1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qapi/error.h" 27 #include "qemu/cutils.h" 28 #include "qemu/timer.h" 29 #include "sysemu/qtest.h" 30 #include "sysemu/cpus.h" 31 #include "sysemu/replay.h" 32 #include "qemu/main-loop.h" 33 #include "block/aio.h" 34 #include "qemu/error-report.h" 35 36 #ifndef _WIN32 37 38 /* If we have signalfd, we mask out the signals we want to handle and then 39 * use signalfd to listen for them. We rely on whatever the current signal 40 * handler is to dispatch the signals when we receive them. 41 */ 42 static void sigfd_handler(void *opaque) 43 { 44 int fd = (intptr_t)opaque; 45 struct qemu_signalfd_siginfo info; 46 struct sigaction action; 47 ssize_t len; 48 49 while (1) { 50 do { 51 len = read(fd, &info, sizeof(info)); 52 } while (len == -1 && errno == EINTR); 53 54 if (len == -1 && errno == EAGAIN) { 55 break; 56 } 57 58 if (len != sizeof(info)) { 59 printf("read from sigfd returned %zd: %m\n", len); 60 return; 61 } 62 63 sigaction(info.ssi_signo, NULL, &action); 64 if ((action.sa_flags & SA_SIGINFO) && action.sa_sigaction) { 65 sigaction_invoke(&action, &info); 66 } else if (action.sa_handler) { 67 action.sa_handler(info.ssi_signo); 68 } 69 } 70 } 71 72 static int qemu_signal_init(Error **errp) 73 { 74 int sigfd; 75 sigset_t set; 76 77 /* 78 * SIG_IPI must be blocked in the main thread and must not be caught 79 * by sigwait() in the signal thread. Otherwise, the cpu thread will 80 * not catch it reliably. 81 */ 82 sigemptyset(&set); 83 sigaddset(&set, SIG_IPI); 84 sigaddset(&set, SIGIO); 85 sigaddset(&set, SIGALRM); 86 sigaddset(&set, SIGBUS); 87 /* SIGINT cannot be handled via signalfd, so that ^C can be used 88 * to interrupt QEMU when it is being run under gdb. SIGHUP and 89 * SIGTERM are also handled asynchronously, even though it is not 90 * strictly necessary, because they use the same handler as SIGINT. 91 */ 92 pthread_sigmask(SIG_BLOCK, &set, NULL); 93 94 sigdelset(&set, SIG_IPI); 95 sigfd = qemu_signalfd(&set); 96 if (sigfd == -1) { 97 error_setg_errno(errp, errno, "failed to create signalfd"); 98 return -errno; 99 } 100 101 fcntl_setfl(sigfd, O_NONBLOCK); 102 103 qemu_set_fd_handler(sigfd, sigfd_handler, NULL, (void *)(intptr_t)sigfd); 104 105 return 0; 106 } 107 108 #else /* _WIN32 */ 109 110 static int qemu_signal_init(Error **errp) 111 { 112 return 0; 113 } 114 #endif 115 116 static AioContext *qemu_aio_context; 117 static QEMUBH *qemu_notify_bh; 118 119 static void notify_event_cb(void *opaque) 120 { 121 /* No need to do anything; this bottom half is only used to 122 * kick the kernel out of ppoll/poll/WaitForMultipleObjects. 123 */ 124 } 125 126 AioContext *qemu_get_aio_context(void) 127 { 128 return qemu_aio_context; 129 } 130 131 void qemu_notify_event(void) 132 { 133 if (!qemu_aio_context) { 134 return; 135 } 136 qemu_bh_schedule(qemu_notify_bh); 137 } 138 139 static GArray *gpollfds; 140 141 int qemu_init_main_loop(Error **errp) 142 { 143 int ret; 144 GSource *src; 145 Error *local_error = NULL; 146 147 init_clocks(qemu_timer_notify_cb); 148 149 ret = qemu_signal_init(errp); 150 if (ret) { 151 return ret; 152 } 153 154 qemu_aio_context = aio_context_new(&local_error); 155 if (!qemu_aio_context) { 156 error_propagate(errp, local_error); 157 return -EMFILE; 158 } 159 qemu_notify_bh = qemu_bh_new(notify_event_cb, NULL); 160 gpollfds = g_array_new(FALSE, FALSE, sizeof(GPollFD)); 161 src = aio_get_g_source(qemu_aio_context); 162 g_source_set_name(src, "aio-context"); 163 g_source_attach(src, NULL); 164 g_source_unref(src); 165 src = iohandler_get_g_source(); 166 g_source_set_name(src, "io-handler"); 167 g_source_attach(src, NULL); 168 g_source_unref(src); 169 return 0; 170 } 171 172 static int max_priority; 173 174 #ifndef _WIN32 175 static int glib_pollfds_idx; 176 static int glib_n_poll_fds; 177 178 static void glib_pollfds_fill(int64_t *cur_timeout) 179 { 180 GMainContext *context = g_main_context_default(); 181 int timeout = 0; 182 int64_t timeout_ns; 183 int n; 184 185 g_main_context_prepare(context, &max_priority); 186 187 glib_pollfds_idx = gpollfds->len; 188 n = glib_n_poll_fds; 189 do { 190 GPollFD *pfds; 191 glib_n_poll_fds = n; 192 g_array_set_size(gpollfds, glib_pollfds_idx + glib_n_poll_fds); 193 pfds = &g_array_index(gpollfds, GPollFD, glib_pollfds_idx); 194 n = g_main_context_query(context, max_priority, &timeout, pfds, 195 glib_n_poll_fds); 196 } while (n != glib_n_poll_fds); 197 198 if (timeout < 0) { 199 timeout_ns = -1; 200 } else { 201 timeout_ns = (int64_t)timeout * (int64_t)SCALE_MS; 202 } 203 204 *cur_timeout = qemu_soonest_timeout(timeout_ns, *cur_timeout); 205 } 206 207 static void glib_pollfds_poll(void) 208 { 209 GMainContext *context = g_main_context_default(); 210 GPollFD *pfds = &g_array_index(gpollfds, GPollFD, glib_pollfds_idx); 211 212 if (g_main_context_check(context, max_priority, pfds, glib_n_poll_fds)) { 213 g_main_context_dispatch(context); 214 } 215 } 216 217 #define MAX_MAIN_LOOP_SPIN (1000) 218 219 static int os_host_main_loop_wait(int64_t timeout) 220 { 221 GMainContext *context = g_main_context_default(); 222 int ret; 223 224 g_main_context_acquire(context); 225 226 glib_pollfds_fill(&timeout); 227 228 qemu_mutex_unlock_iothread(); 229 replay_mutex_unlock(); 230 231 ret = qemu_poll_ns((GPollFD *)gpollfds->data, gpollfds->len, timeout); 232 233 replay_mutex_lock(); 234 qemu_mutex_lock_iothread(); 235 236 glib_pollfds_poll(); 237 238 g_main_context_release(context); 239 240 return ret; 241 } 242 #else 243 /***********************************************************/ 244 /* Polling handling */ 245 246 typedef struct PollingEntry { 247 PollingFunc *func; 248 void *opaque; 249 struct PollingEntry *next; 250 } PollingEntry; 251 252 static PollingEntry *first_polling_entry; 253 254 int qemu_add_polling_cb(PollingFunc *func, void *opaque) 255 { 256 PollingEntry **ppe, *pe; 257 pe = g_malloc0(sizeof(PollingEntry)); 258 pe->func = func; 259 pe->opaque = opaque; 260 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next); 261 *ppe = pe; 262 return 0; 263 } 264 265 void qemu_del_polling_cb(PollingFunc *func, void *opaque) 266 { 267 PollingEntry **ppe, *pe; 268 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) { 269 pe = *ppe; 270 if (pe->func == func && pe->opaque == opaque) { 271 *ppe = pe->next; 272 g_free(pe); 273 break; 274 } 275 } 276 } 277 278 /***********************************************************/ 279 /* Wait objects support */ 280 typedef struct WaitObjects { 281 int num; 282 int revents[MAXIMUM_WAIT_OBJECTS + 1]; 283 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1]; 284 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1]; 285 void *opaque[MAXIMUM_WAIT_OBJECTS + 1]; 286 } WaitObjects; 287 288 static WaitObjects wait_objects = {0}; 289 290 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque) 291 { 292 WaitObjects *w = &wait_objects; 293 if (w->num >= MAXIMUM_WAIT_OBJECTS) { 294 return -1; 295 } 296 w->events[w->num] = handle; 297 w->func[w->num] = func; 298 w->opaque[w->num] = opaque; 299 w->revents[w->num] = 0; 300 w->num++; 301 return 0; 302 } 303 304 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque) 305 { 306 int i, found; 307 WaitObjects *w = &wait_objects; 308 309 found = 0; 310 for (i = 0; i < w->num; i++) { 311 if (w->events[i] == handle) { 312 found = 1; 313 } 314 if (found) { 315 w->events[i] = w->events[i + 1]; 316 w->func[i] = w->func[i + 1]; 317 w->opaque[i] = w->opaque[i + 1]; 318 w->revents[i] = w->revents[i + 1]; 319 } 320 } 321 if (found) { 322 w->num--; 323 } 324 } 325 326 void qemu_fd_register(int fd) 327 { 328 WSAEventSelect(fd, event_notifier_get_handle(&qemu_aio_context->notifier), 329 FD_READ | FD_ACCEPT | FD_CLOSE | 330 FD_CONNECT | FD_WRITE | FD_OOB); 331 } 332 333 static int pollfds_fill(GArray *pollfds, fd_set *rfds, fd_set *wfds, 334 fd_set *xfds) 335 { 336 int nfds = -1; 337 int i; 338 339 for (i = 0; i < pollfds->len; i++) { 340 GPollFD *pfd = &g_array_index(pollfds, GPollFD, i); 341 int fd = pfd->fd; 342 int events = pfd->events; 343 if (events & G_IO_IN) { 344 FD_SET(fd, rfds); 345 nfds = MAX(nfds, fd); 346 } 347 if (events & G_IO_OUT) { 348 FD_SET(fd, wfds); 349 nfds = MAX(nfds, fd); 350 } 351 if (events & G_IO_PRI) { 352 FD_SET(fd, xfds); 353 nfds = MAX(nfds, fd); 354 } 355 } 356 return nfds; 357 } 358 359 static void pollfds_poll(GArray *pollfds, int nfds, fd_set *rfds, 360 fd_set *wfds, fd_set *xfds) 361 { 362 int i; 363 364 for (i = 0; i < pollfds->len; i++) { 365 GPollFD *pfd = &g_array_index(pollfds, GPollFD, i); 366 int fd = pfd->fd; 367 int revents = 0; 368 369 if (FD_ISSET(fd, rfds)) { 370 revents |= G_IO_IN; 371 } 372 if (FD_ISSET(fd, wfds)) { 373 revents |= G_IO_OUT; 374 } 375 if (FD_ISSET(fd, xfds)) { 376 revents |= G_IO_PRI; 377 } 378 pfd->revents = revents & pfd->events; 379 } 380 } 381 382 static int os_host_main_loop_wait(int64_t timeout) 383 { 384 GMainContext *context = g_main_context_default(); 385 GPollFD poll_fds[1024 * 2]; /* this is probably overkill */ 386 int select_ret = 0; 387 int g_poll_ret, ret, i, n_poll_fds; 388 PollingEntry *pe; 389 WaitObjects *w = &wait_objects; 390 gint poll_timeout; 391 int64_t poll_timeout_ns; 392 static struct timeval tv0; 393 fd_set rfds, wfds, xfds; 394 int nfds; 395 396 g_main_context_acquire(context); 397 398 /* XXX: need to suppress polling by better using win32 events */ 399 ret = 0; 400 for (pe = first_polling_entry; pe != NULL; pe = pe->next) { 401 ret |= pe->func(pe->opaque); 402 } 403 if (ret != 0) { 404 g_main_context_release(context); 405 return ret; 406 } 407 408 FD_ZERO(&rfds); 409 FD_ZERO(&wfds); 410 FD_ZERO(&xfds); 411 nfds = pollfds_fill(gpollfds, &rfds, &wfds, &xfds); 412 if (nfds >= 0) { 413 select_ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv0); 414 if (select_ret != 0) { 415 timeout = 0; 416 } 417 if (select_ret > 0) { 418 pollfds_poll(gpollfds, nfds, &rfds, &wfds, &xfds); 419 } 420 } 421 422 g_main_context_prepare(context, &max_priority); 423 n_poll_fds = g_main_context_query(context, max_priority, &poll_timeout, 424 poll_fds, ARRAY_SIZE(poll_fds)); 425 g_assert(n_poll_fds <= ARRAY_SIZE(poll_fds)); 426 427 for (i = 0; i < w->num; i++) { 428 poll_fds[n_poll_fds + i].fd = (DWORD_PTR)w->events[i]; 429 poll_fds[n_poll_fds + i].events = G_IO_IN; 430 } 431 432 if (poll_timeout < 0) { 433 poll_timeout_ns = -1; 434 } else { 435 poll_timeout_ns = (int64_t)poll_timeout * (int64_t)SCALE_MS; 436 } 437 438 poll_timeout_ns = qemu_soonest_timeout(poll_timeout_ns, timeout); 439 440 qemu_mutex_unlock_iothread(); 441 442 replay_mutex_unlock(); 443 444 g_poll_ret = qemu_poll_ns(poll_fds, n_poll_fds + w->num, poll_timeout_ns); 445 446 replay_mutex_lock(); 447 448 qemu_mutex_lock_iothread(); 449 if (g_poll_ret > 0) { 450 for (i = 0; i < w->num; i++) { 451 w->revents[i] = poll_fds[n_poll_fds + i].revents; 452 } 453 for (i = 0; i < w->num; i++) { 454 if (w->revents[i] && w->func[i]) { 455 w->func[i](w->opaque[i]); 456 } 457 } 458 } 459 460 if (g_main_context_check(context, max_priority, poll_fds, n_poll_fds)) { 461 g_main_context_dispatch(context); 462 } 463 464 g_main_context_release(context); 465 466 return select_ret || g_poll_ret; 467 } 468 #endif 469 470 static NotifierList main_loop_poll_notifiers = 471 NOTIFIER_LIST_INITIALIZER(main_loop_poll_notifiers); 472 473 void main_loop_poll_add_notifier(Notifier *notify) 474 { 475 notifier_list_add(&main_loop_poll_notifiers, notify); 476 } 477 478 void main_loop_poll_remove_notifier(Notifier *notify) 479 { 480 notifier_remove(notify); 481 } 482 483 void main_loop_wait(int nonblocking) 484 { 485 MainLoopPoll mlpoll = { 486 .state = MAIN_LOOP_POLL_FILL, 487 .timeout = UINT32_MAX, 488 .pollfds = gpollfds, 489 }; 490 int ret; 491 int64_t timeout_ns; 492 493 if (nonblocking) { 494 mlpoll.timeout = 0; 495 } 496 497 /* poll any events */ 498 g_array_set_size(gpollfds, 0); /* reset for new iteration */ 499 /* XXX: separate device handlers from system ones */ 500 notifier_list_notify(&main_loop_poll_notifiers, &mlpoll); 501 502 if (mlpoll.timeout == UINT32_MAX) { 503 timeout_ns = -1; 504 } else { 505 timeout_ns = (uint64_t)mlpoll.timeout * (int64_t)(SCALE_MS); 506 } 507 508 timeout_ns = qemu_soonest_timeout(timeout_ns, 509 timerlistgroup_deadline_ns( 510 &main_loop_tlg)); 511 512 ret = os_host_main_loop_wait(timeout_ns); 513 mlpoll.state = ret < 0 ? MAIN_LOOP_POLL_ERR : MAIN_LOOP_POLL_OK; 514 notifier_list_notify(&main_loop_poll_notifiers, &mlpoll); 515 516 /* CPU thread can infinitely wait for event after 517 missing the warp */ 518 qemu_start_warp_timer(); 519 qemu_clock_run_all_timers(); 520 } 521 522 /* Functions to operate on the main QEMU AioContext. */ 523 524 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque) 525 { 526 return aio_bh_new(qemu_aio_context, cb, opaque); 527 } 528