1 /* 2 * Hierarchical Bitmap Data Type 3 * 4 * Copyright Red Hat, Inc., 2012 5 * 6 * Author: Paolo Bonzini <pbonzini@redhat.com> 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2 or 9 * later. See the COPYING file in the top-level directory. 10 */ 11 12 #include "qemu/osdep.h" 13 #include "qemu/hbitmap.h" 14 #include "qemu/host-utils.h" 15 #include "trace.h" 16 17 /* HBitmaps provides an array of bits. The bits are stored as usual in an 18 * array of unsigned longs, but HBitmap is also optimized to provide fast 19 * iteration over set bits; going from one bit to the next is O(logB n) 20 * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough 21 * that the number of levels is in fact fixed. 22 * 23 * In order to do this, it stacks multiple bitmaps with progressively coarser 24 * granularity; in all levels except the last, bit N is set iff the N-th 25 * unsigned long is nonzero in the immediately next level. When iteration 26 * completes on the last level it can examine the 2nd-last level to quickly 27 * skip entire words, and even do so recursively to skip blocks of 64 words or 28 * powers thereof (32 on 32-bit machines). 29 * 30 * Given an index in the bitmap, it can be split in group of bits like 31 * this (for the 64-bit case): 32 * 33 * bits 0-57 => word in the last bitmap | bits 58-63 => bit in the word 34 * bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word 35 * bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word 36 * 37 * So it is easy to move up simply by shifting the index right by 38 * log2(BITS_PER_LONG) bits. To move down, you shift the index left 39 * similarly, and add the word index within the group. Iteration uses 40 * ffs (find first set bit) to find the next word to examine; this 41 * operation can be done in constant time in most current architectures. 42 * 43 * Setting or clearing a range of m bits on all levels, the work to perform 44 * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap. 45 * 46 * When iterating on a bitmap, each bit (on any level) is only visited 47 * once. Hence, The total cost of visiting a bitmap with m bits in it is 48 * the number of bits that are set in all bitmaps. Unless the bitmap is 49 * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized 50 * cost of advancing from one bit to the next is usually constant (worst case 51 * O(logB n) as in the non-amortized complexity). 52 */ 53 54 struct HBitmap { 55 /* Number of total bits in the bottom level. */ 56 uint64_t size; 57 58 /* Number of set bits in the bottom level. */ 59 uint64_t count; 60 61 /* A scaling factor. Given a granularity of G, each bit in the bitmap will 62 * will actually represent a group of 2^G elements. Each operation on a 63 * range of bits first rounds the bits to determine which group they land 64 * in, and then affect the entire page; iteration will only visit the first 65 * bit of each group. Here is an example of operations in a size-16, 66 * granularity-1 HBitmap: 67 * 68 * initial state 00000000 69 * set(start=0, count=9) 11111000 (iter: 0, 2, 4, 6, 8) 70 * reset(start=1, count=3) 00111000 (iter: 4, 6, 8) 71 * set(start=9, count=2) 00111100 (iter: 4, 6, 8, 10) 72 * reset(start=5, count=5) 00000000 73 * 74 * From an implementation point of view, when setting or resetting bits, 75 * the bitmap will scale bit numbers right by this amount of bits. When 76 * iterating, the bitmap will scale bit numbers left by this amount of 77 * bits. 78 */ 79 int granularity; 80 81 /* A meta dirty bitmap to track the dirtiness of bits in this HBitmap. */ 82 HBitmap *meta; 83 84 /* A number of progressively less coarse bitmaps (i.e. level 0 is the 85 * coarsest). Each bit in level N represents a word in level N+1 that 86 * has a set bit, except the last level where each bit represents the 87 * actual bitmap. 88 * 89 * Note that all bitmaps have the same number of levels. Even a 1-bit 90 * bitmap will still allocate HBITMAP_LEVELS arrays. 91 */ 92 unsigned long *levels[HBITMAP_LEVELS]; 93 94 /* The length of each levels[] array. */ 95 uint64_t sizes[HBITMAP_LEVELS]; 96 }; 97 98 /* Advance hbi to the next nonzero word and return it. hbi->pos 99 * is updated. Returns zero if we reach the end of the bitmap. 100 */ 101 unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi) 102 { 103 size_t pos = hbi->pos; 104 const HBitmap *hb = hbi->hb; 105 unsigned i = HBITMAP_LEVELS - 1; 106 107 unsigned long cur; 108 do { 109 cur = hbi->cur[--i]; 110 pos >>= BITS_PER_LEVEL; 111 } while (cur == 0); 112 113 /* Check for end of iteration. We always use fewer than BITS_PER_LONG 114 * bits in the level 0 bitmap; thus we can repurpose the most significant 115 * bit as a sentinel. The sentinel is set in hbitmap_alloc and ensures 116 * that the above loop ends even without an explicit check on i. 117 */ 118 119 if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) { 120 return 0; 121 } 122 for (; i < HBITMAP_LEVELS - 1; i++) { 123 /* Shift back pos to the left, matching the right shifts above. 124 * The index of this word's least significant set bit provides 125 * the low-order bits. 126 */ 127 assert(cur); 128 pos = (pos << BITS_PER_LEVEL) + ctzl(cur); 129 hbi->cur[i] = cur & (cur - 1); 130 131 /* Set up next level for iteration. */ 132 cur = hb->levels[i + 1][pos]; 133 } 134 135 hbi->pos = pos; 136 trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur); 137 138 assert(cur); 139 return cur; 140 } 141 142 void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first) 143 { 144 unsigned i, bit; 145 uint64_t pos; 146 147 hbi->hb = hb; 148 pos = first >> hb->granularity; 149 assert(pos < hb->size); 150 hbi->pos = pos >> BITS_PER_LEVEL; 151 hbi->granularity = hb->granularity; 152 153 for (i = HBITMAP_LEVELS; i-- > 0; ) { 154 bit = pos & (BITS_PER_LONG - 1); 155 pos >>= BITS_PER_LEVEL; 156 157 /* Drop bits representing items before first. */ 158 hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1); 159 160 /* We have already added level i+1, so the lowest set bit has 161 * been processed. Clear it. 162 */ 163 if (i != HBITMAP_LEVELS - 1) { 164 hbi->cur[i] &= ~(1UL << bit); 165 } 166 } 167 } 168 169 bool hbitmap_empty(const HBitmap *hb) 170 { 171 return hb->count == 0; 172 } 173 174 int hbitmap_granularity(const HBitmap *hb) 175 { 176 return hb->granularity; 177 } 178 179 uint64_t hbitmap_count(const HBitmap *hb) 180 { 181 return hb->count << hb->granularity; 182 } 183 184 /* Count the number of set bits between start and end, not accounting for 185 * the granularity. Also an example of how to use hbitmap_iter_next_word. 186 */ 187 static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last) 188 { 189 HBitmapIter hbi; 190 uint64_t count = 0; 191 uint64_t end = last + 1; 192 unsigned long cur; 193 size_t pos; 194 195 hbitmap_iter_init(&hbi, hb, start << hb->granularity); 196 for (;;) { 197 pos = hbitmap_iter_next_word(&hbi, &cur); 198 if (pos >= (end >> BITS_PER_LEVEL)) { 199 break; 200 } 201 count += ctpopl(cur); 202 } 203 204 if (pos == (end >> BITS_PER_LEVEL)) { 205 /* Drop bits representing the END-th and subsequent items. */ 206 int bit = end & (BITS_PER_LONG - 1); 207 cur &= (1UL << bit) - 1; 208 count += ctpopl(cur); 209 } 210 211 return count; 212 } 213 214 /* Setting starts at the last layer and propagates up if an element 215 * changes. 216 */ 217 static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last) 218 { 219 unsigned long mask; 220 unsigned long old; 221 222 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL)); 223 assert(start <= last); 224 225 mask = 2UL << (last & (BITS_PER_LONG - 1)); 226 mask -= 1UL << (start & (BITS_PER_LONG - 1)); 227 old = *elem; 228 *elem |= mask; 229 return old != *elem; 230 } 231 232 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... 233 * Returns true if at least one bit is changed. */ 234 static bool hb_set_between(HBitmap *hb, int level, uint64_t start, 235 uint64_t last) 236 { 237 size_t pos = start >> BITS_PER_LEVEL; 238 size_t lastpos = last >> BITS_PER_LEVEL; 239 bool changed = false; 240 size_t i; 241 242 i = pos; 243 if (i < lastpos) { 244 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1; 245 changed |= hb_set_elem(&hb->levels[level][i], start, next - 1); 246 for (;;) { 247 start = next; 248 next += BITS_PER_LONG; 249 if (++i == lastpos) { 250 break; 251 } 252 changed |= (hb->levels[level][i] == 0); 253 hb->levels[level][i] = ~0UL; 254 } 255 } 256 changed |= hb_set_elem(&hb->levels[level][i], start, last); 257 258 /* If there was any change in this layer, we may have to update 259 * the one above. 260 */ 261 if (level > 0 && changed) { 262 hb_set_between(hb, level - 1, pos, lastpos); 263 } 264 return changed; 265 } 266 267 void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count) 268 { 269 /* Compute range in the last layer. */ 270 uint64_t first, n; 271 uint64_t last = start + count - 1; 272 273 trace_hbitmap_set(hb, start, count, 274 start >> hb->granularity, last >> hb->granularity); 275 276 first = start >> hb->granularity; 277 last >>= hb->granularity; 278 assert(last < hb->size); 279 n = last - first + 1; 280 281 hb->count += n - hb_count_between(hb, first, last); 282 if (hb_set_between(hb, HBITMAP_LEVELS - 1, first, last) && 283 hb->meta) { 284 hbitmap_set(hb->meta, start, count); 285 } 286 } 287 288 /* Resetting works the other way round: propagate up if the new 289 * value is zero. 290 */ 291 static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last) 292 { 293 unsigned long mask; 294 bool blanked; 295 296 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL)); 297 assert(start <= last); 298 299 mask = 2UL << (last & (BITS_PER_LONG - 1)); 300 mask -= 1UL << (start & (BITS_PER_LONG - 1)); 301 blanked = *elem != 0 && ((*elem & ~mask) == 0); 302 *elem &= ~mask; 303 return blanked; 304 } 305 306 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... 307 * Returns true if at least one bit is changed. */ 308 static bool hb_reset_between(HBitmap *hb, int level, uint64_t start, 309 uint64_t last) 310 { 311 size_t pos = start >> BITS_PER_LEVEL; 312 size_t lastpos = last >> BITS_PER_LEVEL; 313 bool changed = false; 314 size_t i; 315 316 i = pos; 317 if (i < lastpos) { 318 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1; 319 320 /* Here we need a more complex test than when setting bits. Even if 321 * something was changed, we must not blank bits in the upper level 322 * unless the lower-level word became entirely zero. So, remove pos 323 * from the upper-level range if bits remain set. 324 */ 325 if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) { 326 changed = true; 327 } else { 328 pos++; 329 } 330 331 for (;;) { 332 start = next; 333 next += BITS_PER_LONG; 334 if (++i == lastpos) { 335 break; 336 } 337 changed |= (hb->levels[level][i] != 0); 338 hb->levels[level][i] = 0UL; 339 } 340 } 341 342 /* Same as above, this time for lastpos. */ 343 if (hb_reset_elem(&hb->levels[level][i], start, last)) { 344 changed = true; 345 } else { 346 lastpos--; 347 } 348 349 if (level > 0 && changed) { 350 hb_reset_between(hb, level - 1, pos, lastpos); 351 } 352 353 return changed; 354 355 } 356 357 void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count) 358 { 359 /* Compute range in the last layer. */ 360 uint64_t first; 361 uint64_t last = start + count - 1; 362 363 trace_hbitmap_reset(hb, start, count, 364 start >> hb->granularity, last >> hb->granularity); 365 366 first = start >> hb->granularity; 367 last >>= hb->granularity; 368 assert(last < hb->size); 369 370 hb->count -= hb_count_between(hb, first, last); 371 if (hb_reset_between(hb, HBITMAP_LEVELS - 1, first, last) && 372 hb->meta) { 373 hbitmap_set(hb->meta, start, count); 374 } 375 } 376 377 void hbitmap_reset_all(HBitmap *hb) 378 { 379 unsigned int i; 380 381 /* Same as hbitmap_alloc() except for memset() instead of malloc() */ 382 for (i = HBITMAP_LEVELS; --i >= 1; ) { 383 memset(hb->levels[i], 0, hb->sizes[i] * sizeof(unsigned long)); 384 } 385 386 hb->levels[0][0] = 1UL << (BITS_PER_LONG - 1); 387 hb->count = 0; 388 } 389 390 bool hbitmap_get(const HBitmap *hb, uint64_t item) 391 { 392 /* Compute position and bit in the last layer. */ 393 uint64_t pos = item >> hb->granularity; 394 unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1)); 395 assert(pos < hb->size); 396 397 return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0; 398 } 399 400 uint64_t hbitmap_serialization_granularity(const HBitmap *hb) 401 { 402 /* Require at least 64 bit granularity to be safe on both 64 bit and 32 bit 403 * hosts. */ 404 return 64 << hb->granularity; 405 } 406 407 /* Start should be aligned to serialization granularity, chunk size should be 408 * aligned to serialization granularity too, except for last chunk. 409 */ 410 static void serialization_chunk(const HBitmap *hb, 411 uint64_t start, uint64_t count, 412 unsigned long **first_el, uint64_t *el_count) 413 { 414 uint64_t last = start + count - 1; 415 uint64_t gran = hbitmap_serialization_granularity(hb); 416 417 assert((start & (gran - 1)) == 0); 418 assert((last >> hb->granularity) < hb->size); 419 if ((last >> hb->granularity) != hb->size - 1) { 420 assert((count & (gran - 1)) == 0); 421 } 422 423 start = (start >> hb->granularity) >> BITS_PER_LEVEL; 424 last = (last >> hb->granularity) >> BITS_PER_LEVEL; 425 426 *first_el = &hb->levels[HBITMAP_LEVELS - 1][start]; 427 *el_count = last - start + 1; 428 } 429 430 uint64_t hbitmap_serialization_size(const HBitmap *hb, 431 uint64_t start, uint64_t count) 432 { 433 uint64_t el_count; 434 unsigned long *cur; 435 436 if (!count) { 437 return 0; 438 } 439 serialization_chunk(hb, start, count, &cur, &el_count); 440 441 return el_count * sizeof(unsigned long); 442 } 443 444 void hbitmap_serialize_part(const HBitmap *hb, uint8_t *buf, 445 uint64_t start, uint64_t count) 446 { 447 uint64_t el_count; 448 unsigned long *cur, *end; 449 450 if (!count) { 451 return; 452 } 453 serialization_chunk(hb, start, count, &cur, &el_count); 454 end = cur + el_count; 455 456 while (cur != end) { 457 unsigned long el = 458 (BITS_PER_LONG == 32 ? cpu_to_le32(*cur) : cpu_to_le64(*cur)); 459 460 memcpy(buf, &el, sizeof(el)); 461 buf += sizeof(el); 462 cur++; 463 } 464 } 465 466 void hbitmap_deserialize_part(HBitmap *hb, uint8_t *buf, 467 uint64_t start, uint64_t count, 468 bool finish) 469 { 470 uint64_t el_count; 471 unsigned long *cur, *end; 472 473 if (!count) { 474 return; 475 } 476 serialization_chunk(hb, start, count, &cur, &el_count); 477 end = cur + el_count; 478 479 while (cur != end) { 480 memcpy(cur, buf, sizeof(*cur)); 481 482 if (BITS_PER_LONG == 32) { 483 le32_to_cpus((uint32_t *)cur); 484 } else { 485 le64_to_cpus((uint64_t *)cur); 486 } 487 488 buf += sizeof(unsigned long); 489 cur++; 490 } 491 if (finish) { 492 hbitmap_deserialize_finish(hb); 493 } 494 } 495 496 void hbitmap_deserialize_zeroes(HBitmap *hb, uint64_t start, uint64_t count, 497 bool finish) 498 { 499 uint64_t el_count; 500 unsigned long *first; 501 502 if (!count) { 503 return; 504 } 505 serialization_chunk(hb, start, count, &first, &el_count); 506 507 memset(first, 0, el_count * sizeof(unsigned long)); 508 if (finish) { 509 hbitmap_deserialize_finish(hb); 510 } 511 } 512 513 void hbitmap_deserialize_finish(HBitmap *bitmap) 514 { 515 int64_t i, size, prev_size; 516 int lev; 517 518 /* restore levels starting from penultimate to zero level, assuming 519 * that the last level is ok */ 520 size = MAX((bitmap->size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1); 521 for (lev = HBITMAP_LEVELS - 1; lev-- > 0; ) { 522 prev_size = size; 523 size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1); 524 memset(bitmap->levels[lev], 0, size * sizeof(unsigned long)); 525 526 for (i = 0; i < prev_size; ++i) { 527 if (bitmap->levels[lev + 1][i]) { 528 bitmap->levels[lev][i >> BITS_PER_LEVEL] |= 529 1UL << (i & (BITS_PER_LONG - 1)); 530 } 531 } 532 } 533 534 bitmap->levels[0][0] |= 1UL << (BITS_PER_LONG - 1); 535 } 536 537 void hbitmap_free(HBitmap *hb) 538 { 539 unsigned i; 540 assert(!hb->meta); 541 for (i = HBITMAP_LEVELS; i-- > 0; ) { 542 g_free(hb->levels[i]); 543 } 544 g_free(hb); 545 } 546 547 HBitmap *hbitmap_alloc(uint64_t size, int granularity) 548 { 549 HBitmap *hb = g_new0(struct HBitmap, 1); 550 unsigned i; 551 552 assert(granularity >= 0 && granularity < 64); 553 size = (size + (1ULL << granularity) - 1) >> granularity; 554 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE)); 555 556 hb->size = size; 557 hb->granularity = granularity; 558 for (i = HBITMAP_LEVELS; i-- > 0; ) { 559 size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1); 560 hb->sizes[i] = size; 561 hb->levels[i] = g_new0(unsigned long, size); 562 } 563 564 /* We necessarily have free bits in level 0 due to the definition 565 * of HBITMAP_LEVELS, so use one for a sentinel. This speeds up 566 * hbitmap_iter_skip_words. 567 */ 568 assert(size == 1); 569 hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1); 570 return hb; 571 } 572 573 void hbitmap_truncate(HBitmap *hb, uint64_t size) 574 { 575 bool shrink; 576 unsigned i; 577 uint64_t num_elements = size; 578 uint64_t old; 579 580 /* Size comes in as logical elements, adjust for granularity. */ 581 size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity; 582 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE)); 583 shrink = size < hb->size; 584 585 /* bit sizes are identical; nothing to do. */ 586 if (size == hb->size) { 587 return; 588 } 589 590 /* If we're losing bits, let's clear those bits before we invalidate all of 591 * our invariants. This helps keep the bitcount consistent, and will prevent 592 * us from carrying around garbage bits beyond the end of the map. 593 */ 594 if (shrink) { 595 /* Don't clear partial granularity groups; 596 * start at the first full one. */ 597 uint64_t start = QEMU_ALIGN_UP(num_elements, 1 << hb->granularity); 598 uint64_t fix_count = (hb->size << hb->granularity) - start; 599 600 assert(fix_count); 601 hbitmap_reset(hb, start, fix_count); 602 } 603 604 hb->size = size; 605 for (i = HBITMAP_LEVELS; i-- > 0; ) { 606 size = MAX(BITS_TO_LONGS(size), 1); 607 if (hb->sizes[i] == size) { 608 break; 609 } 610 old = hb->sizes[i]; 611 hb->sizes[i] = size; 612 hb->levels[i] = g_realloc(hb->levels[i], size * sizeof(unsigned long)); 613 if (!shrink) { 614 memset(&hb->levels[i][old], 0x00, 615 (size - old) * sizeof(*hb->levels[i])); 616 } 617 } 618 if (hb->meta) { 619 hbitmap_truncate(hb->meta, hb->size << hb->granularity); 620 } 621 } 622 623 624 /** 625 * Given HBitmaps A and B, let A := A (BITOR) B. 626 * Bitmap B will not be modified. 627 * 628 * @return true if the merge was successful, 629 * false if it was not attempted. 630 */ 631 bool hbitmap_merge(HBitmap *a, const HBitmap *b) 632 { 633 int i; 634 uint64_t j; 635 636 if ((a->size != b->size) || (a->granularity != b->granularity)) { 637 return false; 638 } 639 640 if (hbitmap_count(b) == 0) { 641 return true; 642 } 643 644 /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant. 645 * It may be possible to improve running times for sparsely populated maps 646 * by using hbitmap_iter_next, but this is suboptimal for dense maps. 647 */ 648 for (i = HBITMAP_LEVELS - 1; i >= 0; i--) { 649 for (j = 0; j < a->sizes[i]; j++) { 650 a->levels[i][j] |= b->levels[i][j]; 651 } 652 } 653 654 return true; 655 } 656 657 HBitmap *hbitmap_create_meta(HBitmap *hb, int chunk_size) 658 { 659 assert(!(chunk_size & (chunk_size - 1))); 660 assert(!hb->meta); 661 hb->meta = hbitmap_alloc(hb->size << hb->granularity, 662 hb->granularity + ctz32(chunk_size)); 663 return hb->meta; 664 } 665 666 void hbitmap_free_meta(HBitmap *hb) 667 { 668 assert(hb->meta); 669 hbitmap_free(hb->meta); 670 hb->meta = NULL; 671 } 672