xref: /openbmc/qemu/util/iov.c (revision b8116f4c)
1 /*
2  * Helpers for getting linearized buffers from iov / filling buffers into iovs
3  *
4  * Copyright IBM, Corp. 2007, 2008
5  * Copyright (C) 2010 Red Hat, Inc.
6  *
7  * Author(s):
8  *  Anthony Liguori <aliguori@us.ibm.com>
9  *  Amit Shah <amit.shah@redhat.com>
10  *  Michael Tokarev <mjt@tls.msk.ru>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2.  See
13  * the COPYING file in the top-level directory.
14  *
15  * Contributions after 2012-01-13 are licensed under the terms of the
16  * GNU GPL, version 2 or (at your option) any later version.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "qemu/iov.h"
21 #include "qemu/sockets.h"
22 #include "qemu/cutils.h"
23 
24 size_t iov_from_buf_full(const struct iovec *iov, unsigned int iov_cnt,
25                          size_t offset, const void *buf, size_t bytes)
26 {
27     size_t done;
28     unsigned int i;
29     for (i = 0, done = 0; (offset || done < bytes) && i < iov_cnt; i++) {
30         if (offset < iov[i].iov_len) {
31             size_t len = MIN(iov[i].iov_len - offset, bytes - done);
32             memcpy(iov[i].iov_base + offset, buf + done, len);
33             done += len;
34             offset = 0;
35         } else {
36             offset -= iov[i].iov_len;
37         }
38     }
39     assert(offset == 0);
40     return done;
41 }
42 
43 size_t iov_to_buf_full(const struct iovec *iov, const unsigned int iov_cnt,
44                        size_t offset, void *buf, size_t bytes)
45 {
46     size_t done;
47     unsigned int i;
48     for (i = 0, done = 0; (offset || done < bytes) && i < iov_cnt; i++) {
49         if (offset < iov[i].iov_len) {
50             size_t len = MIN(iov[i].iov_len - offset, bytes - done);
51             memcpy(buf + done, iov[i].iov_base + offset, len);
52             done += len;
53             offset = 0;
54         } else {
55             offset -= iov[i].iov_len;
56         }
57     }
58     assert(offset == 0);
59     return done;
60 }
61 
62 size_t iov_memset(const struct iovec *iov, const unsigned int iov_cnt,
63                   size_t offset, int fillc, size_t bytes)
64 {
65     size_t done;
66     unsigned int i;
67     for (i = 0, done = 0; (offset || done < bytes) && i < iov_cnt; i++) {
68         if (offset < iov[i].iov_len) {
69             size_t len = MIN(iov[i].iov_len - offset, bytes - done);
70             memset(iov[i].iov_base + offset, fillc, len);
71             done += len;
72             offset = 0;
73         } else {
74             offset -= iov[i].iov_len;
75         }
76     }
77     assert(offset == 0);
78     return done;
79 }
80 
81 size_t iov_size(const struct iovec *iov, const unsigned int iov_cnt)
82 {
83     size_t len;
84     unsigned int i;
85 
86     len = 0;
87     for (i = 0; i < iov_cnt; i++) {
88         len += iov[i].iov_len;
89     }
90     return len;
91 }
92 
93 /* helper function for iov_send_recv() */
94 static ssize_t
95 do_send_recv(int sockfd, struct iovec *iov, unsigned iov_cnt, bool do_send)
96 {
97 #ifdef CONFIG_POSIX
98     ssize_t ret;
99     struct msghdr msg;
100     memset(&msg, 0, sizeof(msg));
101     msg.msg_iov = iov;
102     msg.msg_iovlen = iov_cnt;
103     do {
104         ret = do_send
105             ? sendmsg(sockfd, &msg, 0)
106             : recvmsg(sockfd, &msg, 0);
107     } while (ret < 0 && errno == EINTR);
108     return ret;
109 #else
110     /* else send piece-by-piece */
111     /*XXX Note: windows has WSASend() and WSARecv() */
112     unsigned i = 0;
113     ssize_t ret = 0;
114     ssize_t off = 0;
115     while (i < iov_cnt) {
116         ssize_t r = do_send
117             ? send(sockfd, iov[i].iov_base + off, iov[i].iov_len - off, 0)
118             : recv(sockfd, iov[i].iov_base + off, iov[i].iov_len - off, 0);
119         if (r > 0) {
120             ret += r;
121             off += r;
122             if (off < iov[i].iov_len) {
123                 continue;
124             }
125         } else if (!r) {
126             break;
127         } else if (errno == EINTR) {
128             continue;
129         } else {
130             /* else it is some "other" error,
131              * only return if there was no data processed. */
132             if (ret == 0) {
133                 ret = -1;
134             }
135             break;
136         }
137         off = 0;
138         i++;
139     }
140     return ret;
141 #endif
142 }
143 
144 ssize_t iov_send_recv(int sockfd, const struct iovec *_iov, unsigned iov_cnt,
145                       size_t offset, size_t bytes,
146                       bool do_send)
147 {
148     ssize_t total = 0;
149     ssize_t ret;
150     size_t orig_len, tail;
151     unsigned niov;
152     struct iovec *local_iov, *iov;
153 
154     if (bytes <= 0) {
155         return 0;
156     }
157 
158     local_iov = g_new0(struct iovec, iov_cnt);
159     iov_copy(local_iov, iov_cnt, _iov, iov_cnt, offset, bytes);
160     offset = 0;
161     iov = local_iov;
162 
163     while (bytes > 0) {
164         /* Find the start position, skipping `offset' bytes:
165          * first, skip all full-sized vector elements, */
166         for (niov = 0; niov < iov_cnt && offset >= iov[niov].iov_len; ++niov) {
167             offset -= iov[niov].iov_len;
168         }
169 
170         /* niov == iov_cnt would only be valid if bytes == 0, which
171          * we already ruled out in the loop condition.  */
172         assert(niov < iov_cnt);
173         iov += niov;
174         iov_cnt -= niov;
175 
176         if (offset) {
177             /* second, skip `offset' bytes from the (now) first element,
178              * undo it on exit */
179             iov[0].iov_base += offset;
180             iov[0].iov_len -= offset;
181         }
182         /* Find the end position skipping `bytes' bytes: */
183         /* first, skip all full-sized elements */
184         tail = bytes;
185         for (niov = 0; niov < iov_cnt && iov[niov].iov_len <= tail; ++niov) {
186             tail -= iov[niov].iov_len;
187         }
188         if (tail) {
189             /* second, fixup the last element, and remember the original
190              * length */
191             assert(niov < iov_cnt);
192             assert(iov[niov].iov_len > tail);
193             orig_len = iov[niov].iov_len;
194             iov[niov++].iov_len = tail;
195             ret = do_send_recv(sockfd, iov, niov, do_send);
196             /* Undo the changes above before checking for errors */
197             iov[niov-1].iov_len = orig_len;
198         } else {
199             ret = do_send_recv(sockfd, iov, niov, do_send);
200         }
201         if (offset) {
202             iov[0].iov_base -= offset;
203             iov[0].iov_len += offset;
204         }
205 
206         if (ret < 0) {
207             assert(errno != EINTR);
208             g_free(local_iov);
209             if (errno == EAGAIN && total > 0) {
210                 return total;
211             }
212             return -1;
213         }
214 
215         if (ret == 0 && !do_send) {
216             /* recv returns 0 when the peer has performed an orderly
217              * shutdown. */
218             break;
219         }
220 
221         /* Prepare for the next iteration */
222         offset += ret;
223         total += ret;
224         bytes -= ret;
225     }
226 
227     g_free(local_iov);
228     return total;
229 }
230 
231 
232 void iov_hexdump(const struct iovec *iov, const unsigned int iov_cnt,
233                  FILE *fp, const char *prefix, size_t limit)
234 {
235     int v;
236     size_t size = 0;
237     char *buf;
238 
239     for (v = 0; v < iov_cnt; v++) {
240         size += iov[v].iov_len;
241     }
242     size = size > limit ? limit : size;
243     buf = g_malloc(size);
244     iov_to_buf(iov, iov_cnt, 0, buf, size);
245     qemu_hexdump(fp, prefix, buf, size);
246     g_free(buf);
247 }
248 
249 unsigned iov_copy(struct iovec *dst_iov, unsigned int dst_iov_cnt,
250                  const struct iovec *iov, unsigned int iov_cnt,
251                  size_t offset, size_t bytes)
252 {
253     size_t len;
254     unsigned int i, j;
255     for (i = 0, j = 0;
256          i < iov_cnt && j < dst_iov_cnt && (offset || bytes); i++) {
257         if (offset >= iov[i].iov_len) {
258             offset -= iov[i].iov_len;
259             continue;
260         }
261         len = MIN(bytes, iov[i].iov_len - offset);
262 
263         dst_iov[j].iov_base = iov[i].iov_base + offset;
264         dst_iov[j].iov_len = len;
265         j++;
266         bytes -= len;
267         offset = 0;
268     }
269     assert(offset == 0);
270     return j;
271 }
272 
273 /* io vectors */
274 
275 void qemu_iovec_init(QEMUIOVector *qiov, int alloc_hint)
276 {
277     qiov->iov = g_new(struct iovec, alloc_hint);
278     qiov->niov = 0;
279     qiov->nalloc = alloc_hint;
280     qiov->size = 0;
281 }
282 
283 void qemu_iovec_init_external(QEMUIOVector *qiov, struct iovec *iov, int niov)
284 {
285     int i;
286 
287     qiov->iov = iov;
288     qiov->niov = niov;
289     qiov->nalloc = -1;
290     qiov->size = 0;
291     for (i = 0; i < niov; i++)
292         qiov->size += iov[i].iov_len;
293 }
294 
295 void qemu_iovec_add(QEMUIOVector *qiov, void *base, size_t len)
296 {
297     assert(qiov->nalloc != -1);
298 
299     if (qiov->niov == qiov->nalloc) {
300         qiov->nalloc = 2 * qiov->nalloc + 1;
301         qiov->iov = g_renew(struct iovec, qiov->iov, qiov->nalloc);
302     }
303     qiov->iov[qiov->niov].iov_base = base;
304     qiov->iov[qiov->niov].iov_len = len;
305     qiov->size += len;
306     ++qiov->niov;
307 }
308 
309 /*
310  * Concatenates (partial) iovecs from src_iov to the end of dst.
311  * It starts copying after skipping `soffset' bytes at the
312  * beginning of src and adds individual vectors from src to
313  * dst copies up to `sbytes' bytes total, or up to the end
314  * of src_iov if it comes first.  This way, it is okay to specify
315  * very large value for `sbytes' to indicate "up to the end
316  * of src".
317  * Only vector pointers are processed, not the actual data buffers.
318  */
319 size_t qemu_iovec_concat_iov(QEMUIOVector *dst,
320                              struct iovec *src_iov, unsigned int src_cnt,
321                              size_t soffset, size_t sbytes)
322 {
323     int i;
324     size_t done;
325 
326     if (!sbytes) {
327         return 0;
328     }
329     assert(dst->nalloc != -1);
330     for (i = 0, done = 0; done < sbytes && i < src_cnt; i++) {
331         if (soffset < src_iov[i].iov_len) {
332             size_t len = MIN(src_iov[i].iov_len - soffset, sbytes - done);
333             qemu_iovec_add(dst, src_iov[i].iov_base + soffset, len);
334             done += len;
335             soffset = 0;
336         } else {
337             soffset -= src_iov[i].iov_len;
338         }
339     }
340     assert(soffset == 0); /* offset beyond end of src */
341 
342     return done;
343 }
344 
345 /*
346  * Concatenates (partial) iovecs from src to the end of dst.
347  * It starts copying after skipping `soffset' bytes at the
348  * beginning of src and adds individual vectors from src to
349  * dst copies up to `sbytes' bytes total, or up to the end
350  * of src if it comes first.  This way, it is okay to specify
351  * very large value for `sbytes' to indicate "up to the end
352  * of src".
353  * Only vector pointers are processed, not the actual data buffers.
354  */
355 void qemu_iovec_concat(QEMUIOVector *dst,
356                        QEMUIOVector *src, size_t soffset, size_t sbytes)
357 {
358     qemu_iovec_concat_iov(dst, src->iov, src->niov, soffset, sbytes);
359 }
360 
361 /*
362  * qiov_find_iov
363  *
364  * Return pointer to iovec structure, where byte at @offset in original vector
365  * @iov exactly is.
366  * Set @remaining_offset to be offset inside that iovec to the same byte.
367  */
368 static struct iovec *iov_skip_offset(struct iovec *iov, size_t offset,
369                                      size_t *remaining_offset)
370 {
371     while (offset > 0 && offset >= iov->iov_len) {
372         offset -= iov->iov_len;
373         iov++;
374     }
375     *remaining_offset = offset;
376 
377     return iov;
378 }
379 
380 /*
381  * qemu_iovec_slice
382  *
383  * Find subarray of iovec's, containing requested range. @head would
384  * be offset in first iov (returned by the function), @tail would be
385  * count of extra bytes in last iovec (returned iov + @niov - 1).
386  */
387 struct iovec *qemu_iovec_slice(QEMUIOVector *qiov,
388                                size_t offset, size_t len,
389                                size_t *head, size_t *tail, int *niov)
390 {
391     struct iovec *iov, *end_iov;
392 
393     assert(offset + len <= qiov->size);
394 
395     iov = iov_skip_offset(qiov->iov, offset, head);
396     end_iov = iov_skip_offset(iov, *head + len, tail);
397 
398     if (*tail > 0) {
399         assert(*tail < end_iov->iov_len);
400         *tail = end_iov->iov_len - *tail;
401         end_iov++;
402     }
403 
404     *niov = end_iov - iov;
405 
406     return iov;
407 }
408 
409 int qemu_iovec_subvec_niov(QEMUIOVector *qiov, size_t offset, size_t len)
410 {
411     size_t head, tail;
412     int niov;
413 
414     qemu_iovec_slice(qiov, offset, len, &head, &tail, &niov);
415 
416     return niov;
417 }
418 
419 /*
420  * Check if the contents of subrange of qiov data is all zeroes.
421  */
422 bool qemu_iovec_is_zero(QEMUIOVector *qiov, size_t offset, size_t bytes)
423 {
424     struct iovec *iov;
425     size_t current_offset;
426 
427     assert(offset + bytes <= qiov->size);
428 
429     iov = iov_skip_offset(qiov->iov, offset, &current_offset);
430 
431     while (bytes) {
432         uint8_t *base = (uint8_t *)iov->iov_base + current_offset;
433         size_t len = MIN(iov->iov_len - current_offset, bytes);
434 
435         if (!buffer_is_zero(base, len)) {
436             return false;
437         }
438 
439         current_offset = 0;
440         bytes -= len;
441         iov++;
442     }
443 
444     return true;
445 }
446 
447 void qemu_iovec_init_slice(QEMUIOVector *qiov, QEMUIOVector *source,
448                            size_t offset, size_t len)
449 {
450     struct iovec *slice_iov;
451     int slice_niov;
452     size_t slice_head, slice_tail;
453 
454     assert(source->size >= len);
455     assert(source->size - len >= offset);
456 
457     slice_iov = qemu_iovec_slice(source, offset, len,
458                                  &slice_head, &slice_tail, &slice_niov);
459     if (slice_niov == 1) {
460         qemu_iovec_init_buf(qiov, slice_iov[0].iov_base + slice_head, len);
461     } else {
462         qemu_iovec_init(qiov, slice_niov);
463         qemu_iovec_concat_iov(qiov, slice_iov, slice_niov, slice_head, len);
464     }
465 }
466 
467 void qemu_iovec_destroy(QEMUIOVector *qiov)
468 {
469     if (qiov->nalloc != -1) {
470         g_free(qiov->iov);
471     }
472 
473     memset(qiov, 0, sizeof(*qiov));
474 }
475 
476 void qemu_iovec_reset(QEMUIOVector *qiov)
477 {
478     assert(qiov->nalloc != -1);
479 
480     qiov->niov = 0;
481     qiov->size = 0;
482 }
483 
484 size_t qemu_iovec_to_buf(QEMUIOVector *qiov, size_t offset,
485                          void *buf, size_t bytes)
486 {
487     return iov_to_buf(qiov->iov, qiov->niov, offset, buf, bytes);
488 }
489 
490 size_t qemu_iovec_from_buf(QEMUIOVector *qiov, size_t offset,
491                            const void *buf, size_t bytes)
492 {
493     return iov_from_buf(qiov->iov, qiov->niov, offset, buf, bytes);
494 }
495 
496 size_t qemu_iovec_memset(QEMUIOVector *qiov, size_t offset,
497                          int fillc, size_t bytes)
498 {
499     return iov_memset(qiov->iov, qiov->niov, offset, fillc, bytes);
500 }
501 
502 /**
503  * Check that I/O vector contents are identical
504  *
505  * The IO vectors must have the same structure (same length of all parts).
506  * A typical usage is to compare vectors created with qemu_iovec_clone().
507  *
508  * @a:          I/O vector
509  * @b:          I/O vector
510  * @ret:        Offset to first mismatching byte or -1 if match
511  */
512 ssize_t qemu_iovec_compare(QEMUIOVector *a, QEMUIOVector *b)
513 {
514     int i;
515     ssize_t offset = 0;
516 
517     assert(a->niov == b->niov);
518     for (i = 0; i < a->niov; i++) {
519         size_t len = 0;
520         uint8_t *p = (uint8_t *)a->iov[i].iov_base;
521         uint8_t *q = (uint8_t *)b->iov[i].iov_base;
522 
523         assert(a->iov[i].iov_len == b->iov[i].iov_len);
524         while (len < a->iov[i].iov_len && *p++ == *q++) {
525             len++;
526         }
527 
528         offset += len;
529 
530         if (len != a->iov[i].iov_len) {
531             return offset;
532         }
533     }
534     return -1;
535 }
536 
537 typedef struct {
538     int src_index;
539     struct iovec *src_iov;
540     void *dest_base;
541 } IOVectorSortElem;
542 
543 static int sortelem_cmp_src_base(const void *a, const void *b)
544 {
545     const IOVectorSortElem *elem_a = a;
546     const IOVectorSortElem *elem_b = b;
547 
548     /* Don't overflow */
549     if (elem_a->src_iov->iov_base < elem_b->src_iov->iov_base) {
550         return -1;
551     } else if (elem_a->src_iov->iov_base > elem_b->src_iov->iov_base) {
552         return 1;
553     } else {
554         return 0;
555     }
556 }
557 
558 static int sortelem_cmp_src_index(const void *a, const void *b)
559 {
560     const IOVectorSortElem *elem_a = a;
561     const IOVectorSortElem *elem_b = b;
562 
563     return elem_a->src_index - elem_b->src_index;
564 }
565 
566 /**
567  * Copy contents of I/O vector
568  *
569  * The relative relationships of overlapping iovecs are preserved.  This is
570  * necessary to ensure identical semantics in the cloned I/O vector.
571  */
572 void qemu_iovec_clone(QEMUIOVector *dest, const QEMUIOVector *src, void *buf)
573 {
574     g_autofree IOVectorSortElem *sortelems = g_new(IOVectorSortElem, src->niov);
575     void *last_end;
576     int i;
577 
578     /* Sort by source iovecs by base address */
579     for (i = 0; i < src->niov; i++) {
580         sortelems[i].src_index = i;
581         sortelems[i].src_iov = &src->iov[i];
582     }
583     qsort(sortelems, src->niov, sizeof(sortelems[0]), sortelem_cmp_src_base);
584 
585     /* Allocate buffer space taking into account overlapping iovecs */
586     last_end = NULL;
587     for (i = 0; i < src->niov; i++) {
588         struct iovec *cur = sortelems[i].src_iov;
589         ptrdiff_t rewind = 0;
590 
591         /* Detect overlap */
592         if (last_end && last_end > cur->iov_base) {
593             rewind = last_end - cur->iov_base;
594         }
595 
596         sortelems[i].dest_base = buf - rewind;
597         buf += cur->iov_len - MIN(rewind, cur->iov_len);
598         last_end = MAX(cur->iov_base + cur->iov_len, last_end);
599     }
600 
601     /* Sort by source iovec index and build destination iovec */
602     qsort(sortelems, src->niov, sizeof(sortelems[0]), sortelem_cmp_src_index);
603     for (i = 0; i < src->niov; i++) {
604         qemu_iovec_add(dest, sortelems[i].dest_base, src->iov[i].iov_len);
605     }
606 }
607 
608 void iov_discard_undo(IOVDiscardUndo *undo)
609 {
610     /* Restore original iovec if it was modified */
611     if (undo->modified_iov) {
612         *undo->modified_iov = undo->orig;
613     }
614 }
615 
616 size_t iov_discard_front_undoable(struct iovec **iov,
617                                   unsigned int *iov_cnt,
618                                   size_t bytes,
619                                   IOVDiscardUndo *undo)
620 {
621     size_t total = 0;
622     struct iovec *cur;
623 
624     if (undo) {
625         undo->modified_iov = NULL;
626     }
627 
628     for (cur = *iov; *iov_cnt > 0; cur++) {
629         if (cur->iov_len > bytes) {
630             if (undo) {
631                 undo->modified_iov = cur;
632                 undo->orig = *cur;
633             }
634 
635             cur->iov_base += bytes;
636             cur->iov_len -= bytes;
637             total += bytes;
638             break;
639         }
640 
641         bytes -= cur->iov_len;
642         total += cur->iov_len;
643         *iov_cnt -= 1;
644     }
645 
646     *iov = cur;
647     return total;
648 }
649 
650 size_t iov_discard_front(struct iovec **iov, unsigned int *iov_cnt,
651                          size_t bytes)
652 {
653     return iov_discard_front_undoable(iov, iov_cnt, bytes, NULL);
654 }
655 
656 size_t iov_discard_back_undoable(struct iovec *iov,
657                                  unsigned int *iov_cnt,
658                                  size_t bytes,
659                                  IOVDiscardUndo *undo)
660 {
661     size_t total = 0;
662     struct iovec *cur;
663 
664     if (undo) {
665         undo->modified_iov = NULL;
666     }
667 
668     if (*iov_cnt == 0) {
669         return 0;
670     }
671 
672     cur = iov + (*iov_cnt - 1);
673 
674     while (*iov_cnt > 0) {
675         if (cur->iov_len > bytes) {
676             if (undo) {
677                 undo->modified_iov = cur;
678                 undo->orig = *cur;
679             }
680 
681             cur->iov_len -= bytes;
682             total += bytes;
683             break;
684         }
685 
686         bytes -= cur->iov_len;
687         total += cur->iov_len;
688         cur--;
689         *iov_cnt -= 1;
690     }
691 
692     return total;
693 }
694 
695 size_t iov_discard_back(struct iovec *iov, unsigned int *iov_cnt,
696                         size_t bytes)
697 {
698     return iov_discard_back_undoable(iov, iov_cnt, bytes, NULL);
699 }
700 
701 void qemu_iovec_discard_back(QEMUIOVector *qiov, size_t bytes)
702 {
703     size_t total;
704     unsigned int niov = qiov->niov;
705 
706     assert(qiov->size >= bytes);
707     total = iov_discard_back(qiov->iov, &niov, bytes);
708     assert(total == bytes);
709 
710     qiov->niov = niov;
711     qiov->size -= bytes;
712 }
713