1 /* 2 * Hierarchical Bitmap Data Type 3 * 4 * Copyright Red Hat, Inc., 2012 5 * 6 * Author: Paolo Bonzini <pbonzini@redhat.com> 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2 or 9 * later. See the COPYING file in the top-level directory. 10 */ 11 12 #include "qemu/osdep.h" 13 #include "qemu/hbitmap.h" 14 #include "qemu/host-utils.h" 15 #include "trace.h" 16 17 /* HBitmaps provides an array of bits. The bits are stored as usual in an 18 * array of unsigned longs, but HBitmap is also optimized to provide fast 19 * iteration over set bits; going from one bit to the next is O(logB n) 20 * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough 21 * that the number of levels is in fact fixed. 22 * 23 * In order to do this, it stacks multiple bitmaps with progressively coarser 24 * granularity; in all levels except the last, bit N is set iff the N-th 25 * unsigned long is nonzero in the immediately next level. When iteration 26 * completes on the last level it can examine the 2nd-last level to quickly 27 * skip entire words, and even do so recursively to skip blocks of 64 words or 28 * powers thereof (32 on 32-bit machines). 29 * 30 * Given an index in the bitmap, it can be split in group of bits like 31 * this (for the 64-bit case): 32 * 33 * bits 0-57 => word in the last bitmap | bits 58-63 => bit in the word 34 * bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word 35 * bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word 36 * 37 * So it is easy to move up simply by shifting the index right by 38 * log2(BITS_PER_LONG) bits. To move down, you shift the index left 39 * similarly, and add the word index within the group. Iteration uses 40 * ffs (find first set bit) to find the next word to examine; this 41 * operation can be done in constant time in most current architectures. 42 * 43 * Setting or clearing a range of m bits on all levels, the work to perform 44 * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap. 45 * 46 * When iterating on a bitmap, each bit (on any level) is only visited 47 * once. Hence, The total cost of visiting a bitmap with m bits in it is 48 * the number of bits that are set in all bitmaps. Unless the bitmap is 49 * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized 50 * cost of advancing from one bit to the next is usually constant (worst case 51 * O(logB n) as in the non-amortized complexity). 52 */ 53 54 struct HBitmap { 55 /* Number of total bits in the bottom level. */ 56 uint64_t size; 57 58 /* Number of set bits in the bottom level. */ 59 uint64_t count; 60 61 /* A scaling factor. Given a granularity of G, each bit in the bitmap will 62 * will actually represent a group of 2^G elements. Each operation on a 63 * range of bits first rounds the bits to determine which group they land 64 * in, and then affect the entire page; iteration will only visit the first 65 * bit of each group. Here is an example of operations in a size-16, 66 * granularity-1 HBitmap: 67 * 68 * initial state 00000000 69 * set(start=0, count=9) 11111000 (iter: 0, 2, 4, 6, 8) 70 * reset(start=1, count=3) 00111000 (iter: 4, 6, 8) 71 * set(start=9, count=2) 00111100 (iter: 4, 6, 8, 10) 72 * reset(start=5, count=5) 00000000 73 * 74 * From an implementation point of view, when setting or resetting bits, 75 * the bitmap will scale bit numbers right by this amount of bits. When 76 * iterating, the bitmap will scale bit numbers left by this amount of 77 * bits. 78 */ 79 int granularity; 80 81 /* A number of progressively less coarse bitmaps (i.e. level 0 is the 82 * coarsest). Each bit in level N represents a word in level N+1 that 83 * has a set bit, except the last level where each bit represents the 84 * actual bitmap. 85 * 86 * Note that all bitmaps have the same number of levels. Even a 1-bit 87 * bitmap will still allocate HBITMAP_LEVELS arrays. 88 */ 89 unsigned long *levels[HBITMAP_LEVELS]; 90 91 /* The length of each levels[] array. */ 92 uint64_t sizes[HBITMAP_LEVELS]; 93 }; 94 95 /* Advance hbi to the next nonzero word and return it. hbi->pos 96 * is updated. Returns zero if we reach the end of the bitmap. 97 */ 98 unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi) 99 { 100 size_t pos = hbi->pos; 101 const HBitmap *hb = hbi->hb; 102 unsigned i = HBITMAP_LEVELS - 1; 103 104 unsigned long cur; 105 do { 106 cur = hbi->cur[--i]; 107 pos >>= BITS_PER_LEVEL; 108 } while (cur == 0); 109 110 /* Check for end of iteration. We always use fewer than BITS_PER_LONG 111 * bits in the level 0 bitmap; thus we can repurpose the most significant 112 * bit as a sentinel. The sentinel is set in hbitmap_alloc and ensures 113 * that the above loop ends even without an explicit check on i. 114 */ 115 116 if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) { 117 return 0; 118 } 119 for (; i < HBITMAP_LEVELS - 1; i++) { 120 /* Shift back pos to the left, matching the right shifts above. 121 * The index of this word's least significant set bit provides 122 * the low-order bits. 123 */ 124 assert(cur); 125 pos = (pos << BITS_PER_LEVEL) + ctzl(cur); 126 hbi->cur[i] = cur & (cur - 1); 127 128 /* Set up next level for iteration. */ 129 cur = hb->levels[i + 1][pos]; 130 } 131 132 hbi->pos = pos; 133 trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur); 134 135 assert(cur); 136 return cur; 137 } 138 139 void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first) 140 { 141 unsigned i, bit; 142 uint64_t pos; 143 144 hbi->hb = hb; 145 pos = first >> hb->granularity; 146 assert(pos < hb->size); 147 hbi->pos = pos >> BITS_PER_LEVEL; 148 hbi->granularity = hb->granularity; 149 150 for (i = HBITMAP_LEVELS; i-- > 0; ) { 151 bit = pos & (BITS_PER_LONG - 1); 152 pos >>= BITS_PER_LEVEL; 153 154 /* Drop bits representing items before first. */ 155 hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1); 156 157 /* We have already added level i+1, so the lowest set bit has 158 * been processed. Clear it. 159 */ 160 if (i != HBITMAP_LEVELS - 1) { 161 hbi->cur[i] &= ~(1UL << bit); 162 } 163 } 164 } 165 166 bool hbitmap_empty(const HBitmap *hb) 167 { 168 return hb->count == 0; 169 } 170 171 int hbitmap_granularity(const HBitmap *hb) 172 { 173 return hb->granularity; 174 } 175 176 uint64_t hbitmap_count(const HBitmap *hb) 177 { 178 return hb->count << hb->granularity; 179 } 180 181 /* Count the number of set bits between start and end, not accounting for 182 * the granularity. Also an example of how to use hbitmap_iter_next_word. 183 */ 184 static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last) 185 { 186 HBitmapIter hbi; 187 uint64_t count = 0; 188 uint64_t end = last + 1; 189 unsigned long cur; 190 size_t pos; 191 192 hbitmap_iter_init(&hbi, hb, start << hb->granularity); 193 for (;;) { 194 pos = hbitmap_iter_next_word(&hbi, &cur); 195 if (pos >= (end >> BITS_PER_LEVEL)) { 196 break; 197 } 198 count += ctpopl(cur); 199 } 200 201 if (pos == (end >> BITS_PER_LEVEL)) { 202 /* Drop bits representing the END-th and subsequent items. */ 203 int bit = end & (BITS_PER_LONG - 1); 204 cur &= (1UL << bit) - 1; 205 count += ctpopl(cur); 206 } 207 208 return count; 209 } 210 211 /* Setting starts at the last layer and propagates up if an element 212 * changes from zero to non-zero. 213 */ 214 static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last) 215 { 216 unsigned long mask; 217 bool changed; 218 219 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL)); 220 assert(start <= last); 221 222 mask = 2UL << (last & (BITS_PER_LONG - 1)); 223 mask -= 1UL << (start & (BITS_PER_LONG - 1)); 224 changed = (*elem == 0); 225 *elem |= mask; 226 return changed; 227 } 228 229 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... */ 230 static void hb_set_between(HBitmap *hb, int level, uint64_t start, uint64_t last) 231 { 232 size_t pos = start >> BITS_PER_LEVEL; 233 size_t lastpos = last >> BITS_PER_LEVEL; 234 bool changed = false; 235 size_t i; 236 237 i = pos; 238 if (i < lastpos) { 239 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1; 240 changed |= hb_set_elem(&hb->levels[level][i], start, next - 1); 241 for (;;) { 242 start = next; 243 next += BITS_PER_LONG; 244 if (++i == lastpos) { 245 break; 246 } 247 changed |= (hb->levels[level][i] == 0); 248 hb->levels[level][i] = ~0UL; 249 } 250 } 251 changed |= hb_set_elem(&hb->levels[level][i], start, last); 252 253 /* If there was any change in this layer, we may have to update 254 * the one above. 255 */ 256 if (level > 0 && changed) { 257 hb_set_between(hb, level - 1, pos, lastpos); 258 } 259 } 260 261 void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count) 262 { 263 /* Compute range in the last layer. */ 264 uint64_t last = start + count - 1; 265 266 trace_hbitmap_set(hb, start, count, 267 start >> hb->granularity, last >> hb->granularity); 268 269 start >>= hb->granularity; 270 last >>= hb->granularity; 271 count = last - start + 1; 272 assert(last < hb->size); 273 274 hb->count += count - hb_count_between(hb, start, last); 275 hb_set_between(hb, HBITMAP_LEVELS - 1, start, last); 276 } 277 278 /* Resetting works the other way round: propagate up if the new 279 * value is zero. 280 */ 281 static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last) 282 { 283 unsigned long mask; 284 bool blanked; 285 286 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL)); 287 assert(start <= last); 288 289 mask = 2UL << (last & (BITS_PER_LONG - 1)); 290 mask -= 1UL << (start & (BITS_PER_LONG - 1)); 291 blanked = *elem != 0 && ((*elem & ~mask) == 0); 292 *elem &= ~mask; 293 return blanked; 294 } 295 296 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... */ 297 static void hb_reset_between(HBitmap *hb, int level, uint64_t start, uint64_t last) 298 { 299 size_t pos = start >> BITS_PER_LEVEL; 300 size_t lastpos = last >> BITS_PER_LEVEL; 301 bool changed = false; 302 size_t i; 303 304 i = pos; 305 if (i < lastpos) { 306 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1; 307 308 /* Here we need a more complex test than when setting bits. Even if 309 * something was changed, we must not blank bits in the upper level 310 * unless the lower-level word became entirely zero. So, remove pos 311 * from the upper-level range if bits remain set. 312 */ 313 if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) { 314 changed = true; 315 } else { 316 pos++; 317 } 318 319 for (;;) { 320 start = next; 321 next += BITS_PER_LONG; 322 if (++i == lastpos) { 323 break; 324 } 325 changed |= (hb->levels[level][i] != 0); 326 hb->levels[level][i] = 0UL; 327 } 328 } 329 330 /* Same as above, this time for lastpos. */ 331 if (hb_reset_elem(&hb->levels[level][i], start, last)) { 332 changed = true; 333 } else { 334 lastpos--; 335 } 336 337 if (level > 0 && changed) { 338 hb_reset_between(hb, level - 1, pos, lastpos); 339 } 340 } 341 342 void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count) 343 { 344 /* Compute range in the last layer. */ 345 uint64_t last = start + count - 1; 346 347 trace_hbitmap_reset(hb, start, count, 348 start >> hb->granularity, last >> hb->granularity); 349 350 start >>= hb->granularity; 351 last >>= hb->granularity; 352 assert(last < hb->size); 353 354 hb->count -= hb_count_between(hb, start, last); 355 hb_reset_between(hb, HBITMAP_LEVELS - 1, start, last); 356 } 357 358 void hbitmap_reset_all(HBitmap *hb) 359 { 360 unsigned int i; 361 362 /* Same as hbitmap_alloc() except for memset() instead of malloc() */ 363 for (i = HBITMAP_LEVELS; --i >= 1; ) { 364 memset(hb->levels[i], 0, hb->sizes[i] * sizeof(unsigned long)); 365 } 366 367 hb->levels[0][0] = 1UL << (BITS_PER_LONG - 1); 368 hb->count = 0; 369 } 370 371 bool hbitmap_get(const HBitmap *hb, uint64_t item) 372 { 373 /* Compute position and bit in the last layer. */ 374 uint64_t pos = item >> hb->granularity; 375 unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1)); 376 assert(pos < hb->size); 377 378 return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0; 379 } 380 381 void hbitmap_free(HBitmap *hb) 382 { 383 unsigned i; 384 for (i = HBITMAP_LEVELS; i-- > 0; ) { 385 g_free(hb->levels[i]); 386 } 387 g_free(hb); 388 } 389 390 HBitmap *hbitmap_alloc(uint64_t size, int granularity) 391 { 392 HBitmap *hb = g_new0(struct HBitmap, 1); 393 unsigned i; 394 395 assert(granularity >= 0 && granularity < 64); 396 size = (size + (1ULL << granularity) - 1) >> granularity; 397 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE)); 398 399 hb->size = size; 400 hb->granularity = granularity; 401 for (i = HBITMAP_LEVELS; i-- > 0; ) { 402 size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1); 403 hb->sizes[i] = size; 404 hb->levels[i] = g_new0(unsigned long, size); 405 } 406 407 /* We necessarily have free bits in level 0 due to the definition 408 * of HBITMAP_LEVELS, so use one for a sentinel. This speeds up 409 * hbitmap_iter_skip_words. 410 */ 411 assert(size == 1); 412 hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1); 413 return hb; 414 } 415 416 void hbitmap_truncate(HBitmap *hb, uint64_t size) 417 { 418 bool shrink; 419 unsigned i; 420 uint64_t num_elements = size; 421 uint64_t old; 422 423 /* Size comes in as logical elements, adjust for granularity. */ 424 size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity; 425 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE)); 426 shrink = size < hb->size; 427 428 /* bit sizes are identical; nothing to do. */ 429 if (size == hb->size) { 430 return; 431 } 432 433 /* If we're losing bits, let's clear those bits before we invalidate all of 434 * our invariants. This helps keep the bitcount consistent, and will prevent 435 * us from carrying around garbage bits beyond the end of the map. 436 */ 437 if (shrink) { 438 /* Don't clear partial granularity groups; 439 * start at the first full one. */ 440 uint64_t start = QEMU_ALIGN_UP(num_elements, 1 << hb->granularity); 441 uint64_t fix_count = (hb->size << hb->granularity) - start; 442 443 assert(fix_count); 444 hbitmap_reset(hb, start, fix_count); 445 } 446 447 hb->size = size; 448 for (i = HBITMAP_LEVELS; i-- > 0; ) { 449 size = MAX(BITS_TO_LONGS(size), 1); 450 if (hb->sizes[i] == size) { 451 break; 452 } 453 old = hb->sizes[i]; 454 hb->sizes[i] = size; 455 hb->levels[i] = g_realloc(hb->levels[i], size * sizeof(unsigned long)); 456 if (!shrink) { 457 memset(&hb->levels[i][old], 0x00, 458 (size - old) * sizeof(*hb->levels[i])); 459 } 460 } 461 } 462 463 464 /** 465 * Given HBitmaps A and B, let A := A (BITOR) B. 466 * Bitmap B will not be modified. 467 * 468 * @return true if the merge was successful, 469 * false if it was not attempted. 470 */ 471 bool hbitmap_merge(HBitmap *a, const HBitmap *b) 472 { 473 int i; 474 uint64_t j; 475 476 if ((a->size != b->size) || (a->granularity != b->granularity)) { 477 return false; 478 } 479 480 if (hbitmap_count(b) == 0) { 481 return true; 482 } 483 484 /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant. 485 * It may be possible to improve running times for sparsely populated maps 486 * by using hbitmap_iter_next, but this is suboptimal for dense maps. 487 */ 488 for (i = HBITMAP_LEVELS - 1; i >= 0; i--) { 489 for (j = 0; j < a->sizes[i]; j++) { 490 a->levels[i][j] |= b->levels[i][j]; 491 } 492 } 493 494 return true; 495 } 496