1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qapi/error.h" 27 #include "qemu/cutils.h" 28 #include "qemu/timer.h" 29 #include "qemu/sockets.h" // struct in_addr needed for libslirp.h 30 #include "sysemu/qtest.h" 31 #include "sysemu/cpus.h" 32 #include "slirp/libslirp.h" 33 #include "qemu/main-loop.h" 34 #include "block/aio.h" 35 #include "qemu/error-report.h" 36 37 #ifndef _WIN32 38 39 /* If we have signalfd, we mask out the signals we want to handle and then 40 * use signalfd to listen for them. We rely on whatever the current signal 41 * handler is to dispatch the signals when we receive them. 42 */ 43 static void sigfd_handler(void *opaque) 44 { 45 int fd = (intptr_t)opaque; 46 struct qemu_signalfd_siginfo info; 47 struct sigaction action; 48 ssize_t len; 49 50 while (1) { 51 do { 52 len = read(fd, &info, sizeof(info)); 53 } while (len == -1 && errno == EINTR); 54 55 if (len == -1 && errno == EAGAIN) { 56 break; 57 } 58 59 if (len != sizeof(info)) { 60 printf("read from sigfd returned %zd: %m\n", len); 61 return; 62 } 63 64 sigaction(info.ssi_signo, NULL, &action); 65 if ((action.sa_flags & SA_SIGINFO) && action.sa_sigaction) { 66 sigaction_invoke(&action, &info); 67 } else if (action.sa_handler) { 68 action.sa_handler(info.ssi_signo); 69 } 70 } 71 } 72 73 static int qemu_signal_init(void) 74 { 75 int sigfd; 76 sigset_t set; 77 78 /* 79 * SIG_IPI must be blocked in the main thread and must not be caught 80 * by sigwait() in the signal thread. Otherwise, the cpu thread will 81 * not catch it reliably. 82 */ 83 sigemptyset(&set); 84 sigaddset(&set, SIG_IPI); 85 sigaddset(&set, SIGIO); 86 sigaddset(&set, SIGALRM); 87 sigaddset(&set, SIGBUS); 88 /* SIGINT cannot be handled via signalfd, so that ^C can be used 89 * to interrupt QEMU when it is being run under gdb. SIGHUP and 90 * SIGTERM are also handled asynchronously, even though it is not 91 * strictly necessary, because they use the same handler as SIGINT. 92 */ 93 pthread_sigmask(SIG_BLOCK, &set, NULL); 94 95 sigdelset(&set, SIG_IPI); 96 sigfd = qemu_signalfd(&set); 97 if (sigfd == -1) { 98 fprintf(stderr, "failed to create signalfd\n"); 99 return -errno; 100 } 101 102 fcntl_setfl(sigfd, O_NONBLOCK); 103 104 qemu_set_fd_handler(sigfd, sigfd_handler, NULL, (void *)(intptr_t)sigfd); 105 106 return 0; 107 } 108 109 #else /* _WIN32 */ 110 111 static int qemu_signal_init(void) 112 { 113 return 0; 114 } 115 #endif 116 117 static AioContext *qemu_aio_context; 118 static QEMUBH *qemu_notify_bh; 119 120 static void notify_event_cb(void *opaque) 121 { 122 /* No need to do anything; this bottom half is only used to 123 * kick the kernel out of ppoll/poll/WaitForMultipleObjects. 124 */ 125 } 126 127 AioContext *qemu_get_aio_context(void) 128 { 129 return qemu_aio_context; 130 } 131 132 void qemu_notify_event(void) 133 { 134 if (!qemu_aio_context) { 135 return; 136 } 137 qemu_bh_schedule(qemu_notify_bh); 138 } 139 140 static GArray *gpollfds; 141 142 int qemu_init_main_loop(Error **errp) 143 { 144 int ret; 145 GSource *src; 146 Error *local_error = NULL; 147 148 init_clocks(qemu_timer_notify_cb); 149 150 ret = qemu_signal_init(); 151 if (ret) { 152 return ret; 153 } 154 155 qemu_aio_context = aio_context_new(&local_error); 156 if (!qemu_aio_context) { 157 error_propagate(errp, local_error); 158 return -EMFILE; 159 } 160 qemu_notify_bh = qemu_bh_new(notify_event_cb, NULL); 161 gpollfds = g_array_new(FALSE, FALSE, sizeof(GPollFD)); 162 src = aio_get_g_source(qemu_aio_context); 163 g_source_set_name(src, "aio-context"); 164 g_source_attach(src, NULL); 165 g_source_unref(src); 166 src = iohandler_get_g_source(); 167 g_source_set_name(src, "io-handler"); 168 g_source_attach(src, NULL); 169 g_source_unref(src); 170 return 0; 171 } 172 173 static int max_priority; 174 175 #ifndef _WIN32 176 static int glib_pollfds_idx; 177 static int glib_n_poll_fds; 178 179 static void glib_pollfds_fill(int64_t *cur_timeout) 180 { 181 GMainContext *context = g_main_context_default(); 182 int timeout = 0; 183 int64_t timeout_ns; 184 int n; 185 186 g_main_context_prepare(context, &max_priority); 187 188 glib_pollfds_idx = gpollfds->len; 189 n = glib_n_poll_fds; 190 do { 191 GPollFD *pfds; 192 glib_n_poll_fds = n; 193 g_array_set_size(gpollfds, glib_pollfds_idx + glib_n_poll_fds); 194 pfds = &g_array_index(gpollfds, GPollFD, glib_pollfds_idx); 195 n = g_main_context_query(context, max_priority, &timeout, pfds, 196 glib_n_poll_fds); 197 } while (n != glib_n_poll_fds); 198 199 if (timeout < 0) { 200 timeout_ns = -1; 201 } else { 202 timeout_ns = (int64_t)timeout * (int64_t)SCALE_MS; 203 } 204 205 *cur_timeout = qemu_soonest_timeout(timeout_ns, *cur_timeout); 206 } 207 208 static void glib_pollfds_poll(void) 209 { 210 GMainContext *context = g_main_context_default(); 211 GPollFD *pfds = &g_array_index(gpollfds, GPollFD, glib_pollfds_idx); 212 213 if (g_main_context_check(context, max_priority, pfds, glib_n_poll_fds)) { 214 g_main_context_dispatch(context); 215 } 216 } 217 218 #define MAX_MAIN_LOOP_SPIN (1000) 219 220 static int os_host_main_loop_wait(int64_t timeout) 221 { 222 GMainContext *context = g_main_context_default(); 223 int ret; 224 static int spin_counter; 225 226 g_main_context_acquire(context); 227 228 glib_pollfds_fill(&timeout); 229 230 /* If the I/O thread is very busy or we are incorrectly busy waiting in 231 * the I/O thread, this can lead to starvation of the BQL such that the 232 * VCPU threads never run. To make sure we can detect the later case, 233 * print a message to the screen. If we run into this condition, create 234 * a fake timeout in order to give the VCPU threads a chance to run. 235 */ 236 if (!timeout && (spin_counter > MAX_MAIN_LOOP_SPIN)) { 237 static bool notified; 238 239 if (!notified && !qtest_enabled() && !qtest_driver()) { 240 warn_report("I/O thread spun for %d iterations", 241 MAX_MAIN_LOOP_SPIN); 242 notified = true; 243 } 244 245 timeout = SCALE_MS; 246 } 247 248 if (timeout) { 249 spin_counter = 0; 250 qemu_mutex_unlock_iothread(); 251 } else { 252 spin_counter++; 253 } 254 255 ret = qemu_poll_ns((GPollFD *)gpollfds->data, gpollfds->len, timeout); 256 257 if (timeout) { 258 qemu_mutex_lock_iothread(); 259 } 260 261 glib_pollfds_poll(); 262 263 g_main_context_release(context); 264 265 return ret; 266 } 267 #else 268 /***********************************************************/ 269 /* Polling handling */ 270 271 typedef struct PollingEntry { 272 PollingFunc *func; 273 void *opaque; 274 struct PollingEntry *next; 275 } PollingEntry; 276 277 static PollingEntry *first_polling_entry; 278 279 int qemu_add_polling_cb(PollingFunc *func, void *opaque) 280 { 281 PollingEntry **ppe, *pe; 282 pe = g_malloc0(sizeof(PollingEntry)); 283 pe->func = func; 284 pe->opaque = opaque; 285 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next); 286 *ppe = pe; 287 return 0; 288 } 289 290 void qemu_del_polling_cb(PollingFunc *func, void *opaque) 291 { 292 PollingEntry **ppe, *pe; 293 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) { 294 pe = *ppe; 295 if (pe->func == func && pe->opaque == opaque) { 296 *ppe = pe->next; 297 g_free(pe); 298 break; 299 } 300 } 301 } 302 303 /***********************************************************/ 304 /* Wait objects support */ 305 typedef struct WaitObjects { 306 int num; 307 int revents[MAXIMUM_WAIT_OBJECTS + 1]; 308 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1]; 309 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1]; 310 void *opaque[MAXIMUM_WAIT_OBJECTS + 1]; 311 } WaitObjects; 312 313 static WaitObjects wait_objects = {0}; 314 315 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque) 316 { 317 WaitObjects *w = &wait_objects; 318 if (w->num >= MAXIMUM_WAIT_OBJECTS) { 319 return -1; 320 } 321 w->events[w->num] = handle; 322 w->func[w->num] = func; 323 w->opaque[w->num] = opaque; 324 w->revents[w->num] = 0; 325 w->num++; 326 return 0; 327 } 328 329 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque) 330 { 331 int i, found; 332 WaitObjects *w = &wait_objects; 333 334 found = 0; 335 for (i = 0; i < w->num; i++) { 336 if (w->events[i] == handle) { 337 found = 1; 338 } 339 if (found) { 340 w->events[i] = w->events[i + 1]; 341 w->func[i] = w->func[i + 1]; 342 w->opaque[i] = w->opaque[i + 1]; 343 w->revents[i] = w->revents[i + 1]; 344 } 345 } 346 if (found) { 347 w->num--; 348 } 349 } 350 351 void qemu_fd_register(int fd) 352 { 353 WSAEventSelect(fd, event_notifier_get_handle(&qemu_aio_context->notifier), 354 FD_READ | FD_ACCEPT | FD_CLOSE | 355 FD_CONNECT | FD_WRITE | FD_OOB); 356 } 357 358 static int pollfds_fill(GArray *pollfds, fd_set *rfds, fd_set *wfds, 359 fd_set *xfds) 360 { 361 int nfds = -1; 362 int i; 363 364 for (i = 0; i < pollfds->len; i++) { 365 GPollFD *pfd = &g_array_index(pollfds, GPollFD, i); 366 int fd = pfd->fd; 367 int events = pfd->events; 368 if (events & G_IO_IN) { 369 FD_SET(fd, rfds); 370 nfds = MAX(nfds, fd); 371 } 372 if (events & G_IO_OUT) { 373 FD_SET(fd, wfds); 374 nfds = MAX(nfds, fd); 375 } 376 if (events & G_IO_PRI) { 377 FD_SET(fd, xfds); 378 nfds = MAX(nfds, fd); 379 } 380 } 381 return nfds; 382 } 383 384 static void pollfds_poll(GArray *pollfds, int nfds, fd_set *rfds, 385 fd_set *wfds, fd_set *xfds) 386 { 387 int i; 388 389 for (i = 0; i < pollfds->len; i++) { 390 GPollFD *pfd = &g_array_index(pollfds, GPollFD, i); 391 int fd = pfd->fd; 392 int revents = 0; 393 394 if (FD_ISSET(fd, rfds)) { 395 revents |= G_IO_IN; 396 } 397 if (FD_ISSET(fd, wfds)) { 398 revents |= G_IO_OUT; 399 } 400 if (FD_ISSET(fd, xfds)) { 401 revents |= G_IO_PRI; 402 } 403 pfd->revents = revents & pfd->events; 404 } 405 } 406 407 static int os_host_main_loop_wait(int64_t timeout) 408 { 409 GMainContext *context = g_main_context_default(); 410 GPollFD poll_fds[1024 * 2]; /* this is probably overkill */ 411 int select_ret = 0; 412 int g_poll_ret, ret, i, n_poll_fds; 413 PollingEntry *pe; 414 WaitObjects *w = &wait_objects; 415 gint poll_timeout; 416 int64_t poll_timeout_ns; 417 static struct timeval tv0; 418 fd_set rfds, wfds, xfds; 419 int nfds; 420 421 g_main_context_acquire(context); 422 423 /* XXX: need to suppress polling by better using win32 events */ 424 ret = 0; 425 for (pe = first_polling_entry; pe != NULL; pe = pe->next) { 426 ret |= pe->func(pe->opaque); 427 } 428 if (ret != 0) { 429 g_main_context_release(context); 430 return ret; 431 } 432 433 FD_ZERO(&rfds); 434 FD_ZERO(&wfds); 435 FD_ZERO(&xfds); 436 nfds = pollfds_fill(gpollfds, &rfds, &wfds, &xfds); 437 if (nfds >= 0) { 438 select_ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv0); 439 if (select_ret != 0) { 440 timeout = 0; 441 } 442 if (select_ret > 0) { 443 pollfds_poll(gpollfds, nfds, &rfds, &wfds, &xfds); 444 } 445 } 446 447 g_main_context_prepare(context, &max_priority); 448 n_poll_fds = g_main_context_query(context, max_priority, &poll_timeout, 449 poll_fds, ARRAY_SIZE(poll_fds)); 450 g_assert(n_poll_fds <= ARRAY_SIZE(poll_fds)); 451 452 for (i = 0; i < w->num; i++) { 453 poll_fds[n_poll_fds + i].fd = (DWORD_PTR)w->events[i]; 454 poll_fds[n_poll_fds + i].events = G_IO_IN; 455 } 456 457 if (poll_timeout < 0) { 458 poll_timeout_ns = -1; 459 } else { 460 poll_timeout_ns = (int64_t)poll_timeout * (int64_t)SCALE_MS; 461 } 462 463 poll_timeout_ns = qemu_soonest_timeout(poll_timeout_ns, timeout); 464 465 qemu_mutex_unlock_iothread(); 466 g_poll_ret = qemu_poll_ns(poll_fds, n_poll_fds + w->num, poll_timeout_ns); 467 468 qemu_mutex_lock_iothread(); 469 if (g_poll_ret > 0) { 470 for (i = 0; i < w->num; i++) { 471 w->revents[i] = poll_fds[n_poll_fds + i].revents; 472 } 473 for (i = 0; i < w->num; i++) { 474 if (w->revents[i] && w->func[i]) { 475 w->func[i](w->opaque[i]); 476 } 477 } 478 } 479 480 if (g_main_context_check(context, max_priority, poll_fds, n_poll_fds)) { 481 g_main_context_dispatch(context); 482 } 483 484 g_main_context_release(context); 485 486 return select_ret || g_poll_ret; 487 } 488 #endif 489 490 void main_loop_wait(int nonblocking) 491 { 492 int ret; 493 uint32_t timeout = UINT32_MAX; 494 int64_t timeout_ns; 495 496 if (nonblocking) { 497 timeout = 0; 498 } 499 500 /* poll any events */ 501 g_array_set_size(gpollfds, 0); /* reset for new iteration */ 502 /* XXX: separate device handlers from system ones */ 503 slirp_pollfds_fill(gpollfds, &timeout); 504 505 if (timeout == UINT32_MAX) { 506 timeout_ns = -1; 507 } else { 508 timeout_ns = (uint64_t)timeout * (int64_t)(SCALE_MS); 509 } 510 511 timeout_ns = qemu_soonest_timeout(timeout_ns, 512 timerlistgroup_deadline_ns( 513 &main_loop_tlg)); 514 515 ret = os_host_main_loop_wait(timeout_ns); 516 slirp_pollfds_poll(gpollfds, (ret < 0)); 517 518 /* CPU thread can infinitely wait for event after 519 missing the warp */ 520 qemu_start_warp_timer(); 521 qemu_clock_run_all_timers(); 522 } 523 524 /* Functions to operate on the main QEMU AioContext. */ 525 526 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque) 527 { 528 return aio_bh_new(qemu_aio_context, cb, opaque); 529 } 530