1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qapi/error.h" 27 #include "qemu/cutils.h" 28 #include "qemu/timer.h" 29 #include "qemu/sockets.h" // struct in_addr needed for libslirp.h 30 #include "sysemu/qtest.h" 31 #include "sysemu/cpus.h" 32 #include "slirp/libslirp.h" 33 #include "qemu/main-loop.h" 34 #include "block/aio.h" 35 36 #ifndef _WIN32 37 38 /* If we have signalfd, we mask out the signals we want to handle and then 39 * use signalfd to listen for them. We rely on whatever the current signal 40 * handler is to dispatch the signals when we receive them. 41 */ 42 static void sigfd_handler(void *opaque) 43 { 44 int fd = (intptr_t)opaque; 45 struct qemu_signalfd_siginfo info; 46 struct sigaction action; 47 ssize_t len; 48 49 while (1) { 50 do { 51 len = read(fd, &info, sizeof(info)); 52 } while (len == -1 && errno == EINTR); 53 54 if (len == -1 && errno == EAGAIN) { 55 break; 56 } 57 58 if (len != sizeof(info)) { 59 printf("read from sigfd returned %zd: %m\n", len); 60 return; 61 } 62 63 sigaction(info.ssi_signo, NULL, &action); 64 if ((action.sa_flags & SA_SIGINFO) && action.sa_sigaction) { 65 sigaction_invoke(&action, &info); 66 } else if (action.sa_handler) { 67 action.sa_handler(info.ssi_signo); 68 } 69 } 70 } 71 72 static int qemu_signal_init(void) 73 { 74 int sigfd; 75 sigset_t set; 76 77 /* 78 * SIG_IPI must be blocked in the main thread and must not be caught 79 * by sigwait() in the signal thread. Otherwise, the cpu thread will 80 * not catch it reliably. 81 */ 82 sigemptyset(&set); 83 sigaddset(&set, SIG_IPI); 84 sigaddset(&set, SIGIO); 85 sigaddset(&set, SIGALRM); 86 sigaddset(&set, SIGBUS); 87 /* SIGINT cannot be handled via signalfd, so that ^C can be used 88 * to interrupt QEMU when it is being run under gdb. SIGHUP and 89 * SIGTERM are also handled asynchronously, even though it is not 90 * strictly necessary, because they use the same handler as SIGINT. 91 */ 92 pthread_sigmask(SIG_BLOCK, &set, NULL); 93 94 sigdelset(&set, SIG_IPI); 95 sigfd = qemu_signalfd(&set); 96 if (sigfd == -1) { 97 fprintf(stderr, "failed to create signalfd\n"); 98 return -errno; 99 } 100 101 fcntl_setfl(sigfd, O_NONBLOCK); 102 103 qemu_set_fd_handler(sigfd, sigfd_handler, NULL, (void *)(intptr_t)sigfd); 104 105 return 0; 106 } 107 108 #else /* _WIN32 */ 109 110 static int qemu_signal_init(void) 111 { 112 return 0; 113 } 114 #endif 115 116 static AioContext *qemu_aio_context; 117 static QEMUBH *qemu_notify_bh; 118 119 static void notify_event_cb(void *opaque) 120 { 121 /* No need to do anything; this bottom half is only used to 122 * kick the kernel out of ppoll/poll/WaitForMultipleObjects. 123 */ 124 } 125 126 AioContext *qemu_get_aio_context(void) 127 { 128 return qemu_aio_context; 129 } 130 131 void qemu_notify_event(void) 132 { 133 if (!qemu_aio_context) { 134 return; 135 } 136 qemu_bh_schedule(qemu_notify_bh); 137 } 138 139 static GArray *gpollfds; 140 141 int qemu_init_main_loop(Error **errp) 142 { 143 int ret; 144 GSource *src; 145 Error *local_error = NULL; 146 147 init_clocks(qemu_timer_notify_cb); 148 149 ret = qemu_signal_init(); 150 if (ret) { 151 return ret; 152 } 153 154 qemu_aio_context = aio_context_new(&local_error); 155 if (!qemu_aio_context) { 156 error_propagate(errp, local_error); 157 return -EMFILE; 158 } 159 qemu_notify_bh = qemu_bh_new(notify_event_cb, NULL); 160 gpollfds = g_array_new(FALSE, FALSE, sizeof(GPollFD)); 161 src = aio_get_g_source(qemu_aio_context); 162 g_source_set_name(src, "aio-context"); 163 g_source_attach(src, NULL); 164 g_source_unref(src); 165 src = iohandler_get_g_source(); 166 g_source_set_name(src, "io-handler"); 167 g_source_attach(src, NULL); 168 g_source_unref(src); 169 return 0; 170 } 171 172 static int max_priority; 173 174 #ifndef _WIN32 175 static int glib_pollfds_idx; 176 static int glib_n_poll_fds; 177 178 static void glib_pollfds_fill(int64_t *cur_timeout) 179 { 180 GMainContext *context = g_main_context_default(); 181 int timeout = 0; 182 int64_t timeout_ns; 183 int n; 184 185 g_main_context_prepare(context, &max_priority); 186 187 glib_pollfds_idx = gpollfds->len; 188 n = glib_n_poll_fds; 189 do { 190 GPollFD *pfds; 191 glib_n_poll_fds = n; 192 g_array_set_size(gpollfds, glib_pollfds_idx + glib_n_poll_fds); 193 pfds = &g_array_index(gpollfds, GPollFD, glib_pollfds_idx); 194 n = g_main_context_query(context, max_priority, &timeout, pfds, 195 glib_n_poll_fds); 196 } while (n != glib_n_poll_fds); 197 198 if (timeout < 0) { 199 timeout_ns = -1; 200 } else { 201 timeout_ns = (int64_t)timeout * (int64_t)SCALE_MS; 202 } 203 204 *cur_timeout = qemu_soonest_timeout(timeout_ns, *cur_timeout); 205 } 206 207 static void glib_pollfds_poll(void) 208 { 209 GMainContext *context = g_main_context_default(); 210 GPollFD *pfds = &g_array_index(gpollfds, GPollFD, glib_pollfds_idx); 211 212 if (g_main_context_check(context, max_priority, pfds, glib_n_poll_fds)) { 213 g_main_context_dispatch(context); 214 } 215 } 216 217 #define MAX_MAIN_LOOP_SPIN (1000) 218 219 static int os_host_main_loop_wait(int64_t timeout) 220 { 221 int ret; 222 static int spin_counter; 223 224 glib_pollfds_fill(&timeout); 225 226 /* If the I/O thread is very busy or we are incorrectly busy waiting in 227 * the I/O thread, this can lead to starvation of the BQL such that the 228 * VCPU threads never run. To make sure we can detect the later case, 229 * print a message to the screen. If we run into this condition, create 230 * a fake timeout in order to give the VCPU threads a chance to run. 231 */ 232 if (!timeout && (spin_counter > MAX_MAIN_LOOP_SPIN)) { 233 static bool notified; 234 235 if (!notified && !qtest_enabled() && !qtest_driver()) { 236 fprintf(stderr, 237 "main-loop: WARNING: I/O thread spun for %d iterations\n", 238 MAX_MAIN_LOOP_SPIN); 239 notified = true; 240 } 241 242 timeout = SCALE_MS; 243 } 244 245 if (timeout) { 246 spin_counter = 0; 247 qemu_mutex_unlock_iothread(); 248 } else { 249 spin_counter++; 250 } 251 252 ret = qemu_poll_ns((GPollFD *)gpollfds->data, gpollfds->len, timeout); 253 254 if (timeout) { 255 qemu_mutex_lock_iothread(); 256 } 257 258 glib_pollfds_poll(); 259 return ret; 260 } 261 #else 262 /***********************************************************/ 263 /* Polling handling */ 264 265 typedef struct PollingEntry { 266 PollingFunc *func; 267 void *opaque; 268 struct PollingEntry *next; 269 } PollingEntry; 270 271 static PollingEntry *first_polling_entry; 272 273 int qemu_add_polling_cb(PollingFunc *func, void *opaque) 274 { 275 PollingEntry **ppe, *pe; 276 pe = g_malloc0(sizeof(PollingEntry)); 277 pe->func = func; 278 pe->opaque = opaque; 279 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next); 280 *ppe = pe; 281 return 0; 282 } 283 284 void qemu_del_polling_cb(PollingFunc *func, void *opaque) 285 { 286 PollingEntry **ppe, *pe; 287 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) { 288 pe = *ppe; 289 if (pe->func == func && pe->opaque == opaque) { 290 *ppe = pe->next; 291 g_free(pe); 292 break; 293 } 294 } 295 } 296 297 /***********************************************************/ 298 /* Wait objects support */ 299 typedef struct WaitObjects { 300 int num; 301 int revents[MAXIMUM_WAIT_OBJECTS + 1]; 302 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1]; 303 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1]; 304 void *opaque[MAXIMUM_WAIT_OBJECTS + 1]; 305 } WaitObjects; 306 307 static WaitObjects wait_objects = {0}; 308 309 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque) 310 { 311 WaitObjects *w = &wait_objects; 312 if (w->num >= MAXIMUM_WAIT_OBJECTS) { 313 return -1; 314 } 315 w->events[w->num] = handle; 316 w->func[w->num] = func; 317 w->opaque[w->num] = opaque; 318 w->revents[w->num] = 0; 319 w->num++; 320 return 0; 321 } 322 323 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque) 324 { 325 int i, found; 326 WaitObjects *w = &wait_objects; 327 328 found = 0; 329 for (i = 0; i < w->num; i++) { 330 if (w->events[i] == handle) { 331 found = 1; 332 } 333 if (found) { 334 w->events[i] = w->events[i + 1]; 335 w->func[i] = w->func[i + 1]; 336 w->opaque[i] = w->opaque[i + 1]; 337 w->revents[i] = w->revents[i + 1]; 338 } 339 } 340 if (found) { 341 w->num--; 342 } 343 } 344 345 void qemu_fd_register(int fd) 346 { 347 WSAEventSelect(fd, event_notifier_get_handle(&qemu_aio_context->notifier), 348 FD_READ | FD_ACCEPT | FD_CLOSE | 349 FD_CONNECT | FD_WRITE | FD_OOB); 350 } 351 352 static int pollfds_fill(GArray *pollfds, fd_set *rfds, fd_set *wfds, 353 fd_set *xfds) 354 { 355 int nfds = -1; 356 int i; 357 358 for (i = 0; i < pollfds->len; i++) { 359 GPollFD *pfd = &g_array_index(pollfds, GPollFD, i); 360 int fd = pfd->fd; 361 int events = pfd->events; 362 if (events & G_IO_IN) { 363 FD_SET(fd, rfds); 364 nfds = MAX(nfds, fd); 365 } 366 if (events & G_IO_OUT) { 367 FD_SET(fd, wfds); 368 nfds = MAX(nfds, fd); 369 } 370 if (events & G_IO_PRI) { 371 FD_SET(fd, xfds); 372 nfds = MAX(nfds, fd); 373 } 374 } 375 return nfds; 376 } 377 378 static void pollfds_poll(GArray *pollfds, int nfds, fd_set *rfds, 379 fd_set *wfds, fd_set *xfds) 380 { 381 int i; 382 383 for (i = 0; i < pollfds->len; i++) { 384 GPollFD *pfd = &g_array_index(pollfds, GPollFD, i); 385 int fd = pfd->fd; 386 int revents = 0; 387 388 if (FD_ISSET(fd, rfds)) { 389 revents |= G_IO_IN; 390 } 391 if (FD_ISSET(fd, wfds)) { 392 revents |= G_IO_OUT; 393 } 394 if (FD_ISSET(fd, xfds)) { 395 revents |= G_IO_PRI; 396 } 397 pfd->revents = revents & pfd->events; 398 } 399 } 400 401 static int os_host_main_loop_wait(int64_t timeout) 402 { 403 GMainContext *context = g_main_context_default(); 404 GPollFD poll_fds[1024 * 2]; /* this is probably overkill */ 405 int select_ret = 0; 406 int g_poll_ret, ret, i, n_poll_fds; 407 PollingEntry *pe; 408 WaitObjects *w = &wait_objects; 409 gint poll_timeout; 410 int64_t poll_timeout_ns; 411 static struct timeval tv0; 412 fd_set rfds, wfds, xfds; 413 int nfds; 414 415 /* XXX: need to suppress polling by better using win32 events */ 416 ret = 0; 417 for (pe = first_polling_entry; pe != NULL; pe = pe->next) { 418 ret |= pe->func(pe->opaque); 419 } 420 if (ret != 0) { 421 return ret; 422 } 423 424 FD_ZERO(&rfds); 425 FD_ZERO(&wfds); 426 FD_ZERO(&xfds); 427 nfds = pollfds_fill(gpollfds, &rfds, &wfds, &xfds); 428 if (nfds >= 0) { 429 select_ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv0); 430 if (select_ret != 0) { 431 timeout = 0; 432 } 433 if (select_ret > 0) { 434 pollfds_poll(gpollfds, nfds, &rfds, &wfds, &xfds); 435 } 436 } 437 438 g_main_context_prepare(context, &max_priority); 439 n_poll_fds = g_main_context_query(context, max_priority, &poll_timeout, 440 poll_fds, ARRAY_SIZE(poll_fds)); 441 g_assert(n_poll_fds <= ARRAY_SIZE(poll_fds)); 442 443 for (i = 0; i < w->num; i++) { 444 poll_fds[n_poll_fds + i].fd = (DWORD_PTR)w->events[i]; 445 poll_fds[n_poll_fds + i].events = G_IO_IN; 446 } 447 448 if (poll_timeout < 0) { 449 poll_timeout_ns = -1; 450 } else { 451 poll_timeout_ns = (int64_t)poll_timeout * (int64_t)SCALE_MS; 452 } 453 454 poll_timeout_ns = qemu_soonest_timeout(poll_timeout_ns, timeout); 455 456 qemu_mutex_unlock_iothread(); 457 g_poll_ret = qemu_poll_ns(poll_fds, n_poll_fds + w->num, poll_timeout_ns); 458 459 qemu_mutex_lock_iothread(); 460 if (g_poll_ret > 0) { 461 for (i = 0; i < w->num; i++) { 462 w->revents[i] = poll_fds[n_poll_fds + i].revents; 463 } 464 for (i = 0; i < w->num; i++) { 465 if (w->revents[i] && w->func[i]) { 466 w->func[i](w->opaque[i]); 467 } 468 } 469 } 470 471 if (g_main_context_check(context, max_priority, poll_fds, n_poll_fds)) { 472 g_main_context_dispatch(context); 473 } 474 475 return select_ret || g_poll_ret; 476 } 477 #endif 478 479 int main_loop_wait(int nonblocking) 480 { 481 int ret; 482 uint32_t timeout = UINT32_MAX; 483 int64_t timeout_ns; 484 485 if (nonblocking) { 486 timeout = 0; 487 } 488 489 /* poll any events */ 490 g_array_set_size(gpollfds, 0); /* reset for new iteration */ 491 /* XXX: separate device handlers from system ones */ 492 #ifdef CONFIG_SLIRP 493 slirp_pollfds_fill(gpollfds, &timeout); 494 #endif 495 496 if (timeout == UINT32_MAX) { 497 timeout_ns = -1; 498 } else { 499 timeout_ns = (uint64_t)timeout * (int64_t)(SCALE_MS); 500 } 501 502 timeout_ns = qemu_soonest_timeout(timeout_ns, 503 timerlistgroup_deadline_ns( 504 &main_loop_tlg)); 505 506 ret = os_host_main_loop_wait(timeout_ns); 507 #ifdef CONFIG_SLIRP 508 slirp_pollfds_poll(gpollfds, (ret < 0)); 509 #endif 510 511 /* CPU thread can infinitely wait for event after 512 missing the warp */ 513 qemu_start_warp_timer(); 514 qemu_clock_run_all_timers(); 515 516 return ret; 517 } 518 519 /* Functions to operate on the main QEMU AioContext. */ 520 521 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque) 522 { 523 return aio_bh_new(qemu_aio_context, cb, opaque); 524 } 525