1 /* 2 * Hierarchical Bitmap Data Type 3 * 4 * Copyright Red Hat, Inc., 2012 5 * 6 * Author: Paolo Bonzini <pbonzini@redhat.com> 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2 or 9 * later. See the COPYING file in the top-level directory. 10 */ 11 12 #include "qemu/osdep.h" 13 #include "qemu/hbitmap.h" 14 #include "qemu/host-utils.h" 15 #include "trace.h" 16 #include "crypto/hash.h" 17 18 /* HBitmaps provides an array of bits. The bits are stored as usual in an 19 * array of unsigned longs, but HBitmap is also optimized to provide fast 20 * iteration over set bits; going from one bit to the next is O(logB n) 21 * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough 22 * that the number of levels is in fact fixed. 23 * 24 * In order to do this, it stacks multiple bitmaps with progressively coarser 25 * granularity; in all levels except the last, bit N is set iff the N-th 26 * unsigned long is nonzero in the immediately next level. When iteration 27 * completes on the last level it can examine the 2nd-last level to quickly 28 * skip entire words, and even do so recursively to skip blocks of 64 words or 29 * powers thereof (32 on 32-bit machines). 30 * 31 * Given an index in the bitmap, it can be split in group of bits like 32 * this (for the 64-bit case): 33 * 34 * bits 0-57 => word in the last bitmap | bits 58-63 => bit in the word 35 * bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word 36 * bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word 37 * 38 * So it is easy to move up simply by shifting the index right by 39 * log2(BITS_PER_LONG) bits. To move down, you shift the index left 40 * similarly, and add the word index within the group. Iteration uses 41 * ffs (find first set bit) to find the next word to examine; this 42 * operation can be done in constant time in most current architectures. 43 * 44 * Setting or clearing a range of m bits on all levels, the work to perform 45 * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap. 46 * 47 * When iterating on a bitmap, each bit (on any level) is only visited 48 * once. Hence, The total cost of visiting a bitmap with m bits in it is 49 * the number of bits that are set in all bitmaps. Unless the bitmap is 50 * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized 51 * cost of advancing from one bit to the next is usually constant (worst case 52 * O(logB n) as in the non-amortized complexity). 53 */ 54 55 struct HBitmap { 56 /* Number of total bits in the bottom level. */ 57 uint64_t size; 58 59 /* Number of set bits in the bottom level. */ 60 uint64_t count; 61 62 /* A scaling factor. Given a granularity of G, each bit in the bitmap will 63 * will actually represent a group of 2^G elements. Each operation on a 64 * range of bits first rounds the bits to determine which group they land 65 * in, and then affect the entire page; iteration will only visit the first 66 * bit of each group. Here is an example of operations in a size-16, 67 * granularity-1 HBitmap: 68 * 69 * initial state 00000000 70 * set(start=0, count=9) 11111000 (iter: 0, 2, 4, 6, 8) 71 * reset(start=1, count=3) 00111000 (iter: 4, 6, 8) 72 * set(start=9, count=2) 00111100 (iter: 4, 6, 8, 10) 73 * reset(start=5, count=5) 00000000 74 * 75 * From an implementation point of view, when setting or resetting bits, 76 * the bitmap will scale bit numbers right by this amount of bits. When 77 * iterating, the bitmap will scale bit numbers left by this amount of 78 * bits. 79 */ 80 int granularity; 81 82 /* A meta dirty bitmap to track the dirtiness of bits in this HBitmap. */ 83 HBitmap *meta; 84 85 /* A number of progressively less coarse bitmaps (i.e. level 0 is the 86 * coarsest). Each bit in level N represents a word in level N+1 that 87 * has a set bit, except the last level where each bit represents the 88 * actual bitmap. 89 * 90 * Note that all bitmaps have the same number of levels. Even a 1-bit 91 * bitmap will still allocate HBITMAP_LEVELS arrays. 92 */ 93 unsigned long *levels[HBITMAP_LEVELS]; 94 95 /* The length of each levels[] array. */ 96 uint64_t sizes[HBITMAP_LEVELS]; 97 }; 98 99 /* Advance hbi to the next nonzero word and return it. hbi->pos 100 * is updated. Returns zero if we reach the end of the bitmap. 101 */ 102 unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi) 103 { 104 size_t pos = hbi->pos; 105 const HBitmap *hb = hbi->hb; 106 unsigned i = HBITMAP_LEVELS - 1; 107 108 unsigned long cur; 109 do { 110 i--; 111 pos >>= BITS_PER_LEVEL; 112 cur = hbi->cur[i] & hb->levels[i][pos]; 113 } while (cur == 0); 114 115 /* Check for end of iteration. We always use fewer than BITS_PER_LONG 116 * bits in the level 0 bitmap; thus we can repurpose the most significant 117 * bit as a sentinel. The sentinel is set in hbitmap_alloc and ensures 118 * that the above loop ends even without an explicit check on i. 119 */ 120 121 if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) { 122 return 0; 123 } 124 for (; i < HBITMAP_LEVELS - 1; i++) { 125 /* Shift back pos to the left, matching the right shifts above. 126 * The index of this word's least significant set bit provides 127 * the low-order bits. 128 */ 129 assert(cur); 130 pos = (pos << BITS_PER_LEVEL) + ctzl(cur); 131 hbi->cur[i] = cur & (cur - 1); 132 133 /* Set up next level for iteration. */ 134 cur = hb->levels[i + 1][pos]; 135 } 136 137 hbi->pos = pos; 138 trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur); 139 140 assert(cur); 141 return cur; 142 } 143 144 int64_t hbitmap_iter_next(HBitmapIter *hbi, bool advance) 145 { 146 unsigned long cur = hbi->cur[HBITMAP_LEVELS - 1] & 147 hbi->hb->levels[HBITMAP_LEVELS - 1][hbi->pos]; 148 int64_t item; 149 150 if (cur == 0) { 151 cur = hbitmap_iter_skip_words(hbi); 152 if (cur == 0) { 153 return -1; 154 } 155 } 156 157 if (advance) { 158 /* The next call will resume work from the next bit. */ 159 hbi->cur[HBITMAP_LEVELS - 1] = cur & (cur - 1); 160 } else { 161 hbi->cur[HBITMAP_LEVELS - 1] = cur; 162 } 163 item = ((uint64_t)hbi->pos << BITS_PER_LEVEL) + ctzl(cur); 164 165 return item << hbi->granularity; 166 } 167 168 void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first) 169 { 170 unsigned i, bit; 171 uint64_t pos; 172 173 hbi->hb = hb; 174 pos = first >> hb->granularity; 175 assert(pos < hb->size); 176 hbi->pos = pos >> BITS_PER_LEVEL; 177 hbi->granularity = hb->granularity; 178 179 for (i = HBITMAP_LEVELS; i-- > 0; ) { 180 bit = pos & (BITS_PER_LONG - 1); 181 pos >>= BITS_PER_LEVEL; 182 183 /* Drop bits representing items before first. */ 184 hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1); 185 186 /* We have already added level i+1, so the lowest set bit has 187 * been processed. Clear it. 188 */ 189 if (i != HBITMAP_LEVELS - 1) { 190 hbi->cur[i] &= ~(1UL << bit); 191 } 192 } 193 } 194 195 int64_t hbitmap_next_zero(const HBitmap *hb, uint64_t start) 196 { 197 size_t pos = (start >> hb->granularity) >> BITS_PER_LEVEL; 198 unsigned long *last_lev = hb->levels[HBITMAP_LEVELS - 1]; 199 uint64_t sz = hb->sizes[HBITMAP_LEVELS - 1]; 200 unsigned long cur = last_lev[pos]; 201 unsigned start_bit_offset = 202 (start >> hb->granularity) & (BITS_PER_LONG - 1); 203 int64_t res; 204 205 cur |= (1UL << start_bit_offset) - 1; 206 assert((start >> hb->granularity) < hb->size); 207 208 if (cur == (unsigned long)-1) { 209 do { 210 pos++; 211 } while (pos < sz && last_lev[pos] == (unsigned long)-1); 212 213 if (pos >= sz) { 214 return -1; 215 } 216 217 cur = last_lev[pos]; 218 } 219 220 res = (pos << BITS_PER_LEVEL) + ctol(cur); 221 if (res >= hb->size) { 222 return -1; 223 } 224 225 res = res << hb->granularity; 226 if (res < start) { 227 assert(((start - res) >> hb->granularity) == 0); 228 return start; 229 } 230 231 return res; 232 } 233 234 bool hbitmap_empty(const HBitmap *hb) 235 { 236 return hb->count == 0; 237 } 238 239 int hbitmap_granularity(const HBitmap *hb) 240 { 241 return hb->granularity; 242 } 243 244 uint64_t hbitmap_count(const HBitmap *hb) 245 { 246 return hb->count << hb->granularity; 247 } 248 249 /* Count the number of set bits between start and end, not accounting for 250 * the granularity. Also an example of how to use hbitmap_iter_next_word. 251 */ 252 static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last) 253 { 254 HBitmapIter hbi; 255 uint64_t count = 0; 256 uint64_t end = last + 1; 257 unsigned long cur; 258 size_t pos; 259 260 hbitmap_iter_init(&hbi, hb, start << hb->granularity); 261 for (;;) { 262 pos = hbitmap_iter_next_word(&hbi, &cur); 263 if (pos >= (end >> BITS_PER_LEVEL)) { 264 break; 265 } 266 count += ctpopl(cur); 267 } 268 269 if (pos == (end >> BITS_PER_LEVEL)) { 270 /* Drop bits representing the END-th and subsequent items. */ 271 int bit = end & (BITS_PER_LONG - 1); 272 cur &= (1UL << bit) - 1; 273 count += ctpopl(cur); 274 } 275 276 return count; 277 } 278 279 /* Setting starts at the last layer and propagates up if an element 280 * changes. 281 */ 282 static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last) 283 { 284 unsigned long mask; 285 unsigned long old; 286 287 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL)); 288 assert(start <= last); 289 290 mask = 2UL << (last & (BITS_PER_LONG - 1)); 291 mask -= 1UL << (start & (BITS_PER_LONG - 1)); 292 old = *elem; 293 *elem |= mask; 294 return old != *elem; 295 } 296 297 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... 298 * Returns true if at least one bit is changed. */ 299 static bool hb_set_between(HBitmap *hb, int level, uint64_t start, 300 uint64_t last) 301 { 302 size_t pos = start >> BITS_PER_LEVEL; 303 size_t lastpos = last >> BITS_PER_LEVEL; 304 bool changed = false; 305 size_t i; 306 307 i = pos; 308 if (i < lastpos) { 309 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1; 310 changed |= hb_set_elem(&hb->levels[level][i], start, next - 1); 311 for (;;) { 312 start = next; 313 next += BITS_PER_LONG; 314 if (++i == lastpos) { 315 break; 316 } 317 changed |= (hb->levels[level][i] == 0); 318 hb->levels[level][i] = ~0UL; 319 } 320 } 321 changed |= hb_set_elem(&hb->levels[level][i], start, last); 322 323 /* If there was any change in this layer, we may have to update 324 * the one above. 325 */ 326 if (level > 0 && changed) { 327 hb_set_between(hb, level - 1, pos, lastpos); 328 } 329 return changed; 330 } 331 332 void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count) 333 { 334 /* Compute range in the last layer. */ 335 uint64_t first, n; 336 uint64_t last = start + count - 1; 337 338 trace_hbitmap_set(hb, start, count, 339 start >> hb->granularity, last >> hb->granularity); 340 341 first = start >> hb->granularity; 342 last >>= hb->granularity; 343 assert(last < hb->size); 344 n = last - first + 1; 345 346 hb->count += n - hb_count_between(hb, first, last); 347 if (hb_set_between(hb, HBITMAP_LEVELS - 1, first, last) && 348 hb->meta) { 349 hbitmap_set(hb->meta, start, count); 350 } 351 } 352 353 /* Resetting works the other way round: propagate up if the new 354 * value is zero. 355 */ 356 static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last) 357 { 358 unsigned long mask; 359 bool blanked; 360 361 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL)); 362 assert(start <= last); 363 364 mask = 2UL << (last & (BITS_PER_LONG - 1)); 365 mask -= 1UL << (start & (BITS_PER_LONG - 1)); 366 blanked = *elem != 0 && ((*elem & ~mask) == 0); 367 *elem &= ~mask; 368 return blanked; 369 } 370 371 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... 372 * Returns true if at least one bit is changed. */ 373 static bool hb_reset_between(HBitmap *hb, int level, uint64_t start, 374 uint64_t last) 375 { 376 size_t pos = start >> BITS_PER_LEVEL; 377 size_t lastpos = last >> BITS_PER_LEVEL; 378 bool changed = false; 379 size_t i; 380 381 i = pos; 382 if (i < lastpos) { 383 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1; 384 385 /* Here we need a more complex test than when setting bits. Even if 386 * something was changed, we must not blank bits in the upper level 387 * unless the lower-level word became entirely zero. So, remove pos 388 * from the upper-level range if bits remain set. 389 */ 390 if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) { 391 changed = true; 392 } else { 393 pos++; 394 } 395 396 for (;;) { 397 start = next; 398 next += BITS_PER_LONG; 399 if (++i == lastpos) { 400 break; 401 } 402 changed |= (hb->levels[level][i] != 0); 403 hb->levels[level][i] = 0UL; 404 } 405 } 406 407 /* Same as above, this time for lastpos. */ 408 if (hb_reset_elem(&hb->levels[level][i], start, last)) { 409 changed = true; 410 } else { 411 lastpos--; 412 } 413 414 if (level > 0 && changed) { 415 hb_reset_between(hb, level - 1, pos, lastpos); 416 } 417 418 return changed; 419 420 } 421 422 void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count) 423 { 424 /* Compute range in the last layer. */ 425 uint64_t first; 426 uint64_t last = start + count - 1; 427 428 trace_hbitmap_reset(hb, start, count, 429 start >> hb->granularity, last >> hb->granularity); 430 431 first = start >> hb->granularity; 432 last >>= hb->granularity; 433 assert(last < hb->size); 434 435 hb->count -= hb_count_between(hb, first, last); 436 if (hb_reset_between(hb, HBITMAP_LEVELS - 1, first, last) && 437 hb->meta) { 438 hbitmap_set(hb->meta, start, count); 439 } 440 } 441 442 void hbitmap_reset_all(HBitmap *hb) 443 { 444 unsigned int i; 445 446 /* Same as hbitmap_alloc() except for memset() instead of malloc() */ 447 for (i = HBITMAP_LEVELS; --i >= 1; ) { 448 memset(hb->levels[i], 0, hb->sizes[i] * sizeof(unsigned long)); 449 } 450 451 hb->levels[0][0] = 1UL << (BITS_PER_LONG - 1); 452 hb->count = 0; 453 } 454 455 bool hbitmap_is_serializable(const HBitmap *hb) 456 { 457 /* Every serialized chunk must be aligned to 64 bits so that endianness 458 * requirements can be fulfilled on both 64 bit and 32 bit hosts. 459 * We have hbitmap_serialization_align() which converts this 460 * alignment requirement from bitmap bits to items covered (e.g. sectors). 461 * That value is: 462 * 64 << hb->granularity 463 * Since this value must not exceed UINT64_MAX, hb->granularity must be 464 * less than 58 (== 64 - 6, where 6 is ld(64), i.e. 1 << 6 == 64). 465 * 466 * In order for hbitmap_serialization_align() to always return a 467 * meaningful value, bitmaps that are to be serialized must have a 468 * granularity of less than 58. */ 469 470 return hb->granularity < 58; 471 } 472 473 bool hbitmap_get(const HBitmap *hb, uint64_t item) 474 { 475 /* Compute position and bit in the last layer. */ 476 uint64_t pos = item >> hb->granularity; 477 unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1)); 478 assert(pos < hb->size); 479 480 return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0; 481 } 482 483 uint64_t hbitmap_serialization_align(const HBitmap *hb) 484 { 485 assert(hbitmap_is_serializable(hb)); 486 487 /* Require at least 64 bit granularity to be safe on both 64 bit and 32 bit 488 * hosts. */ 489 return UINT64_C(64) << hb->granularity; 490 } 491 492 /* Start should be aligned to serialization granularity, chunk size should be 493 * aligned to serialization granularity too, except for last chunk. 494 */ 495 static void serialization_chunk(const HBitmap *hb, 496 uint64_t start, uint64_t count, 497 unsigned long **first_el, uint64_t *el_count) 498 { 499 uint64_t last = start + count - 1; 500 uint64_t gran = hbitmap_serialization_align(hb); 501 502 assert((start & (gran - 1)) == 0); 503 assert((last >> hb->granularity) < hb->size); 504 if ((last >> hb->granularity) != hb->size - 1) { 505 assert((count & (gran - 1)) == 0); 506 } 507 508 start = (start >> hb->granularity) >> BITS_PER_LEVEL; 509 last = (last >> hb->granularity) >> BITS_PER_LEVEL; 510 511 *first_el = &hb->levels[HBITMAP_LEVELS - 1][start]; 512 *el_count = last - start + 1; 513 } 514 515 uint64_t hbitmap_serialization_size(const HBitmap *hb, 516 uint64_t start, uint64_t count) 517 { 518 uint64_t el_count; 519 unsigned long *cur; 520 521 if (!count) { 522 return 0; 523 } 524 serialization_chunk(hb, start, count, &cur, &el_count); 525 526 return el_count * sizeof(unsigned long); 527 } 528 529 void hbitmap_serialize_part(const HBitmap *hb, uint8_t *buf, 530 uint64_t start, uint64_t count) 531 { 532 uint64_t el_count; 533 unsigned long *cur, *end; 534 535 if (!count) { 536 return; 537 } 538 serialization_chunk(hb, start, count, &cur, &el_count); 539 end = cur + el_count; 540 541 while (cur != end) { 542 unsigned long el = 543 (BITS_PER_LONG == 32 ? cpu_to_le32(*cur) : cpu_to_le64(*cur)); 544 545 memcpy(buf, &el, sizeof(el)); 546 buf += sizeof(el); 547 cur++; 548 } 549 } 550 551 void hbitmap_deserialize_part(HBitmap *hb, uint8_t *buf, 552 uint64_t start, uint64_t count, 553 bool finish) 554 { 555 uint64_t el_count; 556 unsigned long *cur, *end; 557 558 if (!count) { 559 return; 560 } 561 serialization_chunk(hb, start, count, &cur, &el_count); 562 end = cur + el_count; 563 564 while (cur != end) { 565 memcpy(cur, buf, sizeof(*cur)); 566 567 if (BITS_PER_LONG == 32) { 568 le32_to_cpus((uint32_t *)cur); 569 } else { 570 le64_to_cpus((uint64_t *)cur); 571 } 572 573 buf += sizeof(unsigned long); 574 cur++; 575 } 576 if (finish) { 577 hbitmap_deserialize_finish(hb); 578 } 579 } 580 581 void hbitmap_deserialize_zeroes(HBitmap *hb, uint64_t start, uint64_t count, 582 bool finish) 583 { 584 uint64_t el_count; 585 unsigned long *first; 586 587 if (!count) { 588 return; 589 } 590 serialization_chunk(hb, start, count, &first, &el_count); 591 592 memset(first, 0, el_count * sizeof(unsigned long)); 593 if (finish) { 594 hbitmap_deserialize_finish(hb); 595 } 596 } 597 598 void hbitmap_deserialize_ones(HBitmap *hb, uint64_t start, uint64_t count, 599 bool finish) 600 { 601 uint64_t el_count; 602 unsigned long *first; 603 604 if (!count) { 605 return; 606 } 607 serialization_chunk(hb, start, count, &first, &el_count); 608 609 memset(first, 0xff, el_count * sizeof(unsigned long)); 610 if (finish) { 611 hbitmap_deserialize_finish(hb); 612 } 613 } 614 615 void hbitmap_deserialize_finish(HBitmap *bitmap) 616 { 617 int64_t i, size, prev_size; 618 int lev; 619 620 /* restore levels starting from penultimate to zero level, assuming 621 * that the last level is ok */ 622 size = MAX((bitmap->size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1); 623 for (lev = HBITMAP_LEVELS - 1; lev-- > 0; ) { 624 prev_size = size; 625 size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1); 626 memset(bitmap->levels[lev], 0, size * sizeof(unsigned long)); 627 628 for (i = 0; i < prev_size; ++i) { 629 if (bitmap->levels[lev + 1][i]) { 630 bitmap->levels[lev][i >> BITS_PER_LEVEL] |= 631 1UL << (i & (BITS_PER_LONG - 1)); 632 } 633 } 634 } 635 636 bitmap->levels[0][0] |= 1UL << (BITS_PER_LONG - 1); 637 bitmap->count = hb_count_between(bitmap, 0, bitmap->size - 1); 638 } 639 640 void hbitmap_free(HBitmap *hb) 641 { 642 unsigned i; 643 assert(!hb->meta); 644 for (i = HBITMAP_LEVELS; i-- > 0; ) { 645 g_free(hb->levels[i]); 646 } 647 g_free(hb); 648 } 649 650 HBitmap *hbitmap_alloc(uint64_t size, int granularity) 651 { 652 HBitmap *hb = g_new0(struct HBitmap, 1); 653 unsigned i; 654 655 assert(granularity >= 0 && granularity < 64); 656 size = (size + (1ULL << granularity) - 1) >> granularity; 657 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE)); 658 659 hb->size = size; 660 hb->granularity = granularity; 661 for (i = HBITMAP_LEVELS; i-- > 0; ) { 662 size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1); 663 hb->sizes[i] = size; 664 hb->levels[i] = g_new0(unsigned long, size); 665 } 666 667 /* We necessarily have free bits in level 0 due to the definition 668 * of HBITMAP_LEVELS, so use one for a sentinel. This speeds up 669 * hbitmap_iter_skip_words. 670 */ 671 assert(size == 1); 672 hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1); 673 return hb; 674 } 675 676 void hbitmap_truncate(HBitmap *hb, uint64_t size) 677 { 678 bool shrink; 679 unsigned i; 680 uint64_t num_elements = size; 681 uint64_t old; 682 683 /* Size comes in as logical elements, adjust for granularity. */ 684 size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity; 685 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE)); 686 shrink = size < hb->size; 687 688 /* bit sizes are identical; nothing to do. */ 689 if (size == hb->size) { 690 return; 691 } 692 693 /* If we're losing bits, let's clear those bits before we invalidate all of 694 * our invariants. This helps keep the bitcount consistent, and will prevent 695 * us from carrying around garbage bits beyond the end of the map. 696 */ 697 if (shrink) { 698 /* Don't clear partial granularity groups; 699 * start at the first full one. */ 700 uint64_t start = ROUND_UP(num_elements, UINT64_C(1) << hb->granularity); 701 uint64_t fix_count = (hb->size << hb->granularity) - start; 702 703 assert(fix_count); 704 hbitmap_reset(hb, start, fix_count); 705 } 706 707 hb->size = size; 708 for (i = HBITMAP_LEVELS; i-- > 0; ) { 709 size = MAX(BITS_TO_LONGS(size), 1); 710 if (hb->sizes[i] == size) { 711 break; 712 } 713 old = hb->sizes[i]; 714 hb->sizes[i] = size; 715 hb->levels[i] = g_realloc(hb->levels[i], size * sizeof(unsigned long)); 716 if (!shrink) { 717 memset(&hb->levels[i][old], 0x00, 718 (size - old) * sizeof(*hb->levels[i])); 719 } 720 } 721 if (hb->meta) { 722 hbitmap_truncate(hb->meta, hb->size << hb->granularity); 723 } 724 } 725 726 bool hbitmap_can_merge(const HBitmap *a, const HBitmap *b) 727 { 728 return (a->size == b->size) && (a->granularity == b->granularity); 729 } 730 731 /** 732 * Given HBitmaps A and B, let A := A (BITOR) B. 733 * Bitmap B will not be modified. 734 * 735 * @return true if the merge was successful, 736 * false if it was not attempted. 737 */ 738 bool hbitmap_merge(const HBitmap *a, const HBitmap *b, HBitmap *result) 739 { 740 int i; 741 uint64_t j; 742 743 if (!hbitmap_can_merge(a, b) || !hbitmap_can_merge(a, result)) { 744 return false; 745 } 746 assert(hbitmap_can_merge(b, result)); 747 748 if (hbitmap_count(b) == 0) { 749 return true; 750 } 751 752 /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant. 753 * It may be possible to improve running times for sparsely populated maps 754 * by using hbitmap_iter_next, but this is suboptimal for dense maps. 755 */ 756 for (i = HBITMAP_LEVELS - 1; i >= 0; i--) { 757 for (j = 0; j < a->sizes[i]; j++) { 758 result->levels[i][j] = a->levels[i][j] | b->levels[i][j]; 759 } 760 } 761 762 /* Recompute the dirty count */ 763 result->count = hb_count_between(result, 0, result->size - 1); 764 765 return true; 766 } 767 768 HBitmap *hbitmap_create_meta(HBitmap *hb, int chunk_size) 769 { 770 assert(!(chunk_size & (chunk_size - 1))); 771 assert(!hb->meta); 772 hb->meta = hbitmap_alloc(hb->size << hb->granularity, 773 hb->granularity + ctz32(chunk_size)); 774 return hb->meta; 775 } 776 777 void hbitmap_free_meta(HBitmap *hb) 778 { 779 assert(hb->meta); 780 hbitmap_free(hb->meta); 781 hb->meta = NULL; 782 } 783 784 char *hbitmap_sha256(const HBitmap *bitmap, Error **errp) 785 { 786 size_t size = bitmap->sizes[HBITMAP_LEVELS - 1] * sizeof(unsigned long); 787 char *data = (char *)bitmap->levels[HBITMAP_LEVELS - 1]; 788 char *hash = NULL; 789 qcrypto_hash_digest(QCRYPTO_HASH_ALG_SHA256, data, size, &hash, errp); 790 791 return hash; 792 } 793