xref: /openbmc/qemu/util/oslib-win32.c (revision 3f53bc61)
1 /*
2  * os-win32.c
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  * Copyright (c) 2010-2016 Red Hat, Inc.
6  *
7  * QEMU library functions for win32 which are shared between QEMU and
8  * the QEMU tools.
9  *
10  * Permission is hereby granted, free of charge, to any person obtaining a copy
11  * of this software and associated documentation files (the "Software"), to deal
12  * in the Software without restriction, including without limitation the rights
13  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14  * copies of the Software, and to permit persons to whom the Software is
15  * furnished to do so, subject to the following conditions:
16  *
17  * The above copyright notice and this permission notice shall be included in
18  * all copies or substantial portions of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26  * THE SOFTWARE.
27  *
28  * The implementation of g_poll (functions poll_rest, g_poll) at the end of
29  * this file are based on code from GNOME glib-2 and use a different license,
30  * see the license comment there.
31  */
32 #include "qemu/osdep.h"
33 #include <windows.h>
34 #include "qapi/error.h"
35 #include "sysemu/sysemu.h"
36 #include "qemu/main-loop.h"
37 #include "trace.h"
38 #include "qemu/sockets.h"
39 #include "qemu/cutils.h"
40 
41 /* this must come after including "trace.h" */
42 #include <shlobj.h>
43 
44 void *qemu_oom_check(void *ptr)
45 {
46     if (ptr == NULL) {
47         fprintf(stderr, "Failed to allocate memory: %lu\n", GetLastError());
48         abort();
49     }
50     return ptr;
51 }
52 
53 void *qemu_try_memalign(size_t alignment, size_t size)
54 {
55     void *ptr;
56 
57     if (!size) {
58         abort();
59     }
60     ptr = VirtualAlloc(NULL, size, MEM_COMMIT, PAGE_READWRITE);
61     trace_qemu_memalign(alignment, size, ptr);
62     return ptr;
63 }
64 
65 void *qemu_memalign(size_t alignment, size_t size)
66 {
67     return qemu_oom_check(qemu_try_memalign(alignment, size));
68 }
69 
70 void *qemu_anon_ram_alloc(size_t size, uint64_t *align)
71 {
72     void *ptr;
73 
74     /* FIXME: this is not exactly optimal solution since VirtualAlloc
75        has 64Kb granularity, but at least it guarantees us that the
76        memory is page aligned. */
77     ptr = VirtualAlloc(NULL, size, MEM_COMMIT, PAGE_READWRITE);
78     trace_qemu_anon_ram_alloc(size, ptr);
79     return ptr;
80 }
81 
82 void qemu_vfree(void *ptr)
83 {
84     trace_qemu_vfree(ptr);
85     if (ptr) {
86         VirtualFree(ptr, 0, MEM_RELEASE);
87     }
88 }
89 
90 void qemu_anon_ram_free(void *ptr, size_t size)
91 {
92     trace_qemu_anon_ram_free(ptr, size);
93     if (ptr) {
94         VirtualFree(ptr, 0, MEM_RELEASE);
95     }
96 }
97 
98 #ifndef CONFIG_LOCALTIME_R
99 /* FIXME: add proper locking */
100 struct tm *gmtime_r(const time_t *timep, struct tm *result)
101 {
102     struct tm *p = gmtime(timep);
103     memset(result, 0, sizeof(*result));
104     if (p) {
105         *result = *p;
106         p = result;
107     }
108     return p;
109 }
110 
111 /* FIXME: add proper locking */
112 struct tm *localtime_r(const time_t *timep, struct tm *result)
113 {
114     struct tm *p = localtime(timep);
115     memset(result, 0, sizeof(*result));
116     if (p) {
117         *result = *p;
118         p = result;
119     }
120     return p;
121 }
122 #endif /* CONFIG_LOCALTIME_R */
123 
124 void qemu_set_block(int fd)
125 {
126     unsigned long opt = 0;
127     WSAEventSelect(fd, NULL, 0);
128     ioctlsocket(fd, FIONBIO, &opt);
129 }
130 
131 void qemu_set_nonblock(int fd)
132 {
133     unsigned long opt = 1;
134     ioctlsocket(fd, FIONBIO, &opt);
135     qemu_fd_register(fd);
136 }
137 
138 int socket_set_fast_reuse(int fd)
139 {
140     /* Enabling the reuse of an endpoint that was used by a socket still in
141      * TIME_WAIT state is usually performed by setting SO_REUSEADDR. On Windows
142      * fast reuse is the default and SO_REUSEADDR does strange things. So we
143      * don't have to do anything here. More info can be found at:
144      * http://msdn.microsoft.com/en-us/library/windows/desktop/ms740621.aspx */
145     return 0;
146 }
147 
148 
149 static int socket_error(void)
150 {
151     switch (WSAGetLastError()) {
152     case 0:
153         return 0;
154     case WSAEINTR:
155         return EINTR;
156     case WSAEINVAL:
157         return EINVAL;
158     case WSA_INVALID_HANDLE:
159         return EBADF;
160     case WSA_NOT_ENOUGH_MEMORY:
161         return ENOMEM;
162     case WSA_INVALID_PARAMETER:
163         return EINVAL;
164     case WSAENAMETOOLONG:
165         return ENAMETOOLONG;
166     case WSAENOTEMPTY:
167         return ENOTEMPTY;
168     case WSAEWOULDBLOCK:
169          /* not using EWOULDBLOCK as we don't want code to have
170           * to check both EWOULDBLOCK and EAGAIN */
171         return EAGAIN;
172     case WSAEINPROGRESS:
173         return EINPROGRESS;
174     case WSAEALREADY:
175         return EALREADY;
176     case WSAENOTSOCK:
177         return ENOTSOCK;
178     case WSAEDESTADDRREQ:
179         return EDESTADDRREQ;
180     case WSAEMSGSIZE:
181         return EMSGSIZE;
182     case WSAEPROTOTYPE:
183         return EPROTOTYPE;
184     case WSAENOPROTOOPT:
185         return ENOPROTOOPT;
186     case WSAEPROTONOSUPPORT:
187         return EPROTONOSUPPORT;
188     case WSAEOPNOTSUPP:
189         return EOPNOTSUPP;
190     case WSAEAFNOSUPPORT:
191         return EAFNOSUPPORT;
192     case WSAEADDRINUSE:
193         return EADDRINUSE;
194     case WSAEADDRNOTAVAIL:
195         return EADDRNOTAVAIL;
196     case WSAENETDOWN:
197         return ENETDOWN;
198     case WSAENETUNREACH:
199         return ENETUNREACH;
200     case WSAENETRESET:
201         return ENETRESET;
202     case WSAECONNABORTED:
203         return ECONNABORTED;
204     case WSAECONNRESET:
205         return ECONNRESET;
206     case WSAENOBUFS:
207         return ENOBUFS;
208     case WSAEISCONN:
209         return EISCONN;
210     case WSAENOTCONN:
211         return ENOTCONN;
212     case WSAETIMEDOUT:
213         return ETIMEDOUT;
214     case WSAECONNREFUSED:
215         return ECONNREFUSED;
216     case WSAELOOP:
217         return ELOOP;
218     case WSAEHOSTUNREACH:
219         return EHOSTUNREACH;
220     default:
221         return EIO;
222     }
223 }
224 
225 int inet_aton(const char *cp, struct in_addr *ia)
226 {
227     uint32_t addr = inet_addr(cp);
228     if (addr == 0xffffffff) {
229         return 0;
230     }
231     ia->s_addr = addr;
232     return 1;
233 }
234 
235 void qemu_set_cloexec(int fd)
236 {
237 }
238 
239 /* Offset between 1/1/1601 and 1/1/1970 in 100 nanosec units */
240 #define _W32_FT_OFFSET (116444736000000000ULL)
241 
242 int qemu_gettimeofday(qemu_timeval *tp)
243 {
244   union {
245     unsigned long long ns100; /*time since 1 Jan 1601 in 100ns units */
246     FILETIME ft;
247   }  _now;
248 
249   if(tp) {
250       GetSystemTimeAsFileTime (&_now.ft);
251       tp->tv_usec=(long)((_now.ns100 / 10ULL) % 1000000ULL );
252       tp->tv_sec= (long)((_now.ns100 - _W32_FT_OFFSET) / 10000000ULL);
253   }
254   /* Always return 0 as per Open Group Base Specifications Issue 6.
255      Do not set errno on error.  */
256   return 0;
257 }
258 
259 int qemu_get_thread_id(void)
260 {
261     return GetCurrentThreadId();
262 }
263 
264 char *
265 qemu_get_local_state_pathname(const char *relative_pathname)
266 {
267     HRESULT result;
268     char base_path[MAX_PATH+1] = "";
269 
270     result = SHGetFolderPath(NULL, CSIDL_COMMON_APPDATA, NULL,
271                              /* SHGFP_TYPE_CURRENT */ 0, base_path);
272     if (result != S_OK) {
273         /* misconfigured environment */
274         g_critical("CSIDL_COMMON_APPDATA unavailable: %ld", (long)result);
275         abort();
276     }
277     return g_strdup_printf("%s" G_DIR_SEPARATOR_S "%s", base_path,
278                            relative_pathname);
279 }
280 
281 void qemu_set_tty_echo(int fd, bool echo)
282 {
283     HANDLE handle = (HANDLE)_get_osfhandle(fd);
284     DWORD dwMode = 0;
285 
286     if (handle == INVALID_HANDLE_VALUE) {
287         return;
288     }
289 
290     GetConsoleMode(handle, &dwMode);
291 
292     if (echo) {
293         SetConsoleMode(handle, dwMode | ENABLE_ECHO_INPUT | ENABLE_LINE_INPUT);
294     } else {
295         SetConsoleMode(handle,
296                        dwMode & ~(ENABLE_ECHO_INPUT | ENABLE_LINE_INPUT));
297     }
298 }
299 
300 static char exec_dir[PATH_MAX];
301 
302 void qemu_init_exec_dir(const char *argv0)
303 {
304 
305     char *p;
306     char buf[MAX_PATH];
307     DWORD len;
308 
309     len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
310     if (len == 0) {
311         return;
312     }
313 
314     buf[len] = 0;
315     p = buf + len - 1;
316     while (p != buf && *p != '\\') {
317         p--;
318     }
319     *p = 0;
320     if (access(buf, R_OK) == 0) {
321         pstrcpy(exec_dir, sizeof(exec_dir), buf);
322     }
323 }
324 
325 char *qemu_get_exec_dir(void)
326 {
327     return g_strdup(exec_dir);
328 }
329 
330 #if !GLIB_CHECK_VERSION(2, 50, 0)
331 /*
332  * The original implementation of g_poll from glib has a problem on Windows
333  * when using timeouts < 10 ms.
334  *
335  * Whenever g_poll is called with timeout < 10 ms, it does a quick poll instead
336  * of wait. This causes significant performance degradation of QEMU.
337  *
338  * The following code is a copy of the original code from glib/gpoll.c
339  * (glib commit 20f4d1820b8d4d0fc4447188e33efffd6d4a88d8 from 2014-02-19).
340  * Some debug code was removed and the code was reformatted.
341  * All other code modifications are marked with 'QEMU'.
342  */
343 
344 /*
345  * gpoll.c: poll(2) abstraction
346  * Copyright 1998 Owen Taylor
347  * Copyright 2008 Red Hat, Inc.
348  *
349  * This library is free software; you can redistribute it and/or
350  * modify it under the terms of the GNU Lesser General Public
351  * License as published by the Free Software Foundation; either
352  * version 2 of the License, or (at your option) any later version.
353  *
354  * This library is distributed in the hope that it will be useful,
355  * but WITHOUT ANY WARRANTY; without even the implied warranty of
356  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
357  * Lesser General Public License for more details.
358  *
359  * You should have received a copy of the GNU Lesser General Public
360  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
361  */
362 
363 static int poll_rest(gboolean poll_msgs, HANDLE *handles, gint nhandles,
364                      GPollFD *fds, guint nfds, gint timeout)
365 {
366     DWORD ready;
367     GPollFD *f;
368     int recursed_result;
369 
370     if (poll_msgs) {
371         /* Wait for either messages or handles
372          * -> Use MsgWaitForMultipleObjectsEx
373          */
374         ready = MsgWaitForMultipleObjectsEx(nhandles, handles, timeout,
375                                             QS_ALLINPUT, MWMO_ALERTABLE);
376 
377         if (ready == WAIT_FAILED) {
378             gchar *emsg = g_win32_error_message(GetLastError());
379             g_warning("MsgWaitForMultipleObjectsEx failed: %s", emsg);
380             g_free(emsg);
381         }
382     } else if (nhandles == 0) {
383         /* No handles to wait for, just the timeout */
384         if (timeout == INFINITE) {
385             ready = WAIT_FAILED;
386         } else {
387             SleepEx(timeout, TRUE);
388             ready = WAIT_TIMEOUT;
389         }
390     } else {
391         /* Wait for just handles
392          * -> Use WaitForMultipleObjectsEx
393          */
394         ready =
395             WaitForMultipleObjectsEx(nhandles, handles, FALSE, timeout, TRUE);
396         if (ready == WAIT_FAILED) {
397             gchar *emsg = g_win32_error_message(GetLastError());
398             g_warning("WaitForMultipleObjectsEx failed: %s", emsg);
399             g_free(emsg);
400         }
401     }
402 
403     if (ready == WAIT_FAILED) {
404         return -1;
405     } else if (ready == WAIT_TIMEOUT || ready == WAIT_IO_COMPLETION) {
406         return 0;
407     } else if (poll_msgs && ready == WAIT_OBJECT_0 + nhandles) {
408         for (f = fds; f < &fds[nfds]; ++f) {
409             if (f->fd == G_WIN32_MSG_HANDLE && f->events & G_IO_IN) {
410                 f->revents |= G_IO_IN;
411             }
412         }
413 
414         /* If we have a timeout, or no handles to poll, be satisfied
415          * with just noticing we have messages waiting.
416          */
417         if (timeout != 0 || nhandles == 0) {
418             return 1;
419         }
420 
421         /* If no timeout and handles to poll, recurse to poll them,
422          * too.
423          */
424         recursed_result = poll_rest(FALSE, handles, nhandles, fds, nfds, 0);
425         return (recursed_result == -1) ? -1 : 1 + recursed_result;
426     } else if (/* QEMU: removed the following unneeded statement which causes
427                 * a compiler warning: ready >= WAIT_OBJECT_0 && */
428                ready < WAIT_OBJECT_0 + nhandles) {
429         for (f = fds; f < &fds[nfds]; ++f) {
430             if ((HANDLE) f->fd == handles[ready - WAIT_OBJECT_0]) {
431                 f->revents = f->events;
432             }
433         }
434 
435         /* If no timeout and polling several handles, recurse to poll
436          * the rest of them.
437          */
438         if (timeout == 0 && nhandles > 1) {
439             /* Remove the handle that fired */
440             int i;
441             if (ready < nhandles - 1) {
442                 for (i = ready - WAIT_OBJECT_0 + 1; i < nhandles; i++) {
443                     handles[i-1] = handles[i];
444                 }
445             }
446             nhandles--;
447             recursed_result = poll_rest(FALSE, handles, nhandles, fds, nfds, 0);
448             return (recursed_result == -1) ? -1 : 1 + recursed_result;
449         }
450         return 1;
451     }
452 
453     return 0;
454 }
455 
456 gint g_poll(GPollFD *fds, guint nfds, gint timeout)
457 {
458     HANDLE handles[MAXIMUM_WAIT_OBJECTS];
459     gboolean poll_msgs = FALSE;
460     GPollFD *f;
461     gint nhandles = 0;
462     int retval;
463 
464     for (f = fds; f < &fds[nfds]; ++f) {
465         if (f->fd == G_WIN32_MSG_HANDLE && (f->events & G_IO_IN)) {
466             poll_msgs = TRUE;
467         } else if (f->fd > 0) {
468             /* Don't add the same handle several times into the array, as
469              * docs say that is not allowed, even if it actually does seem
470              * to work.
471              */
472             gint i;
473 
474             for (i = 0; i < nhandles; i++) {
475                 if (handles[i] == (HANDLE) f->fd) {
476                     break;
477                 }
478             }
479 
480             if (i == nhandles) {
481                 if (nhandles == MAXIMUM_WAIT_OBJECTS) {
482                     g_warning("Too many handles to wait for!\n");
483                     break;
484                 } else {
485                     handles[nhandles++] = (HANDLE) f->fd;
486                 }
487             }
488         }
489     }
490 
491     for (f = fds; f < &fds[nfds]; ++f) {
492         f->revents = 0;
493     }
494 
495     if (timeout == -1) {
496         timeout = INFINITE;
497     }
498 
499     /* Polling for several things? */
500     if (nhandles > 1 || (nhandles > 0 && poll_msgs)) {
501         /* First check if one or several of them are immediately
502          * available
503          */
504         retval = poll_rest(poll_msgs, handles, nhandles, fds, nfds, 0);
505 
506         /* If not, and we have a significant timeout, poll again with
507          * timeout then. Note that this will return indication for only
508          * one event, or only for messages. We ignore timeouts less than
509          * ten milliseconds as they are mostly pointless on Windows, the
510          * MsgWaitForMultipleObjectsEx() call will timeout right away
511          * anyway.
512          *
513          * Modification for QEMU: replaced timeout >= 10 by timeout > 0.
514          */
515         if (retval == 0 && (timeout == INFINITE || timeout > 0)) {
516             retval = poll_rest(poll_msgs, handles, nhandles,
517                                fds, nfds, timeout);
518         }
519     } else {
520         /* Just polling for one thing, so no need to check first if
521          * available immediately
522          */
523         retval = poll_rest(poll_msgs, handles, nhandles, fds, nfds, timeout);
524     }
525 
526     if (retval == -1) {
527         for (f = fds; f < &fds[nfds]; ++f) {
528             f->revents = 0;
529         }
530     }
531 
532     return retval;
533 }
534 #endif
535 
536 int getpagesize(void)
537 {
538     SYSTEM_INFO system_info;
539 
540     GetSystemInfo(&system_info);
541     return system_info.dwPageSize;
542 }
543 
544 void os_mem_prealloc(int fd, char *area, size_t memory, int smp_cpus,
545                      Error **errp)
546 {
547     int i;
548     size_t pagesize = getpagesize();
549 
550     memory = (memory + pagesize - 1) & -pagesize;
551     for (i = 0; i < memory / pagesize; i++) {
552         memset(area + pagesize * i, 0, 1);
553     }
554 }
555 
556 
557 /* XXX: put correct support for win32 */
558 int qemu_read_password(char *buf, int buf_size)
559 {
560     int c, i;
561 
562     printf("Password: ");
563     fflush(stdout);
564     i = 0;
565     for (;;) {
566         c = getchar();
567         if (c < 0) {
568             buf[i] = '\0';
569             return -1;
570         } else if (c == '\n') {
571             break;
572         } else if (i < (buf_size - 1)) {
573             buf[i++] = c;
574         }
575     }
576     buf[i] = '\0';
577     return 0;
578 }
579 
580 
581 char *qemu_get_pid_name(pid_t pid)
582 {
583     /* XXX Implement me */
584     abort();
585 }
586 
587 
588 pid_t qemu_fork(Error **errp)
589 {
590     errno = ENOSYS;
591     error_setg_errno(errp, errno,
592                      "cannot fork child process");
593     return -1;
594 }
595 
596 
597 #undef connect
598 int qemu_connect_wrap(int sockfd, const struct sockaddr *addr,
599                       socklen_t addrlen)
600 {
601     int ret;
602     ret = connect(sockfd, addr, addrlen);
603     if (ret < 0) {
604         errno = socket_error();
605     }
606     return ret;
607 }
608 
609 
610 #undef listen
611 int qemu_listen_wrap(int sockfd, int backlog)
612 {
613     int ret;
614     ret = listen(sockfd, backlog);
615     if (ret < 0) {
616         errno = socket_error();
617     }
618     return ret;
619 }
620 
621 
622 #undef bind
623 int qemu_bind_wrap(int sockfd, const struct sockaddr *addr,
624                    socklen_t addrlen)
625 {
626     int ret;
627     ret = bind(sockfd, addr, addrlen);
628     if (ret < 0) {
629         errno = socket_error();
630     }
631     return ret;
632 }
633 
634 
635 #undef socket
636 int qemu_socket_wrap(int domain, int type, int protocol)
637 {
638     int ret;
639     ret = socket(domain, type, protocol);
640     if (ret < 0) {
641         errno = socket_error();
642     }
643     return ret;
644 }
645 
646 
647 #undef accept
648 int qemu_accept_wrap(int sockfd, struct sockaddr *addr,
649                      socklen_t *addrlen)
650 {
651     int ret;
652     ret = accept(sockfd, addr, addrlen);
653     if (ret < 0) {
654         errno = socket_error();
655     }
656     return ret;
657 }
658 
659 
660 #undef shutdown
661 int qemu_shutdown_wrap(int sockfd, int how)
662 {
663     int ret;
664     ret = shutdown(sockfd, how);
665     if (ret < 0) {
666         errno = socket_error();
667     }
668     return ret;
669 }
670 
671 
672 #undef ioctlsocket
673 int qemu_ioctlsocket_wrap(int fd, int req, void *val)
674 {
675     int ret;
676     ret = ioctlsocket(fd, req, val);
677     if (ret < 0) {
678         errno = socket_error();
679     }
680     return ret;
681 }
682 
683 
684 #undef closesocket
685 int qemu_closesocket_wrap(int fd)
686 {
687     int ret;
688     ret = closesocket(fd);
689     if (ret < 0) {
690         errno = socket_error();
691     }
692     return ret;
693 }
694 
695 
696 #undef getsockopt
697 int qemu_getsockopt_wrap(int sockfd, int level, int optname,
698                          void *optval, socklen_t *optlen)
699 {
700     int ret;
701     ret = getsockopt(sockfd, level, optname, optval, optlen);
702     if (ret < 0) {
703         errno = socket_error();
704     }
705     return ret;
706 }
707 
708 
709 #undef setsockopt
710 int qemu_setsockopt_wrap(int sockfd, int level, int optname,
711                          const void *optval, socklen_t optlen)
712 {
713     int ret;
714     ret = setsockopt(sockfd, level, optname, optval, optlen);
715     if (ret < 0) {
716         errno = socket_error();
717     }
718     return ret;
719 }
720 
721 
722 #undef getpeername
723 int qemu_getpeername_wrap(int sockfd, struct sockaddr *addr,
724                           socklen_t *addrlen)
725 {
726     int ret;
727     ret = getpeername(sockfd, addr, addrlen);
728     if (ret < 0) {
729         errno = socket_error();
730     }
731     return ret;
732 }
733 
734 
735 #undef getsockname
736 int qemu_getsockname_wrap(int sockfd, struct sockaddr *addr,
737                           socklen_t *addrlen)
738 {
739     int ret;
740     ret = getsockname(sockfd, addr, addrlen);
741     if (ret < 0) {
742         errno = socket_error();
743     }
744     return ret;
745 }
746 
747 
748 #undef send
749 ssize_t qemu_send_wrap(int sockfd, const void *buf, size_t len, int flags)
750 {
751     int ret;
752     ret = send(sockfd, buf, len, flags);
753     if (ret < 0) {
754         errno = socket_error();
755     }
756     return ret;
757 }
758 
759 
760 #undef sendto
761 ssize_t qemu_sendto_wrap(int sockfd, const void *buf, size_t len, int flags,
762                          const struct sockaddr *addr, socklen_t addrlen)
763 {
764     int ret;
765     ret = sendto(sockfd, buf, len, flags, addr, addrlen);
766     if (ret < 0) {
767         errno = socket_error();
768     }
769     return ret;
770 }
771 
772 
773 #undef recv
774 ssize_t qemu_recv_wrap(int sockfd, void *buf, size_t len, int flags)
775 {
776     int ret;
777     ret = recv(sockfd, buf, len, flags);
778     if (ret < 0) {
779         errno = socket_error();
780     }
781     return ret;
782 }
783 
784 
785 #undef recvfrom
786 ssize_t qemu_recvfrom_wrap(int sockfd, void *buf, size_t len, int flags,
787                            struct sockaddr *addr, socklen_t *addrlen)
788 {
789     int ret;
790     ret = recvfrom(sockfd, buf, len, flags, addr, addrlen);
791     if (ret < 0) {
792         errno = socket_error();
793     }
794     return ret;
795 }
796