1 /* 2 * Hierarchical Bitmap Data Type 3 * 4 * Copyright Red Hat, Inc., 2012 5 * 6 * Author: Paolo Bonzini <pbonzini@redhat.com> 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2 or 9 * later. See the COPYING file in the top-level directory. 10 */ 11 12 #include "qemu/osdep.h" 13 #include "qemu/hbitmap.h" 14 #include "qemu/host-utils.h" 15 #include "trace.h" 16 #include "crypto/hash.h" 17 18 /* HBitmaps provides an array of bits. The bits are stored as usual in an 19 * array of unsigned longs, but HBitmap is also optimized to provide fast 20 * iteration over set bits; going from one bit to the next is O(logB n) 21 * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough 22 * that the number of levels is in fact fixed. 23 * 24 * In order to do this, it stacks multiple bitmaps with progressively coarser 25 * granularity; in all levels except the last, bit N is set iff the N-th 26 * unsigned long is nonzero in the immediately next level. When iteration 27 * completes on the last level it can examine the 2nd-last level to quickly 28 * skip entire words, and even do so recursively to skip blocks of 64 words or 29 * powers thereof (32 on 32-bit machines). 30 * 31 * Given an index in the bitmap, it can be split in group of bits like 32 * this (for the 64-bit case): 33 * 34 * bits 0-57 => word in the last bitmap | bits 58-63 => bit in the word 35 * bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word 36 * bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word 37 * 38 * So it is easy to move up simply by shifting the index right by 39 * log2(BITS_PER_LONG) bits. To move down, you shift the index left 40 * similarly, and add the word index within the group. Iteration uses 41 * ffs (find first set bit) to find the next word to examine; this 42 * operation can be done in constant time in most current architectures. 43 * 44 * Setting or clearing a range of m bits on all levels, the work to perform 45 * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap. 46 * 47 * When iterating on a bitmap, each bit (on any level) is only visited 48 * once. Hence, The total cost of visiting a bitmap with m bits in it is 49 * the number of bits that are set in all bitmaps. Unless the bitmap is 50 * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized 51 * cost of advancing from one bit to the next is usually constant (worst case 52 * O(logB n) as in the non-amortized complexity). 53 */ 54 55 struct HBitmap { 56 /* Number of total bits in the bottom level. */ 57 uint64_t size; 58 59 /* Number of set bits in the bottom level. */ 60 uint64_t count; 61 62 /* A scaling factor. Given a granularity of G, each bit in the bitmap will 63 * will actually represent a group of 2^G elements. Each operation on a 64 * range of bits first rounds the bits to determine which group they land 65 * in, and then affect the entire page; iteration will only visit the first 66 * bit of each group. Here is an example of operations in a size-16, 67 * granularity-1 HBitmap: 68 * 69 * initial state 00000000 70 * set(start=0, count=9) 11111000 (iter: 0, 2, 4, 6, 8) 71 * reset(start=1, count=3) 00111000 (iter: 4, 6, 8) 72 * set(start=9, count=2) 00111100 (iter: 4, 6, 8, 10) 73 * reset(start=5, count=5) 00000000 74 * 75 * From an implementation point of view, when setting or resetting bits, 76 * the bitmap will scale bit numbers right by this amount of bits. When 77 * iterating, the bitmap will scale bit numbers left by this amount of 78 * bits. 79 */ 80 int granularity; 81 82 /* A meta dirty bitmap to track the dirtiness of bits in this HBitmap. */ 83 HBitmap *meta; 84 85 /* A number of progressively less coarse bitmaps (i.e. level 0 is the 86 * coarsest). Each bit in level N represents a word in level N+1 that 87 * has a set bit, except the last level where each bit represents the 88 * actual bitmap. 89 * 90 * Note that all bitmaps have the same number of levels. Even a 1-bit 91 * bitmap will still allocate HBITMAP_LEVELS arrays. 92 */ 93 unsigned long *levels[HBITMAP_LEVELS]; 94 95 /* The length of each levels[] array. */ 96 uint64_t sizes[HBITMAP_LEVELS]; 97 }; 98 99 /* Advance hbi to the next nonzero word and return it. hbi->pos 100 * is updated. Returns zero if we reach the end of the bitmap. 101 */ 102 unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi) 103 { 104 size_t pos = hbi->pos; 105 const HBitmap *hb = hbi->hb; 106 unsigned i = HBITMAP_LEVELS - 1; 107 108 unsigned long cur; 109 do { 110 i--; 111 pos >>= BITS_PER_LEVEL; 112 cur = hbi->cur[i] & hb->levels[i][pos]; 113 } while (cur == 0); 114 115 /* Check for end of iteration. We always use fewer than BITS_PER_LONG 116 * bits in the level 0 bitmap; thus we can repurpose the most significant 117 * bit as a sentinel. The sentinel is set in hbitmap_alloc and ensures 118 * that the above loop ends even without an explicit check on i. 119 */ 120 121 if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) { 122 return 0; 123 } 124 for (; i < HBITMAP_LEVELS - 1; i++) { 125 /* Shift back pos to the left, matching the right shifts above. 126 * The index of this word's least significant set bit provides 127 * the low-order bits. 128 */ 129 assert(cur); 130 pos = (pos << BITS_PER_LEVEL) + ctzl(cur); 131 hbi->cur[i] = cur & (cur - 1); 132 133 /* Set up next level for iteration. */ 134 cur = hb->levels[i + 1][pos]; 135 } 136 137 hbi->pos = pos; 138 trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur); 139 140 assert(cur); 141 return cur; 142 } 143 144 int64_t hbitmap_iter_next(HBitmapIter *hbi) 145 { 146 unsigned long cur = hbi->cur[HBITMAP_LEVELS - 1] & 147 hbi->hb->levels[HBITMAP_LEVELS - 1][hbi->pos]; 148 int64_t item; 149 150 if (cur == 0) { 151 cur = hbitmap_iter_skip_words(hbi); 152 if (cur == 0) { 153 return -1; 154 } 155 } 156 157 /* The next call will resume work from the next bit. */ 158 hbi->cur[HBITMAP_LEVELS - 1] = cur & (cur - 1); 159 item = ((uint64_t)hbi->pos << BITS_PER_LEVEL) + ctzl(cur); 160 161 return item << hbi->granularity; 162 } 163 164 void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first) 165 { 166 unsigned i, bit; 167 uint64_t pos; 168 169 hbi->hb = hb; 170 pos = first >> hb->granularity; 171 assert(pos < hb->size); 172 hbi->pos = pos >> BITS_PER_LEVEL; 173 hbi->granularity = hb->granularity; 174 175 for (i = HBITMAP_LEVELS; i-- > 0; ) { 176 bit = pos & (BITS_PER_LONG - 1); 177 pos >>= BITS_PER_LEVEL; 178 179 /* Drop bits representing items before first. */ 180 hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1); 181 182 /* We have already added level i+1, so the lowest set bit has 183 * been processed. Clear it. 184 */ 185 if (i != HBITMAP_LEVELS - 1) { 186 hbi->cur[i] &= ~(1UL << bit); 187 } 188 } 189 } 190 191 int64_t hbitmap_next_zero(const HBitmap *hb, uint64_t start) 192 { 193 size_t pos = (start >> hb->granularity) >> BITS_PER_LEVEL; 194 unsigned long *last_lev = hb->levels[HBITMAP_LEVELS - 1]; 195 uint64_t sz = hb->sizes[HBITMAP_LEVELS - 1]; 196 unsigned long cur = last_lev[pos]; 197 unsigned start_bit_offset = 198 (start >> hb->granularity) & (BITS_PER_LONG - 1); 199 int64_t res; 200 201 cur |= (1UL << start_bit_offset) - 1; 202 assert((start >> hb->granularity) < hb->size); 203 204 if (cur == (unsigned long)-1) { 205 do { 206 pos++; 207 } while (pos < sz && last_lev[pos] == (unsigned long)-1); 208 209 if (pos >= sz) { 210 return -1; 211 } 212 213 cur = last_lev[pos]; 214 } 215 216 res = (pos << BITS_PER_LEVEL) + ctol(cur); 217 if (res >= hb->size) { 218 return -1; 219 } 220 221 res = res << hb->granularity; 222 if (res < start) { 223 assert(((start - res) >> hb->granularity) == 0); 224 return start; 225 } 226 227 return res; 228 } 229 230 bool hbitmap_empty(const HBitmap *hb) 231 { 232 return hb->count == 0; 233 } 234 235 int hbitmap_granularity(const HBitmap *hb) 236 { 237 return hb->granularity; 238 } 239 240 uint64_t hbitmap_count(const HBitmap *hb) 241 { 242 return hb->count << hb->granularity; 243 } 244 245 /* Count the number of set bits between start and end, not accounting for 246 * the granularity. Also an example of how to use hbitmap_iter_next_word. 247 */ 248 static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last) 249 { 250 HBitmapIter hbi; 251 uint64_t count = 0; 252 uint64_t end = last + 1; 253 unsigned long cur; 254 size_t pos; 255 256 hbitmap_iter_init(&hbi, hb, start << hb->granularity); 257 for (;;) { 258 pos = hbitmap_iter_next_word(&hbi, &cur); 259 if (pos >= (end >> BITS_PER_LEVEL)) { 260 break; 261 } 262 count += ctpopl(cur); 263 } 264 265 if (pos == (end >> BITS_PER_LEVEL)) { 266 /* Drop bits representing the END-th and subsequent items. */ 267 int bit = end & (BITS_PER_LONG - 1); 268 cur &= (1UL << bit) - 1; 269 count += ctpopl(cur); 270 } 271 272 return count; 273 } 274 275 /* Setting starts at the last layer and propagates up if an element 276 * changes. 277 */ 278 static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last) 279 { 280 unsigned long mask; 281 unsigned long old; 282 283 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL)); 284 assert(start <= last); 285 286 mask = 2UL << (last & (BITS_PER_LONG - 1)); 287 mask -= 1UL << (start & (BITS_PER_LONG - 1)); 288 old = *elem; 289 *elem |= mask; 290 return old != *elem; 291 } 292 293 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... 294 * Returns true if at least one bit is changed. */ 295 static bool hb_set_between(HBitmap *hb, int level, uint64_t start, 296 uint64_t last) 297 { 298 size_t pos = start >> BITS_PER_LEVEL; 299 size_t lastpos = last >> BITS_PER_LEVEL; 300 bool changed = false; 301 size_t i; 302 303 i = pos; 304 if (i < lastpos) { 305 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1; 306 changed |= hb_set_elem(&hb->levels[level][i], start, next - 1); 307 for (;;) { 308 start = next; 309 next += BITS_PER_LONG; 310 if (++i == lastpos) { 311 break; 312 } 313 changed |= (hb->levels[level][i] == 0); 314 hb->levels[level][i] = ~0UL; 315 } 316 } 317 changed |= hb_set_elem(&hb->levels[level][i], start, last); 318 319 /* If there was any change in this layer, we may have to update 320 * the one above. 321 */ 322 if (level > 0 && changed) { 323 hb_set_between(hb, level - 1, pos, lastpos); 324 } 325 return changed; 326 } 327 328 void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count) 329 { 330 /* Compute range in the last layer. */ 331 uint64_t first, n; 332 uint64_t last = start + count - 1; 333 334 trace_hbitmap_set(hb, start, count, 335 start >> hb->granularity, last >> hb->granularity); 336 337 first = start >> hb->granularity; 338 last >>= hb->granularity; 339 assert(last < hb->size); 340 n = last - first + 1; 341 342 hb->count += n - hb_count_between(hb, first, last); 343 if (hb_set_between(hb, HBITMAP_LEVELS - 1, first, last) && 344 hb->meta) { 345 hbitmap_set(hb->meta, start, count); 346 } 347 } 348 349 /* Resetting works the other way round: propagate up if the new 350 * value is zero. 351 */ 352 static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last) 353 { 354 unsigned long mask; 355 bool blanked; 356 357 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL)); 358 assert(start <= last); 359 360 mask = 2UL << (last & (BITS_PER_LONG - 1)); 361 mask -= 1UL << (start & (BITS_PER_LONG - 1)); 362 blanked = *elem != 0 && ((*elem & ~mask) == 0); 363 *elem &= ~mask; 364 return blanked; 365 } 366 367 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... 368 * Returns true if at least one bit is changed. */ 369 static bool hb_reset_between(HBitmap *hb, int level, uint64_t start, 370 uint64_t last) 371 { 372 size_t pos = start >> BITS_PER_LEVEL; 373 size_t lastpos = last >> BITS_PER_LEVEL; 374 bool changed = false; 375 size_t i; 376 377 i = pos; 378 if (i < lastpos) { 379 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1; 380 381 /* Here we need a more complex test than when setting bits. Even if 382 * something was changed, we must not blank bits in the upper level 383 * unless the lower-level word became entirely zero. So, remove pos 384 * from the upper-level range if bits remain set. 385 */ 386 if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) { 387 changed = true; 388 } else { 389 pos++; 390 } 391 392 for (;;) { 393 start = next; 394 next += BITS_PER_LONG; 395 if (++i == lastpos) { 396 break; 397 } 398 changed |= (hb->levels[level][i] != 0); 399 hb->levels[level][i] = 0UL; 400 } 401 } 402 403 /* Same as above, this time for lastpos. */ 404 if (hb_reset_elem(&hb->levels[level][i], start, last)) { 405 changed = true; 406 } else { 407 lastpos--; 408 } 409 410 if (level > 0 && changed) { 411 hb_reset_between(hb, level - 1, pos, lastpos); 412 } 413 414 return changed; 415 416 } 417 418 void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count) 419 { 420 /* Compute range in the last layer. */ 421 uint64_t first; 422 uint64_t last = start + count - 1; 423 424 trace_hbitmap_reset(hb, start, count, 425 start >> hb->granularity, last >> hb->granularity); 426 427 first = start >> hb->granularity; 428 last >>= hb->granularity; 429 assert(last < hb->size); 430 431 hb->count -= hb_count_between(hb, first, last); 432 if (hb_reset_between(hb, HBITMAP_LEVELS - 1, first, last) && 433 hb->meta) { 434 hbitmap_set(hb->meta, start, count); 435 } 436 } 437 438 void hbitmap_reset_all(HBitmap *hb) 439 { 440 unsigned int i; 441 442 /* Same as hbitmap_alloc() except for memset() instead of malloc() */ 443 for (i = HBITMAP_LEVELS; --i >= 1; ) { 444 memset(hb->levels[i], 0, hb->sizes[i] * sizeof(unsigned long)); 445 } 446 447 hb->levels[0][0] = 1UL << (BITS_PER_LONG - 1); 448 hb->count = 0; 449 } 450 451 bool hbitmap_is_serializable(const HBitmap *hb) 452 { 453 /* Every serialized chunk must be aligned to 64 bits so that endianness 454 * requirements can be fulfilled on both 64 bit and 32 bit hosts. 455 * We have hbitmap_serialization_align() which converts this 456 * alignment requirement from bitmap bits to items covered (e.g. sectors). 457 * That value is: 458 * 64 << hb->granularity 459 * Since this value must not exceed UINT64_MAX, hb->granularity must be 460 * less than 58 (== 64 - 6, where 6 is ld(64), i.e. 1 << 6 == 64). 461 * 462 * In order for hbitmap_serialization_align() to always return a 463 * meaningful value, bitmaps that are to be serialized must have a 464 * granularity of less than 58. */ 465 466 return hb->granularity < 58; 467 } 468 469 bool hbitmap_get(const HBitmap *hb, uint64_t item) 470 { 471 /* Compute position and bit in the last layer. */ 472 uint64_t pos = item >> hb->granularity; 473 unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1)); 474 assert(pos < hb->size); 475 476 return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0; 477 } 478 479 uint64_t hbitmap_serialization_align(const HBitmap *hb) 480 { 481 assert(hbitmap_is_serializable(hb)); 482 483 /* Require at least 64 bit granularity to be safe on both 64 bit and 32 bit 484 * hosts. */ 485 return UINT64_C(64) << hb->granularity; 486 } 487 488 /* Start should be aligned to serialization granularity, chunk size should be 489 * aligned to serialization granularity too, except for last chunk. 490 */ 491 static void serialization_chunk(const HBitmap *hb, 492 uint64_t start, uint64_t count, 493 unsigned long **first_el, uint64_t *el_count) 494 { 495 uint64_t last = start + count - 1; 496 uint64_t gran = hbitmap_serialization_align(hb); 497 498 assert((start & (gran - 1)) == 0); 499 assert((last >> hb->granularity) < hb->size); 500 if ((last >> hb->granularity) != hb->size - 1) { 501 assert((count & (gran - 1)) == 0); 502 } 503 504 start = (start >> hb->granularity) >> BITS_PER_LEVEL; 505 last = (last >> hb->granularity) >> BITS_PER_LEVEL; 506 507 *first_el = &hb->levels[HBITMAP_LEVELS - 1][start]; 508 *el_count = last - start + 1; 509 } 510 511 uint64_t hbitmap_serialization_size(const HBitmap *hb, 512 uint64_t start, uint64_t count) 513 { 514 uint64_t el_count; 515 unsigned long *cur; 516 517 if (!count) { 518 return 0; 519 } 520 serialization_chunk(hb, start, count, &cur, &el_count); 521 522 return el_count * sizeof(unsigned long); 523 } 524 525 void hbitmap_serialize_part(const HBitmap *hb, uint8_t *buf, 526 uint64_t start, uint64_t count) 527 { 528 uint64_t el_count; 529 unsigned long *cur, *end; 530 531 if (!count) { 532 return; 533 } 534 serialization_chunk(hb, start, count, &cur, &el_count); 535 end = cur + el_count; 536 537 while (cur != end) { 538 unsigned long el = 539 (BITS_PER_LONG == 32 ? cpu_to_le32(*cur) : cpu_to_le64(*cur)); 540 541 memcpy(buf, &el, sizeof(el)); 542 buf += sizeof(el); 543 cur++; 544 } 545 } 546 547 void hbitmap_deserialize_part(HBitmap *hb, uint8_t *buf, 548 uint64_t start, uint64_t count, 549 bool finish) 550 { 551 uint64_t el_count; 552 unsigned long *cur, *end; 553 554 if (!count) { 555 return; 556 } 557 serialization_chunk(hb, start, count, &cur, &el_count); 558 end = cur + el_count; 559 560 while (cur != end) { 561 memcpy(cur, buf, sizeof(*cur)); 562 563 if (BITS_PER_LONG == 32) { 564 le32_to_cpus((uint32_t *)cur); 565 } else { 566 le64_to_cpus((uint64_t *)cur); 567 } 568 569 buf += sizeof(unsigned long); 570 cur++; 571 } 572 if (finish) { 573 hbitmap_deserialize_finish(hb); 574 } 575 } 576 577 void hbitmap_deserialize_zeroes(HBitmap *hb, uint64_t start, uint64_t count, 578 bool finish) 579 { 580 uint64_t el_count; 581 unsigned long *first; 582 583 if (!count) { 584 return; 585 } 586 serialization_chunk(hb, start, count, &first, &el_count); 587 588 memset(first, 0, el_count * sizeof(unsigned long)); 589 if (finish) { 590 hbitmap_deserialize_finish(hb); 591 } 592 } 593 594 void hbitmap_deserialize_ones(HBitmap *hb, uint64_t start, uint64_t count, 595 bool finish) 596 { 597 uint64_t el_count; 598 unsigned long *first; 599 600 if (!count) { 601 return; 602 } 603 serialization_chunk(hb, start, count, &first, &el_count); 604 605 memset(first, 0xff, el_count * sizeof(unsigned long)); 606 if (finish) { 607 hbitmap_deserialize_finish(hb); 608 } 609 } 610 611 void hbitmap_deserialize_finish(HBitmap *bitmap) 612 { 613 int64_t i, size, prev_size; 614 int lev; 615 616 /* restore levels starting from penultimate to zero level, assuming 617 * that the last level is ok */ 618 size = MAX((bitmap->size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1); 619 for (lev = HBITMAP_LEVELS - 1; lev-- > 0; ) { 620 prev_size = size; 621 size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1); 622 memset(bitmap->levels[lev], 0, size * sizeof(unsigned long)); 623 624 for (i = 0; i < prev_size; ++i) { 625 if (bitmap->levels[lev + 1][i]) { 626 bitmap->levels[lev][i >> BITS_PER_LEVEL] |= 627 1UL << (i & (BITS_PER_LONG - 1)); 628 } 629 } 630 } 631 632 bitmap->levels[0][0] |= 1UL << (BITS_PER_LONG - 1); 633 bitmap->count = hb_count_between(bitmap, 0, bitmap->size - 1); 634 } 635 636 void hbitmap_free(HBitmap *hb) 637 { 638 unsigned i; 639 assert(!hb->meta); 640 for (i = HBITMAP_LEVELS; i-- > 0; ) { 641 g_free(hb->levels[i]); 642 } 643 g_free(hb); 644 } 645 646 HBitmap *hbitmap_alloc(uint64_t size, int granularity) 647 { 648 HBitmap *hb = g_new0(struct HBitmap, 1); 649 unsigned i; 650 651 assert(granularity >= 0 && granularity < 64); 652 size = (size + (1ULL << granularity) - 1) >> granularity; 653 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE)); 654 655 hb->size = size; 656 hb->granularity = granularity; 657 for (i = HBITMAP_LEVELS; i-- > 0; ) { 658 size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1); 659 hb->sizes[i] = size; 660 hb->levels[i] = g_new0(unsigned long, size); 661 } 662 663 /* We necessarily have free bits in level 0 due to the definition 664 * of HBITMAP_LEVELS, so use one for a sentinel. This speeds up 665 * hbitmap_iter_skip_words. 666 */ 667 assert(size == 1); 668 hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1); 669 return hb; 670 } 671 672 void hbitmap_truncate(HBitmap *hb, uint64_t size) 673 { 674 bool shrink; 675 unsigned i; 676 uint64_t num_elements = size; 677 uint64_t old; 678 679 /* Size comes in as logical elements, adjust for granularity. */ 680 size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity; 681 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE)); 682 shrink = size < hb->size; 683 684 /* bit sizes are identical; nothing to do. */ 685 if (size == hb->size) { 686 return; 687 } 688 689 /* If we're losing bits, let's clear those bits before we invalidate all of 690 * our invariants. This helps keep the bitcount consistent, and will prevent 691 * us from carrying around garbage bits beyond the end of the map. 692 */ 693 if (shrink) { 694 /* Don't clear partial granularity groups; 695 * start at the first full one. */ 696 uint64_t start = ROUND_UP(num_elements, UINT64_C(1) << hb->granularity); 697 uint64_t fix_count = (hb->size << hb->granularity) - start; 698 699 assert(fix_count); 700 hbitmap_reset(hb, start, fix_count); 701 } 702 703 hb->size = size; 704 for (i = HBITMAP_LEVELS; i-- > 0; ) { 705 size = MAX(BITS_TO_LONGS(size), 1); 706 if (hb->sizes[i] == size) { 707 break; 708 } 709 old = hb->sizes[i]; 710 hb->sizes[i] = size; 711 hb->levels[i] = g_realloc(hb->levels[i], size * sizeof(unsigned long)); 712 if (!shrink) { 713 memset(&hb->levels[i][old], 0x00, 714 (size - old) * sizeof(*hb->levels[i])); 715 } 716 } 717 if (hb->meta) { 718 hbitmap_truncate(hb->meta, hb->size << hb->granularity); 719 } 720 } 721 722 723 /** 724 * Given HBitmaps A and B, let A := A (BITOR) B. 725 * Bitmap B will not be modified. 726 * 727 * @return true if the merge was successful, 728 * false if it was not attempted. 729 */ 730 bool hbitmap_merge(HBitmap *a, const HBitmap *b) 731 { 732 int i; 733 uint64_t j; 734 735 if ((a->size != b->size) || (a->granularity != b->granularity)) { 736 return false; 737 } 738 739 if (hbitmap_count(b) == 0) { 740 return true; 741 } 742 743 /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant. 744 * It may be possible to improve running times for sparsely populated maps 745 * by using hbitmap_iter_next, but this is suboptimal for dense maps. 746 */ 747 for (i = HBITMAP_LEVELS - 1; i >= 0; i--) { 748 for (j = 0; j < a->sizes[i]; j++) { 749 a->levels[i][j] |= b->levels[i][j]; 750 } 751 } 752 753 return true; 754 } 755 756 HBitmap *hbitmap_create_meta(HBitmap *hb, int chunk_size) 757 { 758 assert(!(chunk_size & (chunk_size - 1))); 759 assert(!hb->meta); 760 hb->meta = hbitmap_alloc(hb->size << hb->granularity, 761 hb->granularity + ctz32(chunk_size)); 762 return hb->meta; 763 } 764 765 void hbitmap_free_meta(HBitmap *hb) 766 { 767 assert(hb->meta); 768 hbitmap_free(hb->meta); 769 hb->meta = NULL; 770 } 771 772 char *hbitmap_sha256(const HBitmap *bitmap, Error **errp) 773 { 774 size_t size = bitmap->sizes[HBITMAP_LEVELS - 1] * sizeof(unsigned long); 775 char *data = (char *)bitmap->levels[HBITMAP_LEVELS - 1]; 776 char *hash = NULL; 777 qcrypto_hash_digest(QCRYPTO_HASH_ALG_SHA256, data, size, &hash, errp); 778 779 return hash; 780 } 781