1 /* 2 * Hierarchical Bitmap Data Type 3 * 4 * Copyright Red Hat, Inc., 2012 5 * 6 * Author: Paolo Bonzini <pbonzini@redhat.com> 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2 or 9 * later. See the COPYING file in the top-level directory. 10 */ 11 12 #include "qemu/osdep.h" 13 #include "qemu/hbitmap.h" 14 #include "qemu/host-utils.h" 15 #include "trace.h" 16 #include "crypto/hash.h" 17 18 /* HBitmaps provides an array of bits. The bits are stored as usual in an 19 * array of unsigned longs, but HBitmap is also optimized to provide fast 20 * iteration over set bits; going from one bit to the next is O(logB n) 21 * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough 22 * that the number of levels is in fact fixed. 23 * 24 * In order to do this, it stacks multiple bitmaps with progressively coarser 25 * granularity; in all levels except the last, bit N is set iff the N-th 26 * unsigned long is nonzero in the immediately next level. When iteration 27 * completes on the last level it can examine the 2nd-last level to quickly 28 * skip entire words, and even do so recursively to skip blocks of 64 words or 29 * powers thereof (32 on 32-bit machines). 30 * 31 * Given an index in the bitmap, it can be split in group of bits like 32 * this (for the 64-bit case): 33 * 34 * bits 0-57 => word in the last bitmap | bits 58-63 => bit in the word 35 * bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word 36 * bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word 37 * 38 * So it is easy to move up simply by shifting the index right by 39 * log2(BITS_PER_LONG) bits. To move down, you shift the index left 40 * similarly, and add the word index within the group. Iteration uses 41 * ffs (find first set bit) to find the next word to examine; this 42 * operation can be done in constant time in most current architectures. 43 * 44 * Setting or clearing a range of m bits on all levels, the work to perform 45 * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap. 46 * 47 * When iterating on a bitmap, each bit (on any level) is only visited 48 * once. Hence, The total cost of visiting a bitmap with m bits in it is 49 * the number of bits that are set in all bitmaps. Unless the bitmap is 50 * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized 51 * cost of advancing from one bit to the next is usually constant (worst case 52 * O(logB n) as in the non-amortized complexity). 53 */ 54 55 struct HBitmap { 56 /* 57 * Size of the bitmap, as requested in hbitmap_alloc or in hbitmap_truncate. 58 */ 59 uint64_t orig_size; 60 61 /* Number of total bits in the bottom level. */ 62 uint64_t size; 63 64 /* Number of set bits in the bottom level. */ 65 uint64_t count; 66 67 /* A scaling factor. Given a granularity of G, each bit in the bitmap will 68 * will actually represent a group of 2^G elements. Each operation on a 69 * range of bits first rounds the bits to determine which group they land 70 * in, and then affect the entire page; iteration will only visit the first 71 * bit of each group. Here is an example of operations in a size-16, 72 * granularity-1 HBitmap: 73 * 74 * initial state 00000000 75 * set(start=0, count=9) 11111000 (iter: 0, 2, 4, 6, 8) 76 * reset(start=1, count=3) 00111000 (iter: 4, 6, 8) 77 * set(start=9, count=2) 00111100 (iter: 4, 6, 8, 10) 78 * reset(start=5, count=5) 00000000 79 * 80 * From an implementation point of view, when setting or resetting bits, 81 * the bitmap will scale bit numbers right by this amount of bits. When 82 * iterating, the bitmap will scale bit numbers left by this amount of 83 * bits. 84 */ 85 int granularity; 86 87 /* A meta dirty bitmap to track the dirtiness of bits in this HBitmap. */ 88 HBitmap *meta; 89 90 /* A number of progressively less coarse bitmaps (i.e. level 0 is the 91 * coarsest). Each bit in level N represents a word in level N+1 that 92 * has a set bit, except the last level where each bit represents the 93 * actual bitmap. 94 * 95 * Note that all bitmaps have the same number of levels. Even a 1-bit 96 * bitmap will still allocate HBITMAP_LEVELS arrays. 97 */ 98 unsigned long *levels[HBITMAP_LEVELS]; 99 100 /* The length of each levels[] array. */ 101 uint64_t sizes[HBITMAP_LEVELS]; 102 }; 103 104 /* Advance hbi to the next nonzero word and return it. hbi->pos 105 * is updated. Returns zero if we reach the end of the bitmap. 106 */ 107 static unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi) 108 { 109 size_t pos = hbi->pos; 110 const HBitmap *hb = hbi->hb; 111 unsigned i = HBITMAP_LEVELS - 1; 112 113 unsigned long cur; 114 do { 115 i--; 116 pos >>= BITS_PER_LEVEL; 117 cur = hbi->cur[i] & hb->levels[i][pos]; 118 } while (cur == 0); 119 120 /* Check for end of iteration. We always use fewer than BITS_PER_LONG 121 * bits in the level 0 bitmap; thus we can repurpose the most significant 122 * bit as a sentinel. The sentinel is set in hbitmap_alloc and ensures 123 * that the above loop ends even without an explicit check on i. 124 */ 125 126 if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) { 127 return 0; 128 } 129 for (; i < HBITMAP_LEVELS - 1; i++) { 130 /* Shift back pos to the left, matching the right shifts above. 131 * The index of this word's least significant set bit provides 132 * the low-order bits. 133 */ 134 assert(cur); 135 pos = (pos << BITS_PER_LEVEL) + ctzl(cur); 136 hbi->cur[i] = cur & (cur - 1); 137 138 /* Set up next level for iteration. */ 139 cur = hb->levels[i + 1][pos]; 140 } 141 142 hbi->pos = pos; 143 trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur); 144 145 assert(cur); 146 return cur; 147 } 148 149 int64_t hbitmap_iter_next(HBitmapIter *hbi) 150 { 151 unsigned long cur = hbi->cur[HBITMAP_LEVELS - 1] & 152 hbi->hb->levels[HBITMAP_LEVELS - 1][hbi->pos]; 153 int64_t item; 154 155 if (cur == 0) { 156 cur = hbitmap_iter_skip_words(hbi); 157 if (cur == 0) { 158 return -1; 159 } 160 } 161 162 /* The next call will resume work from the next bit. */ 163 hbi->cur[HBITMAP_LEVELS - 1] = cur & (cur - 1); 164 item = ((uint64_t)hbi->pos << BITS_PER_LEVEL) + ctzl(cur); 165 166 return item << hbi->granularity; 167 } 168 169 void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first) 170 { 171 unsigned i, bit; 172 uint64_t pos; 173 174 hbi->hb = hb; 175 pos = first >> hb->granularity; 176 assert(pos < hb->size); 177 hbi->pos = pos >> BITS_PER_LEVEL; 178 hbi->granularity = hb->granularity; 179 180 for (i = HBITMAP_LEVELS; i-- > 0; ) { 181 bit = pos & (BITS_PER_LONG - 1); 182 pos >>= BITS_PER_LEVEL; 183 184 /* Drop bits representing items before first. */ 185 hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1); 186 187 /* We have already added level i+1, so the lowest set bit has 188 * been processed. Clear it. 189 */ 190 if (i != HBITMAP_LEVELS - 1) { 191 hbi->cur[i] &= ~(1UL << bit); 192 } 193 } 194 } 195 196 int64_t hbitmap_next_dirty(const HBitmap *hb, int64_t start, int64_t count) 197 { 198 HBitmapIter hbi; 199 int64_t first_dirty_off; 200 uint64_t end; 201 202 assert(start >= 0 && count >= 0); 203 204 if (start >= hb->orig_size || count == 0) { 205 return -1; 206 } 207 208 end = count > hb->orig_size - start ? hb->orig_size : start + count; 209 210 hbitmap_iter_init(&hbi, hb, start); 211 first_dirty_off = hbitmap_iter_next(&hbi); 212 213 if (first_dirty_off < 0 || first_dirty_off >= end) { 214 return -1; 215 } 216 217 return MAX(start, first_dirty_off); 218 } 219 220 int64_t hbitmap_next_zero(const HBitmap *hb, int64_t start, int64_t count) 221 { 222 size_t pos = (start >> hb->granularity) >> BITS_PER_LEVEL; 223 unsigned long *last_lev = hb->levels[HBITMAP_LEVELS - 1]; 224 unsigned long cur = last_lev[pos]; 225 unsigned start_bit_offset; 226 uint64_t end_bit, sz; 227 int64_t res; 228 229 assert(start >= 0 && count >= 0); 230 231 if (start >= hb->orig_size || count == 0) { 232 return -1; 233 } 234 235 end_bit = count > hb->orig_size - start ? 236 hb->size : 237 ((start + count - 1) >> hb->granularity) + 1; 238 sz = (end_bit + BITS_PER_LONG - 1) >> BITS_PER_LEVEL; 239 240 /* There may be some zero bits in @cur before @start. We are not interested 241 * in them, let's set them. 242 */ 243 start_bit_offset = (start >> hb->granularity) & (BITS_PER_LONG - 1); 244 cur |= (1UL << start_bit_offset) - 1; 245 assert((start >> hb->granularity) < hb->size); 246 247 if (cur == (unsigned long)-1) { 248 do { 249 pos++; 250 } while (pos < sz && last_lev[pos] == (unsigned long)-1); 251 252 if (pos >= sz) { 253 return -1; 254 } 255 256 cur = last_lev[pos]; 257 } 258 259 res = (pos << BITS_PER_LEVEL) + ctol(cur); 260 if (res >= end_bit) { 261 return -1; 262 } 263 264 res = res << hb->granularity; 265 if (res < start) { 266 assert(((start - res) >> hb->granularity) == 0); 267 return start; 268 } 269 270 return res; 271 } 272 273 bool hbitmap_next_dirty_area(const HBitmap *hb, int64_t start, int64_t end, 274 int64_t max_dirty_count, 275 int64_t *dirty_start, int64_t *dirty_count) 276 { 277 int64_t next_zero; 278 279 assert(start >= 0 && end >= 0 && max_dirty_count > 0); 280 281 end = MIN(end, hb->orig_size); 282 if (start >= end) { 283 return false; 284 } 285 286 start = hbitmap_next_dirty(hb, start, end - start); 287 if (start < 0) { 288 return false; 289 } 290 291 end = start + MIN(end - start, max_dirty_count); 292 293 next_zero = hbitmap_next_zero(hb, start, end - start); 294 if (next_zero >= 0) { 295 end = next_zero; 296 } 297 298 *dirty_start = start; 299 *dirty_count = end - start; 300 301 return true; 302 } 303 304 bool hbitmap_status(const HBitmap *hb, int64_t start, int64_t count, 305 int64_t *pnum) 306 { 307 int64_t next_dirty, next_zero; 308 309 assert(start >= 0); 310 assert(count > 0); 311 assert(start + count <= hb->orig_size); 312 313 next_dirty = hbitmap_next_dirty(hb, start, count); 314 if (next_dirty == -1) { 315 *pnum = count; 316 return false; 317 } 318 319 if (next_dirty > start) { 320 *pnum = next_dirty - start; 321 return false; 322 } 323 324 assert(next_dirty == start); 325 326 next_zero = hbitmap_next_zero(hb, start, count); 327 if (next_zero == -1) { 328 *pnum = count; 329 return true; 330 } 331 332 assert(next_zero > start); 333 *pnum = next_zero - start; 334 return false; 335 } 336 337 bool hbitmap_empty(const HBitmap *hb) 338 { 339 return hb->count == 0; 340 } 341 342 int hbitmap_granularity(const HBitmap *hb) 343 { 344 return hb->granularity; 345 } 346 347 uint64_t hbitmap_count(const HBitmap *hb) 348 { 349 return hb->count << hb->granularity; 350 } 351 352 /** 353 * hbitmap_iter_next_word: 354 * @hbi: HBitmapIter to operate on. 355 * @p_cur: Location where to store the next non-zero word. 356 * 357 * Return the index of the next nonzero word that is set in @hbi's 358 * associated HBitmap, and set *p_cur to the content of that word 359 * (bits before the index that was passed to hbitmap_iter_init are 360 * trimmed on the first call). Return -1, and set *p_cur to zero, 361 * if all remaining words are zero. 362 */ 363 static size_t hbitmap_iter_next_word(HBitmapIter *hbi, unsigned long *p_cur) 364 { 365 unsigned long cur = hbi->cur[HBITMAP_LEVELS - 1]; 366 367 if (cur == 0) { 368 cur = hbitmap_iter_skip_words(hbi); 369 if (cur == 0) { 370 *p_cur = 0; 371 return -1; 372 } 373 } 374 375 /* The next call will resume work from the next word. */ 376 hbi->cur[HBITMAP_LEVELS - 1] = 0; 377 *p_cur = cur; 378 return hbi->pos; 379 } 380 381 /* Count the number of set bits between start and end, not accounting for 382 * the granularity. Also an example of how to use hbitmap_iter_next_word. 383 */ 384 static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last) 385 { 386 HBitmapIter hbi; 387 uint64_t count = 0; 388 uint64_t end = last + 1; 389 unsigned long cur; 390 size_t pos; 391 392 hbitmap_iter_init(&hbi, hb, start << hb->granularity); 393 for (;;) { 394 pos = hbitmap_iter_next_word(&hbi, &cur); 395 if (pos >= (end >> BITS_PER_LEVEL)) { 396 break; 397 } 398 count += ctpopl(cur); 399 } 400 401 if (pos == (end >> BITS_PER_LEVEL)) { 402 /* Drop bits representing the END-th and subsequent items. */ 403 int bit = end & (BITS_PER_LONG - 1); 404 cur &= (1UL << bit) - 1; 405 count += ctpopl(cur); 406 } 407 408 return count; 409 } 410 411 /* Setting starts at the last layer and propagates up if an element 412 * changes. 413 */ 414 static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last) 415 { 416 unsigned long mask; 417 unsigned long old; 418 419 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL)); 420 assert(start <= last); 421 422 mask = 2UL << (last & (BITS_PER_LONG - 1)); 423 mask -= 1UL << (start & (BITS_PER_LONG - 1)); 424 old = *elem; 425 *elem |= mask; 426 return old != *elem; 427 } 428 429 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... 430 * Returns true if at least one bit is changed. */ 431 static bool hb_set_between(HBitmap *hb, int level, uint64_t start, 432 uint64_t last) 433 { 434 size_t pos = start >> BITS_PER_LEVEL; 435 size_t lastpos = last >> BITS_PER_LEVEL; 436 bool changed = false; 437 size_t i; 438 439 i = pos; 440 if (i < lastpos) { 441 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1; 442 changed |= hb_set_elem(&hb->levels[level][i], start, next - 1); 443 for (;;) { 444 start = next; 445 next += BITS_PER_LONG; 446 if (++i == lastpos) { 447 break; 448 } 449 changed |= (hb->levels[level][i] == 0); 450 hb->levels[level][i] = ~0UL; 451 } 452 } 453 changed |= hb_set_elem(&hb->levels[level][i], start, last); 454 455 /* If there was any change in this layer, we may have to update 456 * the one above. 457 */ 458 if (level > 0 && changed) { 459 hb_set_between(hb, level - 1, pos, lastpos); 460 } 461 return changed; 462 } 463 464 void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count) 465 { 466 /* Compute range in the last layer. */ 467 uint64_t first, n; 468 uint64_t last = start + count - 1; 469 470 if (count == 0) { 471 return; 472 } 473 474 trace_hbitmap_set(hb, start, count, 475 start >> hb->granularity, last >> hb->granularity); 476 477 first = start >> hb->granularity; 478 last >>= hb->granularity; 479 assert(last < hb->size); 480 n = last - first + 1; 481 482 hb->count += n - hb_count_between(hb, first, last); 483 if (hb_set_between(hb, HBITMAP_LEVELS - 1, first, last) && 484 hb->meta) { 485 hbitmap_set(hb->meta, start, count); 486 } 487 } 488 489 /* Resetting works the other way round: propagate up if the new 490 * value is zero. 491 */ 492 static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last) 493 { 494 unsigned long mask; 495 bool blanked; 496 497 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL)); 498 assert(start <= last); 499 500 mask = 2UL << (last & (BITS_PER_LONG - 1)); 501 mask -= 1UL << (start & (BITS_PER_LONG - 1)); 502 blanked = *elem != 0 && ((*elem & ~mask) == 0); 503 *elem &= ~mask; 504 return blanked; 505 } 506 507 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... 508 * Returns true if at least one bit is changed. */ 509 static bool hb_reset_between(HBitmap *hb, int level, uint64_t start, 510 uint64_t last) 511 { 512 size_t pos = start >> BITS_PER_LEVEL; 513 size_t lastpos = last >> BITS_PER_LEVEL; 514 bool changed = false; 515 size_t i; 516 517 i = pos; 518 if (i < lastpos) { 519 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1; 520 521 /* Here we need a more complex test than when setting bits. Even if 522 * something was changed, we must not blank bits in the upper level 523 * unless the lower-level word became entirely zero. So, remove pos 524 * from the upper-level range if bits remain set. 525 */ 526 if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) { 527 changed = true; 528 } else { 529 pos++; 530 } 531 532 for (;;) { 533 start = next; 534 next += BITS_PER_LONG; 535 if (++i == lastpos) { 536 break; 537 } 538 changed |= (hb->levels[level][i] != 0); 539 hb->levels[level][i] = 0UL; 540 } 541 } 542 543 /* Same as above, this time for lastpos. */ 544 if (hb_reset_elem(&hb->levels[level][i], start, last)) { 545 changed = true; 546 } else { 547 lastpos--; 548 } 549 550 if (level > 0 && changed) { 551 hb_reset_between(hb, level - 1, pos, lastpos); 552 } 553 554 return changed; 555 556 } 557 558 void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count) 559 { 560 /* Compute range in the last layer. */ 561 uint64_t first; 562 uint64_t last = start + count - 1; 563 uint64_t gran = 1ULL << hb->granularity; 564 565 if (count == 0) { 566 return; 567 } 568 569 assert(QEMU_IS_ALIGNED(start, gran)); 570 assert(QEMU_IS_ALIGNED(count, gran) || (start + count == hb->orig_size)); 571 572 trace_hbitmap_reset(hb, start, count, 573 start >> hb->granularity, last >> hb->granularity); 574 575 first = start >> hb->granularity; 576 last >>= hb->granularity; 577 assert(last < hb->size); 578 579 hb->count -= hb_count_between(hb, first, last); 580 if (hb_reset_between(hb, HBITMAP_LEVELS - 1, first, last) && 581 hb->meta) { 582 hbitmap_set(hb->meta, start, count); 583 } 584 } 585 586 void hbitmap_reset_all(HBitmap *hb) 587 { 588 unsigned int i; 589 590 /* Same as hbitmap_alloc() except for memset() instead of malloc() */ 591 for (i = HBITMAP_LEVELS; --i >= 1; ) { 592 memset(hb->levels[i], 0, hb->sizes[i] * sizeof(unsigned long)); 593 } 594 595 hb->levels[0][0] = 1UL << (BITS_PER_LONG - 1); 596 hb->count = 0; 597 } 598 599 bool hbitmap_is_serializable(const HBitmap *hb) 600 { 601 /* Every serialized chunk must be aligned to 64 bits so that endianness 602 * requirements can be fulfilled on both 64 bit and 32 bit hosts. 603 * We have hbitmap_serialization_align() which converts this 604 * alignment requirement from bitmap bits to items covered (e.g. sectors). 605 * That value is: 606 * 64 << hb->granularity 607 * Since this value must not exceed UINT64_MAX, hb->granularity must be 608 * less than 58 (== 64 - 6, where 6 is ld(64), i.e. 1 << 6 == 64). 609 * 610 * In order for hbitmap_serialization_align() to always return a 611 * meaningful value, bitmaps that are to be serialized must have a 612 * granularity of less than 58. */ 613 614 return hb->granularity < 58; 615 } 616 617 bool hbitmap_get(const HBitmap *hb, uint64_t item) 618 { 619 /* Compute position and bit in the last layer. */ 620 uint64_t pos = item >> hb->granularity; 621 unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1)); 622 assert(pos < hb->size); 623 624 return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0; 625 } 626 627 uint64_t hbitmap_serialization_align(const HBitmap *hb) 628 { 629 assert(hbitmap_is_serializable(hb)); 630 631 /* Require at least 64 bit granularity to be safe on both 64 bit and 32 bit 632 * hosts. */ 633 return UINT64_C(64) << hb->granularity; 634 } 635 636 /* Start should be aligned to serialization granularity, chunk size should be 637 * aligned to serialization granularity too, except for last chunk. 638 */ 639 static void serialization_chunk(const HBitmap *hb, 640 uint64_t start, uint64_t count, 641 unsigned long **first_el, uint64_t *el_count) 642 { 643 uint64_t last = start + count - 1; 644 uint64_t gran = hbitmap_serialization_align(hb); 645 646 assert((start & (gran - 1)) == 0); 647 assert((last >> hb->granularity) < hb->size); 648 if ((last >> hb->granularity) != hb->size - 1) { 649 assert((count & (gran - 1)) == 0); 650 } 651 652 start = (start >> hb->granularity) >> BITS_PER_LEVEL; 653 last = (last >> hb->granularity) >> BITS_PER_LEVEL; 654 655 *first_el = &hb->levels[HBITMAP_LEVELS - 1][start]; 656 *el_count = last - start + 1; 657 } 658 659 uint64_t hbitmap_serialization_size(const HBitmap *hb, 660 uint64_t start, uint64_t count) 661 { 662 uint64_t el_count; 663 unsigned long *cur; 664 665 if (!count) { 666 return 0; 667 } 668 serialization_chunk(hb, start, count, &cur, &el_count); 669 670 return el_count * sizeof(unsigned long); 671 } 672 673 void hbitmap_serialize_part(const HBitmap *hb, uint8_t *buf, 674 uint64_t start, uint64_t count) 675 { 676 uint64_t el_count; 677 unsigned long *cur, *end; 678 679 if (!count) { 680 return; 681 } 682 serialization_chunk(hb, start, count, &cur, &el_count); 683 end = cur + el_count; 684 685 while (cur != end) { 686 unsigned long el = 687 (BITS_PER_LONG == 32 ? cpu_to_le32(*cur) : cpu_to_le64(*cur)); 688 689 memcpy(buf, &el, sizeof(el)); 690 buf += sizeof(el); 691 cur++; 692 } 693 } 694 695 void hbitmap_deserialize_part(HBitmap *hb, uint8_t *buf, 696 uint64_t start, uint64_t count, 697 bool finish) 698 { 699 uint64_t el_count; 700 unsigned long *cur, *end; 701 702 if (!count) { 703 return; 704 } 705 serialization_chunk(hb, start, count, &cur, &el_count); 706 end = cur + el_count; 707 708 while (cur != end) { 709 memcpy(cur, buf, sizeof(*cur)); 710 711 if (BITS_PER_LONG == 32) { 712 le32_to_cpus((uint32_t *)cur); 713 } else { 714 le64_to_cpus((uint64_t *)cur); 715 } 716 717 buf += sizeof(unsigned long); 718 cur++; 719 } 720 if (finish) { 721 hbitmap_deserialize_finish(hb); 722 } 723 } 724 725 void hbitmap_deserialize_zeroes(HBitmap *hb, uint64_t start, uint64_t count, 726 bool finish) 727 { 728 uint64_t el_count; 729 unsigned long *first; 730 731 if (!count) { 732 return; 733 } 734 serialization_chunk(hb, start, count, &first, &el_count); 735 736 memset(first, 0, el_count * sizeof(unsigned long)); 737 if (finish) { 738 hbitmap_deserialize_finish(hb); 739 } 740 } 741 742 void hbitmap_deserialize_ones(HBitmap *hb, uint64_t start, uint64_t count, 743 bool finish) 744 { 745 uint64_t el_count; 746 unsigned long *first; 747 748 if (!count) { 749 return; 750 } 751 serialization_chunk(hb, start, count, &first, &el_count); 752 753 memset(first, 0xff, el_count * sizeof(unsigned long)); 754 if (finish) { 755 hbitmap_deserialize_finish(hb); 756 } 757 } 758 759 void hbitmap_deserialize_finish(HBitmap *bitmap) 760 { 761 int64_t i, size, prev_size; 762 int lev; 763 764 /* restore levels starting from penultimate to zero level, assuming 765 * that the last level is ok */ 766 size = MAX((bitmap->size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1); 767 for (lev = HBITMAP_LEVELS - 1; lev-- > 0; ) { 768 prev_size = size; 769 size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1); 770 memset(bitmap->levels[lev], 0, size * sizeof(unsigned long)); 771 772 for (i = 0; i < prev_size; ++i) { 773 if (bitmap->levels[lev + 1][i]) { 774 bitmap->levels[lev][i >> BITS_PER_LEVEL] |= 775 1UL << (i & (BITS_PER_LONG - 1)); 776 } 777 } 778 } 779 780 bitmap->levels[0][0] |= 1UL << (BITS_PER_LONG - 1); 781 bitmap->count = hb_count_between(bitmap, 0, bitmap->size - 1); 782 } 783 784 void hbitmap_free(HBitmap *hb) 785 { 786 unsigned i; 787 assert(!hb->meta); 788 for (i = HBITMAP_LEVELS; i-- > 0; ) { 789 g_free(hb->levels[i]); 790 } 791 g_free(hb); 792 } 793 794 HBitmap *hbitmap_alloc(uint64_t size, int granularity) 795 { 796 HBitmap *hb = g_new0(struct HBitmap, 1); 797 unsigned i; 798 799 assert(size <= INT64_MAX); 800 hb->orig_size = size; 801 802 assert(granularity >= 0 && granularity < 64); 803 size = (size + (1ULL << granularity) - 1) >> granularity; 804 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE)); 805 806 hb->size = size; 807 hb->granularity = granularity; 808 for (i = HBITMAP_LEVELS; i-- > 0; ) { 809 size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1); 810 hb->sizes[i] = size; 811 hb->levels[i] = g_new0(unsigned long, size); 812 } 813 814 /* We necessarily have free bits in level 0 due to the definition 815 * of HBITMAP_LEVELS, so use one for a sentinel. This speeds up 816 * hbitmap_iter_skip_words. 817 */ 818 assert(size == 1); 819 hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1); 820 return hb; 821 } 822 823 void hbitmap_truncate(HBitmap *hb, uint64_t size) 824 { 825 bool shrink; 826 unsigned i; 827 uint64_t num_elements = size; 828 uint64_t old; 829 830 assert(size <= INT64_MAX); 831 hb->orig_size = size; 832 833 /* Size comes in as logical elements, adjust for granularity. */ 834 size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity; 835 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE)); 836 shrink = size < hb->size; 837 838 /* bit sizes are identical; nothing to do. */ 839 if (size == hb->size) { 840 return; 841 } 842 843 /* If we're losing bits, let's clear those bits before we invalidate all of 844 * our invariants. This helps keep the bitcount consistent, and will prevent 845 * us from carrying around garbage bits beyond the end of the map. 846 */ 847 if (shrink) { 848 /* Don't clear partial granularity groups; 849 * start at the first full one. */ 850 uint64_t start = ROUND_UP(num_elements, UINT64_C(1) << hb->granularity); 851 uint64_t fix_count = (hb->size << hb->granularity) - start; 852 853 assert(fix_count); 854 hbitmap_reset(hb, start, fix_count); 855 } 856 857 hb->size = size; 858 for (i = HBITMAP_LEVELS; i-- > 0; ) { 859 size = MAX(BITS_TO_LONGS(size), 1); 860 if (hb->sizes[i] == size) { 861 break; 862 } 863 old = hb->sizes[i]; 864 hb->sizes[i] = size; 865 hb->levels[i] = g_renew(unsigned long, hb->levels[i], size); 866 if (!shrink) { 867 memset(&hb->levels[i][old], 0x00, 868 (size - old) * sizeof(*hb->levels[i])); 869 } 870 } 871 if (hb->meta) { 872 hbitmap_truncate(hb->meta, hb->size << hb->granularity); 873 } 874 } 875 876 bool hbitmap_can_merge(const HBitmap *a, const HBitmap *b) 877 { 878 return (a->orig_size == b->orig_size); 879 } 880 881 /** 882 * hbitmap_sparse_merge: performs dst = dst | src 883 * works with differing granularities. 884 * best used when src is sparsely populated. 885 */ 886 static void hbitmap_sparse_merge(HBitmap *dst, const HBitmap *src) 887 { 888 int64_t offset; 889 int64_t count; 890 891 for (offset = 0; 892 hbitmap_next_dirty_area(src, offset, src->orig_size, INT64_MAX, 893 &offset, &count); 894 offset += count) 895 { 896 hbitmap_set(dst, offset, count); 897 } 898 } 899 900 /** 901 * Given HBitmaps A and B, let R := A (BITOR) B. 902 * Bitmaps A and B will not be modified, 903 * except when bitmap R is an alias of A or B. 904 * 905 * @return true if the merge was successful, 906 * false if it was not attempted. 907 */ 908 bool hbitmap_merge(const HBitmap *a, const HBitmap *b, HBitmap *result) 909 { 910 int i; 911 uint64_t j; 912 913 if (!hbitmap_can_merge(a, b) || !hbitmap_can_merge(a, result)) { 914 return false; 915 } 916 assert(hbitmap_can_merge(b, result)); 917 918 if ((!hbitmap_count(a) && result == b) || 919 (!hbitmap_count(b) && result == a)) { 920 return true; 921 } 922 923 if (!hbitmap_count(a) && !hbitmap_count(b)) { 924 hbitmap_reset_all(result); 925 return true; 926 } 927 928 if (a->granularity != b->granularity) { 929 if ((a != result) && (b != result)) { 930 hbitmap_reset_all(result); 931 } 932 if (a != result) { 933 hbitmap_sparse_merge(result, a); 934 } 935 if (b != result) { 936 hbitmap_sparse_merge(result, b); 937 } 938 return true; 939 } 940 941 /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant. 942 * It may be possible to improve running times for sparsely populated maps 943 * by using hbitmap_iter_next, but this is suboptimal for dense maps. 944 */ 945 assert(a->size == b->size); 946 for (i = HBITMAP_LEVELS - 1; i >= 0; i--) { 947 for (j = 0; j < a->sizes[i]; j++) { 948 result->levels[i][j] = a->levels[i][j] | b->levels[i][j]; 949 } 950 } 951 952 /* Recompute the dirty count */ 953 result->count = hb_count_between(result, 0, result->size - 1); 954 955 return true; 956 } 957 958 char *hbitmap_sha256(const HBitmap *bitmap, Error **errp) 959 { 960 size_t size = bitmap->sizes[HBITMAP_LEVELS - 1] * sizeof(unsigned long); 961 char *data = (char *)bitmap->levels[HBITMAP_LEVELS - 1]; 962 char *hash = NULL; 963 qcrypto_hash_digest(QCRYPTO_HASH_ALG_SHA256, data, size, &hash, errp); 964 965 return hash; 966 } 967