * Copyright (C) 2013 Cloudius Systems, Ltd. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "qemu-common.h" 31 #include "qemu/coroutine.h" 32 #include "qemu/coroutine_int.h" 33 #include "qemu/processor.h" 34 #include "qemu/queue.h" 35 #include "block/aio.h" 36 #include "trace.h" 37 38 void qemu_co_queue_init(CoQueue *queue) 39 { 40 QSIMPLEQ_INIT(&queue->entries); 41 } 42 43 void coroutine_fn qemu_co_queue_wait_impl(CoQueue *queue, QemuLockable *lock) 44 { 45 Coroutine *self = qemu_coroutine_self(); 46 QSIMPLEQ_INSERT_TAIL(&queue->entries, self, co_queue_next); 47 48 if (lock) { 49 qemu_lockable_unlock(lock); 50 } 51 52 /* There is no race condition here. Other threads will call 53 * aio_co_schedule on our AioContext, which can reenter this 54 * coroutine but only after this yield and after the main loop 55 * has gone through the next iteration. 56 */ 57 qemu_coroutine_yield(); 58 assert(qemu_in_coroutine()); 59 60 /* TODO: OSv implements wait morphing here, where the wakeup 61 * primitive automatically places the woken coroutine on the 62 * mutex's queue. This avoids the thundering herd effect. 63 * This could be implemented for CoMutexes, but not really for 64 * other cases of QemuLockable. 65 */ 66 if (lock) { 67 qemu_lockable_lock(lock); 68 } 69 } 70 71 /** 72 * qemu_co_queue_run_restart: 73 * 74 * Enter each coroutine that was previously marked for restart by 75 * qemu_co_queue_next() or qemu_co_queue_restart_all(). This function is 76 * invoked by the core coroutine code when the current coroutine yields or 77 * terminates. 78 */ 79 void qemu_co_queue_run_restart(Coroutine *co) 80 { 81 Coroutine *next; 82 QSIMPLEQ_HEAD(, Coroutine) tmp_queue_wakeup = 83 QSIMPLEQ_HEAD_INITIALIZER(tmp_queue_wakeup); 84 85 trace_qemu_co_queue_run_restart(co); 86 87 /* Because "co" has yielded, any coroutine that we wakeup can resume it. 88 * If this happens and "co" terminates, co->co_queue_wakeup becomes 89 * invalid memory. Therefore, use a temporary queue and do not touch 90 * the "co" coroutine as soon as you enter another one. 91 * 92 * In its turn resumed "co" can pupulate "co_queue_wakeup" queue with 93 * new coroutines to be woken up. The caller, who has resumed "co", 94 * will be responsible for traversing the same queue, which may cause 95 * a different wakeup order but not any missing wakeups. 96 */ 97 QSIMPLEQ_CONCAT(&tmp_queue_wakeup, &co->co_queue_wakeup); 98 99 while ((next = QSIMPLEQ_FIRST(&tmp_queue_wakeup))) { 100 QSIMPLEQ_REMOVE_HEAD(&tmp_queue_wakeup, co_queue_next); 101 qemu_coroutine_enter(next); 102 } 103 } 104 105 static bool qemu_co_queue_do_restart(CoQueue *queue, bool single) 106 { 107 Coroutine *next; 108 109 if (QSIMPLEQ_EMPTY(&queue->entries)) { 110 return false; 111 } 112 113 while ((next = QSIMPLEQ_FIRST(&queue->entries)) != NULL) { 114 QSIMPLEQ_REMOVE_HEAD(&queue->entries, co_queue_next); 115 aio_co_wake(next); 116 if (single) { 117 break; 118 } 119 } 120 return true; 121 } 122 123 bool coroutine_fn qemu_co_queue_next(CoQueue *queue) 124 { 125 assert(qemu_in_coroutine()); 126 return qemu_co_queue_do_restart(queue, true); 127 } 128 129 void coroutine_fn qemu_co_queue_restart_all(CoQueue *queue) 130 { 131 assert(qemu_in_coroutine()); 132 qemu_co_queue_do_restart(queue, false); 133 } 134 135 bool qemu_co_enter_next_impl(CoQueue *queue, QemuLockable *lock) 136 { 137 Coroutine *next; 138 139 next = QSIMPLEQ_FIRST(&queue->entries); 140 if (!next) { 141 return false; 142 } 143 144 QSIMPLEQ_REMOVE_HEAD(&queue->entries, co_queue_next); 145 if (lock) { 146 qemu_lockable_unlock(lock); 147 } 148 aio_co_wake(next); 149 if (lock) { 150 qemu_lockable_lock(lock); 151 } 152 return true; 153 } 154 155 bool qemu_co_queue_empty(CoQueue *queue) 156 { 157 return QSIMPLEQ_FIRST(&queue->entries) == NULL; 158 } 159 160 /* The wait records are handled with a multiple-producer, single-consumer 161 * lock-free queue. There cannot be two concurrent pop_waiter() calls 162 * because pop_waiter() can only be called while mutex->handoff is zero. 163 * This can happen in three cases: 164 * - in qemu_co_mutex_unlock, before the hand-off protocol has started. 165 * In this case, qemu_co_mutex_lock will see mutex->handoff == 0 and 166 * not take part in the handoff. 167 * - in qemu_co_mutex_lock, if it steals the hand-off responsibility from 168 * qemu_co_mutex_unlock. In this case, qemu_co_mutex_unlock will fail 169 * the cmpxchg (it will see either 0 or the next sequence value) and 170 * exit. The next hand-off cannot begin until qemu_co_mutex_lock has 171 * woken up someone. 172 * - in qemu_co_mutex_unlock, if it takes the hand-off token itself. 173 * In this case another iteration starts with mutex->handoff == 0; 174 * a concurrent qemu_co_mutex_lock will fail the cmpxchg, and 175 * qemu_co_mutex_unlock will go back to case (1). 176 * 177 * The following functions manage this queue. 178 */ 179 typedef struct CoWaitRecord { 180 Coroutine *co; 181 QSLIST_ENTRY(CoWaitRecord) next; 182 } CoWaitRecord; 183 184 static void push_waiter(CoMutex *mutex, CoWaitRecord *w) 185 { 186 w->co = qemu_coroutine_self(); 187 QSLIST_INSERT_HEAD_ATOMIC(&mutex->from_push, w, next); 188 } 189 190 static void move_waiters(CoMutex *mutex) 191 { 192 QSLIST_HEAD(, CoWaitRecord) reversed; 193 QSLIST_MOVE_ATOMIC(&reversed, &mutex->from_push); 194 while (!QSLIST_EMPTY(&reversed)) { 195 CoWaitRecord *w = QSLIST_FIRST(&reversed); 196 QSLIST_REMOVE_HEAD(&reversed, next); 197 QSLIST_INSERT_HEAD(&mutex->to_pop, w, next); 198 } 199 } 200 201 static CoWaitRecord *pop_waiter(CoMutex *mutex) 202 { 203 CoWaitRecord *w; 204 205 if (QSLIST_EMPTY(&mutex->to_pop)) { 206 move_waiters(mutex); 207 if (QSLIST_EMPTY(&mutex->to_pop)) { 208 return NULL; 209 } 210 } 211 w = QSLIST_FIRST(&mutex->to_pop); 212 QSLIST_REMOVE_HEAD(&mutex->to_pop, next); 213 return w; 214 } 215 216 static bool has_waiters(CoMutex *mutex) 217 { 218 return QSLIST_EMPTY(&mutex->to_pop) || QSLIST_EMPTY(&mutex->from_push); 219 } 220 221 void qemu_co_mutex_init(CoMutex *mutex) 222 { 223 memset(mutex, 0, sizeof(*mutex)); 224 } 225 226 static void coroutine_fn qemu_co_mutex_wake(CoMutex *mutex, Coroutine *co) 227 { 228 /* Read co before co->ctx; pairs with smp_wmb() in 229 * qemu_coroutine_enter(). 230 */ 231 smp_read_barrier_depends(); 232 mutex->ctx = co->ctx; 233 aio_co_wake(co); 234 } 235 236 static void coroutine_fn qemu_co_mutex_lock_slowpath(AioContext *ctx, 237 CoMutex *mutex) 238 { 239 Coroutine *self = qemu_coroutine_self(); 240 CoWaitRecord w; 241 unsigned old_handoff; 242 243 trace_qemu_co_mutex_lock_entry(mutex, self); 244 w.co = self; 245 push_waiter(mutex, &w); 246 247 /* This is the "Responsibility Hand-Off" protocol; a lock() picks from 248 * a concurrent unlock() the responsibility of waking somebody up. 249 */ 250 old_handoff = atomic_mb_read(&mutex->handoff); 251 if (old_handoff && 252 has_waiters(mutex) && 253 atomic_cmpxchg(&mutex->handoff, old_handoff, 0) == old_handoff) { 254 /* There can be no concurrent pops, because there can be only 255 * one active handoff at a time. 256 */ 257 CoWaitRecord *to_wake = pop_waiter(mutex); 258 Coroutine *co = to_wake->co; 259 if (co == self) { 260 /* We got the lock ourselves! */ 261 assert(to_wake == &w); 262 mutex->ctx = ctx; 263 return; 264 } 265 266 qemu_co_mutex_wake(mutex, co); 267 } 268 269 qemu_coroutine_yield(); 270 trace_qemu_co_mutex_lock_return(mutex, self); 271 } 272 273 void coroutine_fn qemu_co_mutex_lock(CoMutex *mutex) 274 { 275 AioContext *ctx = qemu_get_current_aio_context(); 276 Coroutine *self = qemu_coroutine_self(); 277 int waiters, i; 278 279 /* Running a very small critical section on pthread_mutex_t and CoMutex 280 * shows that pthread_mutex_t is much faster because it doesn't actually 281 * go to sleep. What happens is that the critical section is shorter 282 * than the latency of entering the kernel and thus FUTEX_WAIT always 283 * fails. With CoMutex there is no such latency but you still want to 284 * avoid wait and wakeup. So introduce it artificially. 285 */ 286 i = 0; 287 retry_fast_path: 288 waiters = atomic_cmpxchg(&mutex->locked, 0, 1); 289 if (waiters != 0) { 290 while (waiters == 1 && ++i < 1000) { 291 if (atomic_read(&mutex->ctx) == ctx) { 292 break; 293 } 294 if (atomic_read(&mutex->locked) == 0) { 295 goto retry_fast_path; 296 } 297 cpu_relax(); 298 } 299 waiters = atomic_fetch_inc(&mutex->locked); 300 } 301 302 if (waiters == 0) { 303 /* Uncontended. */ 304 trace_qemu_co_mutex_lock_uncontended(mutex, self); 305 mutex->ctx = ctx; 306 } else { 307 qemu_co_mutex_lock_slowpath(ctx, mutex); 308 } 309 mutex->holder = self; 310 self->locks_held++; 311 } 312 313 void coroutine_fn qemu_co_mutex_unlock(CoMutex *mutex) 314 { 315 Coroutine *self = qemu_coroutine_self(); 316 317 trace_qemu_co_mutex_unlock_entry(mutex, self); 318 319 assert(mutex->locked); 320 assert(mutex->holder == self); 321 assert(qemu_in_coroutine()); 322 323 mutex->ctx = NULL; 324 mutex->holder = NULL; 325 self->locks_held--; 326 if (atomic_fetch_dec(&mutex->locked) == 1) { 327 /* No waiting qemu_co_mutex_lock(). Pfew, that was easy! */ 328 return; 329 } 330 331 for (;;) { 332 CoWaitRecord *to_wake = pop_waiter(mutex); 333 unsigned our_handoff; 334 335 if (to_wake) { 336 qemu_co_mutex_wake(mutex, to_wake->co); 337 break; 338 } 339 340 /* Some concurrent lock() is in progress (we know this because 341 * mutex->locked was >1) but it hasn't yet put itself on the wait 342 * queue. Pick a sequence number for the handoff protocol (not 0). 343 */ 344 if (++mutex->sequence == 0) { 345 mutex->sequence = 1; 346 } 347 348 our_handoff = mutex->sequence; 349 atomic_mb_set(&mutex->handoff, our_handoff); 350 if (!has_waiters(mutex)) { 351 /* The concurrent lock has not added itself yet, so it 352 * will be able to pick our handoff. 353 */ 354 break; 355 } 356 357 /* Try to do the handoff protocol ourselves; if somebody else has 358 * already taken it, however, we're done and they're responsible. 359 */ 360 if (atomic_cmpxchg(&mutex->handoff, our_handoff, 0) != our_handoff) { 361 break; 362 } 363 } 364 365 trace_qemu_co_mutex_unlock_return(mutex, self); 366 } 367 368 void qemu_co_rwlock_init(CoRwlock *lock) 369 { 370 memset(lock, 0, sizeof(*lock)); 371 qemu_co_queue_init(&lock->queue); 372 qemu_co_mutex_init(&lock->mutex); 373 } 374 375 void qemu_co_rwlock_rdlock(CoRwlock *lock) 376 { 377 Coroutine *self = qemu_coroutine_self(); 378 379 qemu_co_mutex_lock(&lock->mutex); 380 /* For fairness, wait if a writer is in line. */ 381 while (lock->pending_writer) { 382 qemu_co_queue_wait(&lock->queue, &lock->mutex); 383 } 384 lock->reader++; 385 qemu_co_mutex_unlock(&lock->mutex); 386 387 /* The rest of the read-side critical section is run without the mutex. */ 388 self->locks_held++; 389 } 390 391 void qemu_co_rwlock_unlock(CoRwlock *lock) 392 { 393 Coroutine *self = qemu_coroutine_self(); 394 395 assert(qemu_in_coroutine()); 396 if (!lock->reader) { 397 /* The critical section started in qemu_co_rwlock_wrlock. */ 398 qemu_co_queue_restart_all(&lock->queue); 399 } else { 400 self->locks_held--; 401 402 qemu_co_mutex_lock(&lock->mutex); 403 lock->reader--; 404 assert(lock->reader >= 0); 405 /* Wakeup only one waiting writer */ 406 if (!lock->reader) { 407 qemu_co_queue_next(&lock->queue); 408 } 409 } 410 qemu_co_mutex_unlock(&lock->mutex); 411 } 412 413 void qemu_co_rwlock_downgrade(CoRwlock *lock) 414 { 415 Coroutine *self = qemu_coroutine_self(); 416 417 /* lock->mutex critical section started in qemu_co_rwlock_wrlock or 418 * qemu_co_rwlock_upgrade. 419 */ 420 assert(lock->reader == 0); 421 lock->reader++; 422 qemu_co_mutex_unlock(&lock->mutex); 423 424 /* The rest of the read-side critical section is run without the mutex. */ 425 self->locks_held++; 426 } 427 428 void qemu_co_rwlock_wrlock(CoRwlock *lock) 429 { 430 qemu_co_mutex_lock(&lock->mutex); 431 lock->pending_writer++; 432 while (lock->reader) { 433 qemu_co_queue_wait(&lock->queue, &lock->mutex); 434 } 435 lock->pending_writer--; 436 437 /* The rest of the write-side critical section is run with 438 * the mutex taken, so that lock->reader remains zero. 439 * There is no need to update self->locks_held. 440 */ 441 } 442 443 void qemu_co_rwlock_upgrade(CoRwlock *lock) 444 { 445 Coroutine *self = qemu_coroutine_self(); 446 447 qemu_co_mutex_lock(&lock->mutex); 448 assert(lock->reader > 0); 449 lock->reader--; 450 lock->pending_writer++; 451 while (lock->reader) { 452 qemu_co_queue_wait(&lock->queue, &lock->mutex); 453 } 454 lock->pending_writer--; 455 456 /* The rest of the write-side critical section is run with 457 * the mutex taken, similar to qemu_co_rwlock_wrlock. Do 458 * not account for the lock twice in self->locks_held. 459 */ 460 self->locks_held--; 461 } 462