xref: /openbmc/qemu/util/hbitmap.c (revision dc5bd18f)
1 /*
2  * Hierarchical Bitmap Data Type
3  *
4  * Copyright Red Hat, Inc., 2012
5  *
6  * Author: Paolo Bonzini <pbonzini@redhat.com>
7  *
8  * This work is licensed under the terms of the GNU GPL, version 2 or
9  * later.  See the COPYING file in the top-level directory.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/hbitmap.h"
14 #include "qemu/host-utils.h"
15 #include "trace.h"
16 #include "crypto/hash.h"
17 
18 /* HBitmaps provides an array of bits.  The bits are stored as usual in an
19  * array of unsigned longs, but HBitmap is also optimized to provide fast
20  * iteration over set bits; going from one bit to the next is O(logB n)
21  * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough
22  * that the number of levels is in fact fixed.
23  *
24  * In order to do this, it stacks multiple bitmaps with progressively coarser
25  * granularity; in all levels except the last, bit N is set iff the N-th
26  * unsigned long is nonzero in the immediately next level.  When iteration
27  * completes on the last level it can examine the 2nd-last level to quickly
28  * skip entire words, and even do so recursively to skip blocks of 64 words or
29  * powers thereof (32 on 32-bit machines).
30  *
31  * Given an index in the bitmap, it can be split in group of bits like
32  * this (for the 64-bit case):
33  *
34  *   bits 0-57 => word in the last bitmap     | bits 58-63 => bit in the word
35  *   bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word
36  *   bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word
37  *
38  * So it is easy to move up simply by shifting the index right by
39  * log2(BITS_PER_LONG) bits.  To move down, you shift the index left
40  * similarly, and add the word index within the group.  Iteration uses
41  * ffs (find first set bit) to find the next word to examine; this
42  * operation can be done in constant time in most current architectures.
43  *
44  * Setting or clearing a range of m bits on all levels, the work to perform
45  * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap.
46  *
47  * When iterating on a bitmap, each bit (on any level) is only visited
48  * once.  Hence, The total cost of visiting a bitmap with m bits in it is
49  * the number of bits that are set in all bitmaps.  Unless the bitmap is
50  * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized
51  * cost of advancing from one bit to the next is usually constant (worst case
52  * O(logB n) as in the non-amortized complexity).
53  */
54 
55 struct HBitmap {
56     /* Number of total bits in the bottom level.  */
57     uint64_t size;
58 
59     /* Number of set bits in the bottom level.  */
60     uint64_t count;
61 
62     /* A scaling factor.  Given a granularity of G, each bit in the bitmap will
63      * will actually represent a group of 2^G elements.  Each operation on a
64      * range of bits first rounds the bits to determine which group they land
65      * in, and then affect the entire page; iteration will only visit the first
66      * bit of each group.  Here is an example of operations in a size-16,
67      * granularity-1 HBitmap:
68      *
69      *    initial state            00000000
70      *    set(start=0, count=9)    11111000 (iter: 0, 2, 4, 6, 8)
71      *    reset(start=1, count=3)  00111000 (iter: 4, 6, 8)
72      *    set(start=9, count=2)    00111100 (iter: 4, 6, 8, 10)
73      *    reset(start=5, count=5)  00000000
74      *
75      * From an implementation point of view, when setting or resetting bits,
76      * the bitmap will scale bit numbers right by this amount of bits.  When
77      * iterating, the bitmap will scale bit numbers left by this amount of
78      * bits.
79      */
80     int granularity;
81 
82     /* A meta dirty bitmap to track the dirtiness of bits in this HBitmap. */
83     HBitmap *meta;
84 
85     /* A number of progressively less coarse bitmaps (i.e. level 0 is the
86      * coarsest).  Each bit in level N represents a word in level N+1 that
87      * has a set bit, except the last level where each bit represents the
88      * actual bitmap.
89      *
90      * Note that all bitmaps have the same number of levels.  Even a 1-bit
91      * bitmap will still allocate HBITMAP_LEVELS arrays.
92      */
93     unsigned long *levels[HBITMAP_LEVELS];
94 
95     /* The length of each levels[] array. */
96     uint64_t sizes[HBITMAP_LEVELS];
97 };
98 
99 /* Advance hbi to the next nonzero word and return it.  hbi->pos
100  * is updated.  Returns zero if we reach the end of the bitmap.
101  */
102 unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi)
103 {
104     size_t pos = hbi->pos;
105     const HBitmap *hb = hbi->hb;
106     unsigned i = HBITMAP_LEVELS - 1;
107 
108     unsigned long cur;
109     do {
110         i--;
111         pos >>= BITS_PER_LEVEL;
112         cur = hbi->cur[i] & hb->levels[i][pos];
113     } while (cur == 0);
114 
115     /* Check for end of iteration.  We always use fewer than BITS_PER_LONG
116      * bits in the level 0 bitmap; thus we can repurpose the most significant
117      * bit as a sentinel.  The sentinel is set in hbitmap_alloc and ensures
118      * that the above loop ends even without an explicit check on i.
119      */
120 
121     if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) {
122         return 0;
123     }
124     for (; i < HBITMAP_LEVELS - 1; i++) {
125         /* Shift back pos to the left, matching the right shifts above.
126          * The index of this word's least significant set bit provides
127          * the low-order bits.
128          */
129         assert(cur);
130         pos = (pos << BITS_PER_LEVEL) + ctzl(cur);
131         hbi->cur[i] = cur & (cur - 1);
132 
133         /* Set up next level for iteration.  */
134         cur = hb->levels[i + 1][pos];
135     }
136 
137     hbi->pos = pos;
138     trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur);
139 
140     assert(cur);
141     return cur;
142 }
143 
144 int64_t hbitmap_iter_next(HBitmapIter *hbi)
145 {
146     unsigned long cur = hbi->cur[HBITMAP_LEVELS - 1] &
147             hbi->hb->levels[HBITMAP_LEVELS - 1][hbi->pos];
148     int64_t item;
149 
150     if (cur == 0) {
151         cur = hbitmap_iter_skip_words(hbi);
152         if (cur == 0) {
153             return -1;
154         }
155     }
156 
157     /* The next call will resume work from the next bit.  */
158     hbi->cur[HBITMAP_LEVELS - 1] = cur & (cur - 1);
159     item = ((uint64_t)hbi->pos << BITS_PER_LEVEL) + ctzl(cur);
160 
161     return item << hbi->granularity;
162 }
163 
164 void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first)
165 {
166     unsigned i, bit;
167     uint64_t pos;
168 
169     hbi->hb = hb;
170     pos = first >> hb->granularity;
171     assert(pos < hb->size);
172     hbi->pos = pos >> BITS_PER_LEVEL;
173     hbi->granularity = hb->granularity;
174 
175     for (i = HBITMAP_LEVELS; i-- > 0; ) {
176         bit = pos & (BITS_PER_LONG - 1);
177         pos >>= BITS_PER_LEVEL;
178 
179         /* Drop bits representing items before first.  */
180         hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1);
181 
182         /* We have already added level i+1, so the lowest set bit has
183          * been processed.  Clear it.
184          */
185         if (i != HBITMAP_LEVELS - 1) {
186             hbi->cur[i] &= ~(1UL << bit);
187         }
188     }
189 }
190 
191 int64_t hbitmap_next_zero(const HBitmap *hb, uint64_t start)
192 {
193     size_t pos = (start >> hb->granularity) >> BITS_PER_LEVEL;
194     unsigned long *last_lev = hb->levels[HBITMAP_LEVELS - 1];
195     uint64_t sz = hb->sizes[HBITMAP_LEVELS - 1];
196     unsigned long cur = last_lev[pos];
197     unsigned start_bit_offset =
198             (start >> hb->granularity) & (BITS_PER_LONG - 1);
199     int64_t res;
200 
201     cur |= (1UL << start_bit_offset) - 1;
202     assert((start >> hb->granularity) < hb->size);
203 
204     if (cur == (unsigned long)-1) {
205         do {
206             pos++;
207         } while (pos < sz && last_lev[pos] == (unsigned long)-1);
208 
209         if (pos >= sz) {
210             return -1;
211         }
212 
213         cur = last_lev[pos];
214     }
215 
216     res = (pos << BITS_PER_LEVEL) + ctol(cur);
217     if (res >= hb->size) {
218         return -1;
219     }
220 
221     res = res << hb->granularity;
222     if (res < start) {
223         assert(((start - res) >> hb->granularity) == 0);
224         return start;
225     }
226 
227     return res;
228 }
229 
230 bool hbitmap_empty(const HBitmap *hb)
231 {
232     return hb->count == 0;
233 }
234 
235 int hbitmap_granularity(const HBitmap *hb)
236 {
237     return hb->granularity;
238 }
239 
240 uint64_t hbitmap_count(const HBitmap *hb)
241 {
242     return hb->count << hb->granularity;
243 }
244 
245 /* Count the number of set bits between start and end, not accounting for
246  * the granularity.  Also an example of how to use hbitmap_iter_next_word.
247  */
248 static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last)
249 {
250     HBitmapIter hbi;
251     uint64_t count = 0;
252     uint64_t end = last + 1;
253     unsigned long cur;
254     size_t pos;
255 
256     hbitmap_iter_init(&hbi, hb, start << hb->granularity);
257     for (;;) {
258         pos = hbitmap_iter_next_word(&hbi, &cur);
259         if (pos >= (end >> BITS_PER_LEVEL)) {
260             break;
261         }
262         count += ctpopl(cur);
263     }
264 
265     if (pos == (end >> BITS_PER_LEVEL)) {
266         /* Drop bits representing the END-th and subsequent items.  */
267         int bit = end & (BITS_PER_LONG - 1);
268         cur &= (1UL << bit) - 1;
269         count += ctpopl(cur);
270     }
271 
272     return count;
273 }
274 
275 /* Setting starts at the last layer and propagates up if an element
276  * changes.
277  */
278 static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last)
279 {
280     unsigned long mask;
281     unsigned long old;
282 
283     assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
284     assert(start <= last);
285 
286     mask = 2UL << (last & (BITS_PER_LONG - 1));
287     mask -= 1UL << (start & (BITS_PER_LONG - 1));
288     old = *elem;
289     *elem |= mask;
290     return old != *elem;
291 }
292 
293 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
294  * Returns true if at least one bit is changed. */
295 static bool hb_set_between(HBitmap *hb, int level, uint64_t start,
296                            uint64_t last)
297 {
298     size_t pos = start >> BITS_PER_LEVEL;
299     size_t lastpos = last >> BITS_PER_LEVEL;
300     bool changed = false;
301     size_t i;
302 
303     i = pos;
304     if (i < lastpos) {
305         uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
306         changed |= hb_set_elem(&hb->levels[level][i], start, next - 1);
307         for (;;) {
308             start = next;
309             next += BITS_PER_LONG;
310             if (++i == lastpos) {
311                 break;
312             }
313             changed |= (hb->levels[level][i] == 0);
314             hb->levels[level][i] = ~0UL;
315         }
316     }
317     changed |= hb_set_elem(&hb->levels[level][i], start, last);
318 
319     /* If there was any change in this layer, we may have to update
320      * the one above.
321      */
322     if (level > 0 && changed) {
323         hb_set_between(hb, level - 1, pos, lastpos);
324     }
325     return changed;
326 }
327 
328 void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count)
329 {
330     /* Compute range in the last layer.  */
331     uint64_t first, n;
332     uint64_t last = start + count - 1;
333 
334     trace_hbitmap_set(hb, start, count,
335                       start >> hb->granularity, last >> hb->granularity);
336 
337     first = start >> hb->granularity;
338     last >>= hb->granularity;
339     assert(last < hb->size);
340     n = last - first + 1;
341 
342     hb->count += n - hb_count_between(hb, first, last);
343     if (hb_set_between(hb, HBITMAP_LEVELS - 1, first, last) &&
344         hb->meta) {
345         hbitmap_set(hb->meta, start, count);
346     }
347 }
348 
349 /* Resetting works the other way round: propagate up if the new
350  * value is zero.
351  */
352 static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last)
353 {
354     unsigned long mask;
355     bool blanked;
356 
357     assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
358     assert(start <= last);
359 
360     mask = 2UL << (last & (BITS_PER_LONG - 1));
361     mask -= 1UL << (start & (BITS_PER_LONG - 1));
362     blanked = *elem != 0 && ((*elem & ~mask) == 0);
363     *elem &= ~mask;
364     return blanked;
365 }
366 
367 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
368  * Returns true if at least one bit is changed. */
369 static bool hb_reset_between(HBitmap *hb, int level, uint64_t start,
370                              uint64_t last)
371 {
372     size_t pos = start >> BITS_PER_LEVEL;
373     size_t lastpos = last >> BITS_PER_LEVEL;
374     bool changed = false;
375     size_t i;
376 
377     i = pos;
378     if (i < lastpos) {
379         uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
380 
381         /* Here we need a more complex test than when setting bits.  Even if
382          * something was changed, we must not blank bits in the upper level
383          * unless the lower-level word became entirely zero.  So, remove pos
384          * from the upper-level range if bits remain set.
385          */
386         if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) {
387             changed = true;
388         } else {
389             pos++;
390         }
391 
392         for (;;) {
393             start = next;
394             next += BITS_PER_LONG;
395             if (++i == lastpos) {
396                 break;
397             }
398             changed |= (hb->levels[level][i] != 0);
399             hb->levels[level][i] = 0UL;
400         }
401     }
402 
403     /* Same as above, this time for lastpos.  */
404     if (hb_reset_elem(&hb->levels[level][i], start, last)) {
405         changed = true;
406     } else {
407         lastpos--;
408     }
409 
410     if (level > 0 && changed) {
411         hb_reset_between(hb, level - 1, pos, lastpos);
412     }
413 
414     return changed;
415 
416 }
417 
418 void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count)
419 {
420     /* Compute range in the last layer.  */
421     uint64_t first;
422     uint64_t last = start + count - 1;
423 
424     trace_hbitmap_reset(hb, start, count,
425                         start >> hb->granularity, last >> hb->granularity);
426 
427     first = start >> hb->granularity;
428     last >>= hb->granularity;
429     assert(last < hb->size);
430 
431     hb->count -= hb_count_between(hb, first, last);
432     if (hb_reset_between(hb, HBITMAP_LEVELS - 1, first, last) &&
433         hb->meta) {
434         hbitmap_set(hb->meta, start, count);
435     }
436 }
437 
438 void hbitmap_reset_all(HBitmap *hb)
439 {
440     unsigned int i;
441 
442     /* Same as hbitmap_alloc() except for memset() instead of malloc() */
443     for (i = HBITMAP_LEVELS; --i >= 1; ) {
444         memset(hb->levels[i], 0, hb->sizes[i] * sizeof(unsigned long));
445     }
446 
447     hb->levels[0][0] = 1UL << (BITS_PER_LONG - 1);
448     hb->count = 0;
449 }
450 
451 bool hbitmap_is_serializable(const HBitmap *hb)
452 {
453     /* Every serialized chunk must be aligned to 64 bits so that endianness
454      * requirements can be fulfilled on both 64 bit and 32 bit hosts.
455      * We have hbitmap_serialization_align() which converts this
456      * alignment requirement from bitmap bits to items covered (e.g. sectors).
457      * That value is:
458      *    64 << hb->granularity
459      * Since this value must not exceed UINT64_MAX, hb->granularity must be
460      * less than 58 (== 64 - 6, where 6 is ld(64), i.e. 1 << 6 == 64).
461      *
462      * In order for hbitmap_serialization_align() to always return a
463      * meaningful value, bitmaps that are to be serialized must have a
464      * granularity of less than 58. */
465 
466     return hb->granularity < 58;
467 }
468 
469 bool hbitmap_get(const HBitmap *hb, uint64_t item)
470 {
471     /* Compute position and bit in the last layer.  */
472     uint64_t pos = item >> hb->granularity;
473     unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1));
474     assert(pos < hb->size);
475 
476     return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0;
477 }
478 
479 uint64_t hbitmap_serialization_align(const HBitmap *hb)
480 {
481     assert(hbitmap_is_serializable(hb));
482 
483     /* Require at least 64 bit granularity to be safe on both 64 bit and 32 bit
484      * hosts. */
485     return UINT64_C(64) << hb->granularity;
486 }
487 
488 /* Start should be aligned to serialization granularity, chunk size should be
489  * aligned to serialization granularity too, except for last chunk.
490  */
491 static void serialization_chunk(const HBitmap *hb,
492                                 uint64_t start, uint64_t count,
493                                 unsigned long **first_el, uint64_t *el_count)
494 {
495     uint64_t last = start + count - 1;
496     uint64_t gran = hbitmap_serialization_align(hb);
497 
498     assert((start & (gran - 1)) == 0);
499     assert((last >> hb->granularity) < hb->size);
500     if ((last >> hb->granularity) != hb->size - 1) {
501         assert((count & (gran - 1)) == 0);
502     }
503 
504     start = (start >> hb->granularity) >> BITS_PER_LEVEL;
505     last = (last >> hb->granularity) >> BITS_PER_LEVEL;
506 
507     *first_el = &hb->levels[HBITMAP_LEVELS - 1][start];
508     *el_count = last - start + 1;
509 }
510 
511 uint64_t hbitmap_serialization_size(const HBitmap *hb,
512                                     uint64_t start, uint64_t count)
513 {
514     uint64_t el_count;
515     unsigned long *cur;
516 
517     if (!count) {
518         return 0;
519     }
520     serialization_chunk(hb, start, count, &cur, &el_count);
521 
522     return el_count * sizeof(unsigned long);
523 }
524 
525 void hbitmap_serialize_part(const HBitmap *hb, uint8_t *buf,
526                             uint64_t start, uint64_t count)
527 {
528     uint64_t el_count;
529     unsigned long *cur, *end;
530 
531     if (!count) {
532         return;
533     }
534     serialization_chunk(hb, start, count, &cur, &el_count);
535     end = cur + el_count;
536 
537     while (cur != end) {
538         unsigned long el =
539             (BITS_PER_LONG == 32 ? cpu_to_le32(*cur) : cpu_to_le64(*cur));
540 
541         memcpy(buf, &el, sizeof(el));
542         buf += sizeof(el);
543         cur++;
544     }
545 }
546 
547 void hbitmap_deserialize_part(HBitmap *hb, uint8_t *buf,
548                               uint64_t start, uint64_t count,
549                               bool finish)
550 {
551     uint64_t el_count;
552     unsigned long *cur, *end;
553 
554     if (!count) {
555         return;
556     }
557     serialization_chunk(hb, start, count, &cur, &el_count);
558     end = cur + el_count;
559 
560     while (cur != end) {
561         memcpy(cur, buf, sizeof(*cur));
562 
563         if (BITS_PER_LONG == 32) {
564             le32_to_cpus((uint32_t *)cur);
565         } else {
566             le64_to_cpus((uint64_t *)cur);
567         }
568 
569         buf += sizeof(unsigned long);
570         cur++;
571     }
572     if (finish) {
573         hbitmap_deserialize_finish(hb);
574     }
575 }
576 
577 void hbitmap_deserialize_zeroes(HBitmap *hb, uint64_t start, uint64_t count,
578                                 bool finish)
579 {
580     uint64_t el_count;
581     unsigned long *first;
582 
583     if (!count) {
584         return;
585     }
586     serialization_chunk(hb, start, count, &first, &el_count);
587 
588     memset(first, 0, el_count * sizeof(unsigned long));
589     if (finish) {
590         hbitmap_deserialize_finish(hb);
591     }
592 }
593 
594 void hbitmap_deserialize_ones(HBitmap *hb, uint64_t start, uint64_t count,
595                               bool finish)
596 {
597     uint64_t el_count;
598     unsigned long *first;
599 
600     if (!count) {
601         return;
602     }
603     serialization_chunk(hb, start, count, &first, &el_count);
604 
605     memset(first, 0xff, el_count * sizeof(unsigned long));
606     if (finish) {
607         hbitmap_deserialize_finish(hb);
608     }
609 }
610 
611 void hbitmap_deserialize_finish(HBitmap *bitmap)
612 {
613     int64_t i, size, prev_size;
614     int lev;
615 
616     /* restore levels starting from penultimate to zero level, assuming
617      * that the last level is ok */
618     size = MAX((bitmap->size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
619     for (lev = HBITMAP_LEVELS - 1; lev-- > 0; ) {
620         prev_size = size;
621         size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
622         memset(bitmap->levels[lev], 0, size * sizeof(unsigned long));
623 
624         for (i = 0; i < prev_size; ++i) {
625             if (bitmap->levels[lev + 1][i]) {
626                 bitmap->levels[lev][i >> BITS_PER_LEVEL] |=
627                     1UL << (i & (BITS_PER_LONG - 1));
628             }
629         }
630     }
631 
632     bitmap->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
633     bitmap->count = hb_count_between(bitmap, 0, bitmap->size - 1);
634 }
635 
636 void hbitmap_free(HBitmap *hb)
637 {
638     unsigned i;
639     assert(!hb->meta);
640     for (i = HBITMAP_LEVELS; i-- > 0; ) {
641         g_free(hb->levels[i]);
642     }
643     g_free(hb);
644 }
645 
646 HBitmap *hbitmap_alloc(uint64_t size, int granularity)
647 {
648     HBitmap *hb = g_new0(struct HBitmap, 1);
649     unsigned i;
650 
651     assert(granularity >= 0 && granularity < 64);
652     size = (size + (1ULL << granularity) - 1) >> granularity;
653     assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
654 
655     hb->size = size;
656     hb->granularity = granularity;
657     for (i = HBITMAP_LEVELS; i-- > 0; ) {
658         size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
659         hb->sizes[i] = size;
660         hb->levels[i] = g_new0(unsigned long, size);
661     }
662 
663     /* We necessarily have free bits in level 0 due to the definition
664      * of HBITMAP_LEVELS, so use one for a sentinel.  This speeds up
665      * hbitmap_iter_skip_words.
666      */
667     assert(size == 1);
668     hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
669     return hb;
670 }
671 
672 void hbitmap_truncate(HBitmap *hb, uint64_t size)
673 {
674     bool shrink;
675     unsigned i;
676     uint64_t num_elements = size;
677     uint64_t old;
678 
679     /* Size comes in as logical elements, adjust for granularity. */
680     size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity;
681     assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
682     shrink = size < hb->size;
683 
684     /* bit sizes are identical; nothing to do. */
685     if (size == hb->size) {
686         return;
687     }
688 
689     /* If we're losing bits, let's clear those bits before we invalidate all of
690      * our invariants. This helps keep the bitcount consistent, and will prevent
691      * us from carrying around garbage bits beyond the end of the map.
692      */
693     if (shrink) {
694         /* Don't clear partial granularity groups;
695          * start at the first full one. */
696         uint64_t start = ROUND_UP(num_elements, UINT64_C(1) << hb->granularity);
697         uint64_t fix_count = (hb->size << hb->granularity) - start;
698 
699         assert(fix_count);
700         hbitmap_reset(hb, start, fix_count);
701     }
702 
703     hb->size = size;
704     for (i = HBITMAP_LEVELS; i-- > 0; ) {
705         size = MAX(BITS_TO_LONGS(size), 1);
706         if (hb->sizes[i] == size) {
707             break;
708         }
709         old = hb->sizes[i];
710         hb->sizes[i] = size;
711         hb->levels[i] = g_realloc(hb->levels[i], size * sizeof(unsigned long));
712         if (!shrink) {
713             memset(&hb->levels[i][old], 0x00,
714                    (size - old) * sizeof(*hb->levels[i]));
715         }
716     }
717     if (hb->meta) {
718         hbitmap_truncate(hb->meta, hb->size << hb->granularity);
719     }
720 }
721 
722 
723 /**
724  * Given HBitmaps A and B, let A := A (BITOR) B.
725  * Bitmap B will not be modified.
726  *
727  * @return true if the merge was successful,
728  *         false if it was not attempted.
729  */
730 bool hbitmap_merge(HBitmap *a, const HBitmap *b)
731 {
732     int i;
733     uint64_t j;
734 
735     if ((a->size != b->size) || (a->granularity != b->granularity)) {
736         return false;
737     }
738 
739     if (hbitmap_count(b) == 0) {
740         return true;
741     }
742 
743     /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant.
744      * It may be possible to improve running times for sparsely populated maps
745      * by using hbitmap_iter_next, but this is suboptimal for dense maps.
746      */
747     for (i = HBITMAP_LEVELS - 1; i >= 0; i--) {
748         for (j = 0; j < a->sizes[i]; j++) {
749             a->levels[i][j] |= b->levels[i][j];
750         }
751     }
752 
753     return true;
754 }
755 
756 HBitmap *hbitmap_create_meta(HBitmap *hb, int chunk_size)
757 {
758     assert(!(chunk_size & (chunk_size - 1)));
759     assert(!hb->meta);
760     hb->meta = hbitmap_alloc(hb->size << hb->granularity,
761                              hb->granularity + ctz32(chunk_size));
762     return hb->meta;
763 }
764 
765 void hbitmap_free_meta(HBitmap *hb)
766 {
767     assert(hb->meta);
768     hbitmap_free(hb->meta);
769     hb->meta = NULL;
770 }
771 
772 char *hbitmap_sha256(const HBitmap *bitmap, Error **errp)
773 {
774     size_t size = bitmap->sizes[HBITMAP_LEVELS - 1] * sizeof(unsigned long);
775     char *data = (char *)bitmap->levels[HBITMAP_LEVELS - 1];
776     char *hash = NULL;
777     qcrypto_hash_digest(QCRYPTO_HASH_ALG_SHA256, data, size, &hash, errp);
778 
779     return hash;
780 }
781