1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qapi/error.h" 27 #include "qemu/cutils.h" 28 #include "qemu/timer.h" 29 #include "qemu/sockets.h" // struct in_addr needed for libslirp.h 30 #include "sysemu/qtest.h" 31 #include "slirp/libslirp.h" 32 #include "qemu/main-loop.h" 33 #include "block/aio.h" 34 35 #ifndef _WIN32 36 37 #include "qemu/compatfd.h" 38 39 /* If we have signalfd, we mask out the signals we want to handle and then 40 * use signalfd to listen for them. We rely on whatever the current signal 41 * handler is to dispatch the signals when we receive them. 42 */ 43 static void sigfd_handler(void *opaque) 44 { 45 int fd = (intptr_t)opaque; 46 struct qemu_signalfd_siginfo info; 47 struct sigaction action; 48 ssize_t len; 49 50 while (1) { 51 do { 52 len = read(fd, &info, sizeof(info)); 53 } while (len == -1 && errno == EINTR); 54 55 if (len == -1 && errno == EAGAIN) { 56 break; 57 } 58 59 if (len != sizeof(info)) { 60 printf("read from sigfd returned %zd: %m\n", len); 61 return; 62 } 63 64 sigaction(info.ssi_signo, NULL, &action); 65 if ((action.sa_flags & SA_SIGINFO) && action.sa_sigaction) { 66 action.sa_sigaction(info.ssi_signo, 67 (siginfo_t *)&info, NULL); 68 } else if (action.sa_handler) { 69 action.sa_handler(info.ssi_signo); 70 } 71 } 72 } 73 74 static int qemu_signal_init(void) 75 { 76 int sigfd; 77 sigset_t set; 78 79 /* 80 * SIG_IPI must be blocked in the main thread and must not be caught 81 * by sigwait() in the signal thread. Otherwise, the cpu thread will 82 * not catch it reliably. 83 */ 84 sigemptyset(&set); 85 sigaddset(&set, SIG_IPI); 86 sigaddset(&set, SIGIO); 87 sigaddset(&set, SIGALRM); 88 sigaddset(&set, SIGBUS); 89 /* SIGINT cannot be handled via signalfd, so that ^C can be used 90 * to interrupt QEMU when it is being run under gdb. SIGHUP and 91 * SIGTERM are also handled asynchronously, even though it is not 92 * strictly necessary, because they use the same handler as SIGINT. 93 */ 94 pthread_sigmask(SIG_BLOCK, &set, NULL); 95 96 sigdelset(&set, SIG_IPI); 97 sigfd = qemu_signalfd(&set); 98 if (sigfd == -1) { 99 fprintf(stderr, "failed to create signalfd\n"); 100 return -errno; 101 } 102 103 fcntl_setfl(sigfd, O_NONBLOCK); 104 105 qemu_set_fd_handler(sigfd, sigfd_handler, NULL, (void *)(intptr_t)sigfd); 106 107 return 0; 108 } 109 110 #else /* _WIN32 */ 111 112 static int qemu_signal_init(void) 113 { 114 return 0; 115 } 116 #endif 117 118 static AioContext *qemu_aio_context; 119 static QEMUBH *qemu_notify_bh; 120 121 static void notify_event_cb(void *opaque) 122 { 123 /* No need to do anything; this bottom half is only used to 124 * kick the kernel out of ppoll/poll/WaitForMultipleObjects. 125 */ 126 } 127 128 AioContext *qemu_get_aio_context(void) 129 { 130 return qemu_aio_context; 131 } 132 133 void qemu_notify_event(void) 134 { 135 if (!qemu_aio_context) { 136 return; 137 } 138 qemu_bh_schedule(qemu_notify_bh); 139 } 140 141 static GArray *gpollfds; 142 143 int qemu_init_main_loop(Error **errp) 144 { 145 int ret; 146 GSource *src; 147 Error *local_error = NULL; 148 149 init_clocks(); 150 151 ret = qemu_signal_init(); 152 if (ret) { 153 return ret; 154 } 155 156 qemu_aio_context = aio_context_new(&local_error); 157 if (!qemu_aio_context) { 158 error_propagate(errp, local_error); 159 return -EMFILE; 160 } 161 qemu_notify_bh = qemu_bh_new(notify_event_cb, NULL); 162 gpollfds = g_array_new(FALSE, FALSE, sizeof(GPollFD)); 163 src = aio_get_g_source(qemu_aio_context); 164 g_source_set_name(src, "aio-context"); 165 g_source_attach(src, NULL); 166 g_source_unref(src); 167 src = iohandler_get_g_source(); 168 g_source_set_name(src, "io-handler"); 169 g_source_attach(src, NULL); 170 g_source_unref(src); 171 return 0; 172 } 173 174 static int max_priority; 175 176 #ifndef _WIN32 177 static int glib_pollfds_idx; 178 static int glib_n_poll_fds; 179 180 static void glib_pollfds_fill(int64_t *cur_timeout) 181 { 182 GMainContext *context = g_main_context_default(); 183 int timeout = 0; 184 int64_t timeout_ns; 185 int n; 186 187 g_main_context_prepare(context, &max_priority); 188 189 glib_pollfds_idx = gpollfds->len; 190 n = glib_n_poll_fds; 191 do { 192 GPollFD *pfds; 193 glib_n_poll_fds = n; 194 g_array_set_size(gpollfds, glib_pollfds_idx + glib_n_poll_fds); 195 pfds = &g_array_index(gpollfds, GPollFD, glib_pollfds_idx); 196 n = g_main_context_query(context, max_priority, &timeout, pfds, 197 glib_n_poll_fds); 198 } while (n != glib_n_poll_fds); 199 200 if (timeout < 0) { 201 timeout_ns = -1; 202 } else { 203 timeout_ns = (int64_t)timeout * (int64_t)SCALE_MS; 204 } 205 206 *cur_timeout = qemu_soonest_timeout(timeout_ns, *cur_timeout); 207 } 208 209 static void glib_pollfds_poll(void) 210 { 211 GMainContext *context = g_main_context_default(); 212 GPollFD *pfds = &g_array_index(gpollfds, GPollFD, glib_pollfds_idx); 213 214 if (g_main_context_check(context, max_priority, pfds, glib_n_poll_fds)) { 215 g_main_context_dispatch(context); 216 } 217 } 218 219 #define MAX_MAIN_LOOP_SPIN (1000) 220 221 static int os_host_main_loop_wait(int64_t timeout) 222 { 223 int ret; 224 static int spin_counter; 225 226 glib_pollfds_fill(&timeout); 227 228 /* If the I/O thread is very busy or we are incorrectly busy waiting in 229 * the I/O thread, this can lead to starvation of the BQL such that the 230 * VCPU threads never run. To make sure we can detect the later case, 231 * print a message to the screen. If we run into this condition, create 232 * a fake timeout in order to give the VCPU threads a chance to run. 233 */ 234 if (!timeout && (spin_counter > MAX_MAIN_LOOP_SPIN)) { 235 static bool notified; 236 237 if (!notified && !qtest_enabled() && !qtest_driver()) { 238 fprintf(stderr, 239 "main-loop: WARNING: I/O thread spun for %d iterations\n", 240 MAX_MAIN_LOOP_SPIN); 241 notified = true; 242 } 243 244 timeout = SCALE_MS; 245 } 246 247 if (timeout) { 248 spin_counter = 0; 249 qemu_mutex_unlock_iothread(); 250 } else { 251 spin_counter++; 252 } 253 254 ret = qemu_poll_ns((GPollFD *)gpollfds->data, gpollfds->len, timeout); 255 256 if (timeout) { 257 qemu_mutex_lock_iothread(); 258 } 259 260 glib_pollfds_poll(); 261 return ret; 262 } 263 #else 264 /***********************************************************/ 265 /* Polling handling */ 266 267 typedef struct PollingEntry { 268 PollingFunc *func; 269 void *opaque; 270 struct PollingEntry *next; 271 } PollingEntry; 272 273 static PollingEntry *first_polling_entry; 274 275 int qemu_add_polling_cb(PollingFunc *func, void *opaque) 276 { 277 PollingEntry **ppe, *pe; 278 pe = g_malloc0(sizeof(PollingEntry)); 279 pe->func = func; 280 pe->opaque = opaque; 281 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next); 282 *ppe = pe; 283 return 0; 284 } 285 286 void qemu_del_polling_cb(PollingFunc *func, void *opaque) 287 { 288 PollingEntry **ppe, *pe; 289 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) { 290 pe = *ppe; 291 if (pe->func == func && pe->opaque == opaque) { 292 *ppe = pe->next; 293 g_free(pe); 294 break; 295 } 296 } 297 } 298 299 /***********************************************************/ 300 /* Wait objects support */ 301 typedef struct WaitObjects { 302 int num; 303 int revents[MAXIMUM_WAIT_OBJECTS + 1]; 304 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1]; 305 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1]; 306 void *opaque[MAXIMUM_WAIT_OBJECTS + 1]; 307 } WaitObjects; 308 309 static WaitObjects wait_objects = {0}; 310 311 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque) 312 { 313 WaitObjects *w = &wait_objects; 314 if (w->num >= MAXIMUM_WAIT_OBJECTS) { 315 return -1; 316 } 317 w->events[w->num] = handle; 318 w->func[w->num] = func; 319 w->opaque[w->num] = opaque; 320 w->revents[w->num] = 0; 321 w->num++; 322 return 0; 323 } 324 325 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque) 326 { 327 int i, found; 328 WaitObjects *w = &wait_objects; 329 330 found = 0; 331 for (i = 0; i < w->num; i++) { 332 if (w->events[i] == handle) { 333 found = 1; 334 } 335 if (found) { 336 w->events[i] = w->events[i + 1]; 337 w->func[i] = w->func[i + 1]; 338 w->opaque[i] = w->opaque[i + 1]; 339 w->revents[i] = w->revents[i + 1]; 340 } 341 } 342 if (found) { 343 w->num--; 344 } 345 } 346 347 void qemu_fd_register(int fd) 348 { 349 WSAEventSelect(fd, event_notifier_get_handle(&qemu_aio_context->notifier), 350 FD_READ | FD_ACCEPT | FD_CLOSE | 351 FD_CONNECT | FD_WRITE | FD_OOB); 352 } 353 354 static int pollfds_fill(GArray *pollfds, fd_set *rfds, fd_set *wfds, 355 fd_set *xfds) 356 { 357 int nfds = -1; 358 int i; 359 360 for (i = 0; i < pollfds->len; i++) { 361 GPollFD *pfd = &g_array_index(pollfds, GPollFD, i); 362 int fd = pfd->fd; 363 int events = pfd->events; 364 if (events & G_IO_IN) { 365 FD_SET(fd, rfds); 366 nfds = MAX(nfds, fd); 367 } 368 if (events & G_IO_OUT) { 369 FD_SET(fd, wfds); 370 nfds = MAX(nfds, fd); 371 } 372 if (events & G_IO_PRI) { 373 FD_SET(fd, xfds); 374 nfds = MAX(nfds, fd); 375 } 376 } 377 return nfds; 378 } 379 380 static void pollfds_poll(GArray *pollfds, int nfds, fd_set *rfds, 381 fd_set *wfds, fd_set *xfds) 382 { 383 int i; 384 385 for (i = 0; i < pollfds->len; i++) { 386 GPollFD *pfd = &g_array_index(pollfds, GPollFD, i); 387 int fd = pfd->fd; 388 int revents = 0; 389 390 if (FD_ISSET(fd, rfds)) { 391 revents |= G_IO_IN; 392 } 393 if (FD_ISSET(fd, wfds)) { 394 revents |= G_IO_OUT; 395 } 396 if (FD_ISSET(fd, xfds)) { 397 revents |= G_IO_PRI; 398 } 399 pfd->revents = revents & pfd->events; 400 } 401 } 402 403 static int os_host_main_loop_wait(int64_t timeout) 404 { 405 GMainContext *context = g_main_context_default(); 406 GPollFD poll_fds[1024 * 2]; /* this is probably overkill */ 407 int select_ret = 0; 408 int g_poll_ret, ret, i, n_poll_fds; 409 PollingEntry *pe; 410 WaitObjects *w = &wait_objects; 411 gint poll_timeout; 412 int64_t poll_timeout_ns; 413 static struct timeval tv0; 414 fd_set rfds, wfds, xfds; 415 int nfds; 416 417 /* XXX: need to suppress polling by better using win32 events */ 418 ret = 0; 419 for (pe = first_polling_entry; pe != NULL; pe = pe->next) { 420 ret |= pe->func(pe->opaque); 421 } 422 if (ret != 0) { 423 return ret; 424 } 425 426 FD_ZERO(&rfds); 427 FD_ZERO(&wfds); 428 FD_ZERO(&xfds); 429 nfds = pollfds_fill(gpollfds, &rfds, &wfds, &xfds); 430 if (nfds >= 0) { 431 select_ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv0); 432 if (select_ret != 0) { 433 timeout = 0; 434 } 435 if (select_ret > 0) { 436 pollfds_poll(gpollfds, nfds, &rfds, &wfds, &xfds); 437 } 438 } 439 440 g_main_context_prepare(context, &max_priority); 441 n_poll_fds = g_main_context_query(context, max_priority, &poll_timeout, 442 poll_fds, ARRAY_SIZE(poll_fds)); 443 g_assert(n_poll_fds <= ARRAY_SIZE(poll_fds)); 444 445 for (i = 0; i < w->num; i++) { 446 poll_fds[n_poll_fds + i].fd = (DWORD_PTR)w->events[i]; 447 poll_fds[n_poll_fds + i].events = G_IO_IN; 448 } 449 450 if (poll_timeout < 0) { 451 poll_timeout_ns = -1; 452 } else { 453 poll_timeout_ns = (int64_t)poll_timeout * (int64_t)SCALE_MS; 454 } 455 456 poll_timeout_ns = qemu_soonest_timeout(poll_timeout_ns, timeout); 457 458 qemu_mutex_unlock_iothread(); 459 g_poll_ret = qemu_poll_ns(poll_fds, n_poll_fds + w->num, poll_timeout_ns); 460 461 qemu_mutex_lock_iothread(); 462 if (g_poll_ret > 0) { 463 for (i = 0; i < w->num; i++) { 464 w->revents[i] = poll_fds[n_poll_fds + i].revents; 465 } 466 for (i = 0; i < w->num; i++) { 467 if (w->revents[i] && w->func[i]) { 468 w->func[i](w->opaque[i]); 469 } 470 } 471 } 472 473 if (g_main_context_check(context, max_priority, poll_fds, n_poll_fds)) { 474 g_main_context_dispatch(context); 475 } 476 477 return select_ret || g_poll_ret; 478 } 479 #endif 480 481 int main_loop_wait(int nonblocking) 482 { 483 int ret; 484 uint32_t timeout = UINT32_MAX; 485 int64_t timeout_ns; 486 487 if (nonblocking) { 488 timeout = 0; 489 } 490 491 /* poll any events */ 492 g_array_set_size(gpollfds, 0); /* reset for new iteration */ 493 /* XXX: separate device handlers from system ones */ 494 #ifdef CONFIG_SLIRP 495 slirp_pollfds_fill(gpollfds, &timeout); 496 #endif 497 498 if (timeout == UINT32_MAX) { 499 timeout_ns = -1; 500 } else { 501 timeout_ns = (uint64_t)timeout * (int64_t)(SCALE_MS); 502 } 503 504 timeout_ns = qemu_soonest_timeout(timeout_ns, 505 timerlistgroup_deadline_ns( 506 &main_loop_tlg)); 507 508 ret = os_host_main_loop_wait(timeout_ns); 509 #ifdef CONFIG_SLIRP 510 slirp_pollfds_poll(gpollfds, (ret < 0)); 511 #endif 512 513 /* CPU thread can infinitely wait for event after 514 missing the warp */ 515 qemu_start_warp_timer(); 516 qemu_clock_run_all_timers(); 517 518 return ret; 519 } 520 521 /* Functions to operate on the main QEMU AioContext. */ 522 523 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque) 524 { 525 return aio_bh_new(qemu_aio_context, cb, opaque); 526 } 527